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Business Context: Why are we doing this?

Business Context:
Goal is to improve estimation of loss development patterns for individual clients.

Including benchmark patterns helps stabilize this estimation.

= Avoid two extremes of relying solely on client data (variance) and using
benchmark for everyone (bias).

Basic Model

= Use conjugate distributions for simple implementation
[we are skipping the math for today]

= Related to Chain Ladder method and applies to each age-to-age (ATA) factor

We will start with a blending example to build intuition.

Combining Triangles: Possible Even for Different Sizes
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Company A Company B
Triangle is complete for old years, but we did not get atest diagonal We have latest diagonals, but not early evaluations on some years
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Basic Model MunichRE =

An Industry consolidated triangle
\ may be the source of a benchmark
pattern.
But it does not need to be a full
triangle as we have seen: it can be
a weighted average from selections
> for each company.

Basic Model

Credibility is like a compromise between two extremes (like variance/bias tradeoff).

Use Only the Client's Triangle Use Industry Benchmark for All Clients
Company Data + 0% of Industry Company Data + 100% of rest of Industry

Company Data + xx% of Industry

Basic Model
Client Triangle
1 2 3 5 6 Ultimate

2012 20,000 20,000 20,000 20,000 20,000

2013 10,000 10,000 14,926 14,833

2014 23,073 32,945 31,747

2015 10,000 10,000 10,000

2016 24,858 25,054

2017 10,304
Col #1 87,931 72,945 66,673 34,833 20,000 Al
Col #2 97,999 76,673 66,509 34,833 20,000 A2 Client Data
ATA 1114 1.051 0.998 1.000 1.000 A3=A2/A1

Benchmark Pattern

Col #1 42,499 112,191 174,216 185,874 96,061 90,909 B1=B2/B3
Col #2 100,000 150,000 200,000 200,000 100,000 100,000 B2 Pseudo Data
ATA 2.353 1.337 1148 1.076 1041 1.100 B3

Credibility Weighted
Col #1 130,430 185136 240889 220,707 116,061 90,909
Col #2 107,999 226673 266509 234833 120,000 100,000
ATA 1518 1224 1.106 1.064 1.034 1.100
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Basic Model Munich R
In the basic model, the actual client data is smoothed by supplementing it with
“pseudo data” from the benchmark, which acts as ballast.

This is equivalent to a Bayesian credibility formula using a conjugate prior.

Two alternative derivations can be found in the two papers below.

Clark, D.R. “Introduction to Bayesian Loss Development” CAS Forum 2016.
https:/A casact. im/16sforum/Clark.pdf

Shi, Peng and Brian M. Hartman, "Credibility in Loss Reserving”, CAS Forum 2014
http://www.casact.org/pubs/forum/14sumforumv2/Shi_Hartman.pdf

Basic Model

The concept of pseudo data:

“Conjugate priors... have the desirable feature that prior information can be viewed
as ‘fictitious sample information’ in that it is combined with the sample in exactly the
same way that additional sample information would be combined.

“The only difference is that the prior information is ‘observed’ in the mind of the
researcher, not in the real world.”

- Bayesian Econometric Methods; Koop, Poirier & Tobias

PS: This is also what is done in ISO state advisory loss cost circulars.

Extended Model Munich Rl
Alimitation of the Basic Model:

« Each age-to-age (ATA) factor, or column of the triangle, is treated independently

« This means that we would use the benchmark “tail” even if ATA factors from the
client were consistently less than the benchmark.

Shi & Hartman address this by introducing a correlation structure in the model.

An alternative is to first “nudge” the benchmark before applying the Basic Model.

2/17/2021



https://www.casact.org/pubs/forum/16sforum/Clark.pdf
http://www.casact.org/pubs/forum/14sumforumv2/Shi_Hartman.pdf

Extended Model

Industry Schedule P - Other Liability {occ)

Benchmark Growth Curve G(f)

Extended Model

Industry Schedule P - Other Liability (occ)

100%

Grase(®) =1~ (1= 6(H)°

Gs1on(B) = G(D)?

