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Context

Ï New technologies such as GPS-collected data have emerged, which offer new

ways to approach car insurance pricing.

Ï Processing these data provides reliable information about drivers’ behavior.

One piece of GPS-collected information that is directly related to the risk insured is

distance driven.

Relevance

Covariates such as territory, gender and age only describe the general behavior of

insured in those groups.

Ï Ayuso et al. (2016b) shows that the differences observed in claims frequency

between men and women are largely attributable to vehicle use ;

Ï Verbelen et al. (2018) reached a similar conclusion

In a social-political context where the use of gender in ratemaking is restricted or

criticize, calculating premiums on more objective information is of interest.
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Overview

Objective

Using telematics data, we study the relationship between claim frequency and

distance driven through different models by observing smooth functions.

1 Generalized Additive Models (GAM) for a Poisson distribution (fixed effects),

2 Generalized Additive Models for Location, Scale, and Shape (GAMLSS) that we

generalize for panel count data (random effects).

Why GPS-collected data ?

Ï As shown by many authors, such as Lemaire et al. (2016), the self-reported

approximation of the distance driven is not reliable and is often very different

from the exact distance driven.

Ï There are important differences between driving uses and driving habits, which

justifies consideration of other measures than exposure time in the modeling.
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A First Model

Starting Point

Boucher et al. (2017), by using a GAM Poisson model, analyzed the influence of

duration and distance driven on the number of claims with independent cubic

splines : log(µi )=β0 +s1(kmi )+s2(di ).

µi ,t = exp(Xi,tβ+s1(km)+s2(d))

= exp(s1(km))exp(s2(d))exp(Xi,tβ)

= exp(s1(km))exp(s2(d))λi ,t , (1)

GAM

Ï GAMs : introduced by Hastie and Tibshirani (1986).

Ï Extension of the generalized linear models (GLM) theory : relax the hypothesis of

linearity, and smoothing functions s of the covariates could be included in the

predictor.

Ï Example : the mean for an individual i could be given by

g(µi )= s0 +s1(x1,i )+s2(x2,i )+s3(x3,i ).
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A First Model

What do you think ?

We model Nit ∼Pois(µit), where µi,t = exp(s1(km)) exp(s2(d))λi,t with real canadian

insurance data.

Questions :

1 What the relation between exp(s1(km)) and claim frequency would look like

when a linear trend is not imposed by the model structure ?

2 And exp(s2(d)) ?

To help you :

Ï Would it be nonetheless nearly linear ?

Ï Would it stop increasing at some point ?

Ï Would it start to decline at some point ? Would it go up again ?

Ï Any other intuition ?
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A First Model
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Figure 1: exp(ŝ1(km)) and exp(ŝ2(year)) from the Poisson GAM

Case Study

1 All models are illustrated using data from a major Canadian insurance company.

2 The model log(µi )=β0 +s1(kmi )+s2(di ) yields similar results to those obtained

by Boucher et al. (2017) (Spanish data).

3 In the study by Boucher et al. (2017), a “learning effect” is advanced to justify the

look of exp(ŝ1(km)).
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A First Model

Consistency problem

The slope could change as distance increases, but it should always be strictly positive

since the risk is greater, meaning that the smoothing function should always

be increasing.

Ï One explanation comes from the fact that GAM supposes independence

between all contracts of the same insured.

Results Analysis

One can argue that distance driven is correlated with other driving habits resulting

from driving experience, (Ferreira and Minikel (2010)).

1 The model does not take this correlation into account.

2 The resulting relationship between claim frequency and the distance driven do not

give an appropriate representation of how the claim frequency could change

when insureds change their driving habits.

We think that the shape of the smoothing function comes from the driver profiles :

the lower quantiles of the distribution of the distance driven does not come from the

same (type of) drivers as the higher quantiles.
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A Longitudinal Analysis

Search for a “marginal” effect

1 The objective is not to compute a premium.

2 The objective is mainly to understand how the distance impacts the claim

frequency when all individual characteristics of policyholders have been

considered.

Panel Data Modeling

In non-life insurance, however, we can observe the same insured over many contracts.

Ï Instead of modeling the marginal distribution of each Ni ,t for t = 1, . . . ,T , we are

now looking for the joint distribution :

Pr(N1 = n1,N2 = n2, ...,NT = nT ) = Pr(N1 = n1)×Pr(N2 = n2|N1 = n1)×
. . .×Pr(NT = nT |N1 = n1,...,NT−1 = nT−1),
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A Longitudinal Analysis

Construct Multivariate Count Models

Ï One popular way, is to include an individual parameter α in the mean parameter

of the count distribution of each contract t :

Ni ,t |αi ∼ Poisson(µi ,t =αiλi ,t ), (2)

Random vs Fixed effects

We can consider two different situations regarding this parameter :

1 All αi , i = 1, . . . ,n are i.i.d. random variables that come from a selected prior

distribution (we call this the random effects model) ;

2 All αi , i = 1, . . . ,n are unknown parameters that need to be estimated (we call

this the fixed effects model).
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Random Effects Model

Model Specification

In random effects models, we suppose that αi , i = 1, . . . ,n, are random variables,

with prior density f (·).

Ï Conditionally on the random effects αRE
i

, all numbers of claims Ni ,1,Ni ,2, . . . ,Ni ,T

from insured i are independent.

Pr[Ni ,1 = ni ,1,...,Ni ,T = ni ,T ]=
∫ ∞

0

 T∏
t=1

exp(−αRE
i λRE

i ,t )
(αRE

i
λRE

i ,t )ni ,t

ni ,t !

 f (αRE
i )dαRE

i .

(3)

Ï Many distributions can be used for αRE