25%

Extended Model

Munich RE

Actuaries select a benchmark
development pattern (growth
curve) for representative
business segments.

The selected benchmarks may
be based on data from various
sources and judgmentally
smoothed.

Munich RE

As a simplified method for setting
arange around the benchmark,
we can start by setting “fast” and
“slow” patterns.

In this derivation, the benchmark
will always be the exact midpoint
between the fast and slow
patterns.

Munich RE

We will assume that each client has a development pattern that is a weighted average of the

“Fast” and “Slow” patterns around the benchmark.

If the weight for company j is exactly 50%/50%, then the benchmark pattern is used.

To start, we will constrain the weights to be between 0% and 100%. The parameter p is

assumed to be a random variable from a beta distribution.

G(agelj) = p; - Grasc(age) + (1 — p;) - Ggpw(age)

0=p
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Extended Model

The form of the model is a linear combination of two “basis functions” (fast and slow).
= Asimple form of Regression Spline

The weight parameter p can be estimated various ways, along with its standard error.

Ideally, we damp this parameter close to .500 based on assigning a prior distribution
(e.g., a Beta Distribution).

If we assume a prior uniformly distributed between 0 and 1, then the variance of
hypothetical means = 1/12.

Extended Model

Sample of 20 Largest Products Liability Writers How well does this work?

Example here uses
Products Liability payment
patterns from Schedule P.

The fast and slow patterns
reasonably bracket the
range of patterns across
companies.

Next Steps: Selecting the Prior Distribution

How do we set the spread around the benchmark parameter?

Subjective Bayes:

= Business expertise selects the range of possible values
For example: how much faster or slower than average can a company settle its
claims?

“Subjunctive Bayes” (Stephen Senn):
= Set prior parameters to get the credibility-weighted result that makes sense

Empirical Bayes:
= How much actual spread is there among the companies (or states)?
= Data Scientists call this cross validation

2/17/2021




2/17/2021

Next Steps: Selecting the Prior Distribution Munich RE

Improvement from Credibility Weighting Good News !

Even if we cannot estimate the
optimal credibility perfectly, we
can select a value that produces
a blended estimate that is an
improvement on either estimator
----------------------------- alone.

Var(8,)

Range where improvement is made
We are just looking for a
sensible weighted average.
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Credibility Weight

Thank you!

Selected References Munich RE

Clark, D.R. “Introduction to Bayesian Loss Development” CAS Forum 2016.
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Variance 2017, Volume 11, Issue 01
orglissues/11-01-02/95.pdf

Racine, J.S., “A Primer on Regression Splines”, CRAN library

https://cran.r-project primer.pdf

Senn, S. “Two Cheers for P-Values?” Journal of Epidemiology and Biostatistics (2001)
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Shi, Peng and Brian M. Hartman, "Credibility in Loss Reserving”, CAS Forum 2014
wiw.casact. Hartman pdf
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http://www.variancejournal.org/issues/11-01-02/95.pdf
https://cran.r-project.org/web/packages/crs/vignettes/spline_primer.pdf
https://www.stat.washington.edu/peter/342/Senn.pdf
http://www.casact.org/pubs/forum/14sumforumv2/Shi_Hartman.pdf

Strategies for Working with Loss
Development Factors

Uri Korn, FCAS
Ratemaking, Product, and Modeling Seminar
March 16, 2021

Blending LDFs

« LDFs are volatile
« To reduce LDF voldtility, leverage 2 related pieces of information

1. Adjacent LDFs - Fit a curve
2. Related LDFs - Blend with credibility

The LDF Ninja

23

24
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Part 1) LDF Curves

25

Inverse Power Curve
(Sherman 1984)

log(LDF - 1) = A + B x log(age)-

o Easy toimplement
o But often poor fit fo the data

* Using age instead of 1/ age, since the regression equations are equivalent.
Also, ignoring the ¢ parameter 2

IPOC Fit

—— Starts too high

Trouble making
the “turn”

Tail too high

27
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Problem with the IPOC

+ Weights (assumed variances) aren't accurate
o Tail LDFs are more volatile

o High volatility at initial ages due to lack of volume (longer tailed
lines)

IN MY DAY, WE
NEVER USED
CURVES

Double IPOC (DIPOC)

+ Modify the weights of the Inverse Power Curve

» Weights are a function of age and loss volume
Use a weighted Gamma regression instead

« Fit a curve to the variance/weights by age
1. Fit simultaneously with LDFs
2. Or calculate directly from triangle beforehand

28

29

30
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DIPOC Fit

Improved, but still flawed ...

31
Smoothed IPOC (SMIPOC)
+ Double IPOC with regression splines
o (Concept borrowed from England & Verall 2001)
+ Adds flexibility to the curve
+ Canstill be done in Excel
32
How do Splines work?
Original New New
Variable Variable 1 | Variable 2
1 0.00 0.00
2 0.17. -0.11
3 0.32 -0.20
2 .45 0.5
5 0.54 -0.24
6 0.58 -0.16
7 0.57 001
8 0.51 0.23
9 0.44 0.49
10 034 077
« Performs a special fransformation on a variable (such as age)
* Run aregular regression on the new variables instead
« Enables a better fit to the data at the cost of additional variables
33
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Splines Example

SMIPOC Fit

Real (Altered) Data Example

pifial  ——IPOC  —— SMIPOC

34

35

36
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Inverse Power Distributions

« Model the percent completion distribution instead
Ideainspired by Clark 2003
+ Use asimilarinverse power function to define the CDF (and
likelihood)

37

Inverse Power Distributions
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« Fit a distribution directly to the age of each dollar

« Similar to fitting ILFs, but is right truncated because of the
unknown future
38

Smoothed Inverse Power Distribution
(SMIPOD)

« Similar to before, use regression splines

« Better fit to data

39
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« Only 3 parameters!

SMIPOD Fit

\

%.{__;B_;_Ah

a0 s0
Age

Part 2) Credibility

41

Credibility

« Best answer to the trade off between:

o Fewerstable heterogeneous segments
o Many volatile homogenous segments

42
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Bayesian Credibility

«  You find a toothbrush on the subway!
«  Itlooks semi-clean!
+ Should you use ite

Likelihood: The
toothbrush looks
clean

Prior: Most things
on the subway are
not clean

Posterior: Taking all
information into account,
you should probably not
use the toothbrush

(It's a good thing you're
an actuary)

Clean Semi-Clean Dirty  Filthy  Lethal
Cleanliness s

Bayesian Credibility on a Curve or Distribution

S

« Performs credibility weighting on the parameters simultaneously while fitting the

curve/distribution
44

Implementing Bayesian Credibility in Excel

Likelihood: Prior: Normal
Approximately (usual assumption)
normal (exact

asymptotically)

2/17/2021

*  Maximum Likelihood Estimation (e.g. via Solver) returns the mode of the
distribution

+ Same as the mean for the Normal distribution 45
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Implementing Bayesian Credibility in Excel

Variance of the
data is implied

Variance of the
- prior needs to be
provided though

The theory is fine but...

« (This only happens when credibility weighting multiple parameters)

Fixing the Credibility

« The prior should be calculated on the curve parameters

* What are the parameterse
« Intercept & Slope

+ But whatif we...
* LDF1 & LDF2 = Intercept & Slope = Entire LDF Curve

« Calculate the prior on the two predicted LDFs (even if the inversion
wasn't performed)

Note: In practice, using log(LDF — 1) works better 48
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Fixed SMIPOC

Calculating the Prior Variance

* How do we calculate this prior variance?
o (Equivalent to Between Variance and Z)

* Options:
o Build a Bayesian model
o Holdout/Cross validation
o Buhlmann-Straub

50

Buhlmann-Straub

* Remember: We are using LDF parameters

» Use the Buhlmann-Straub formulas on the actual
LDFs as an approximation

» Fit a curve by age to smooth them out

17



Part 3) Excel Template
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Thank You!

For more details, refer fo:
http://www.variancejournal.org/issues/11-01-02/95.pdf

o

59
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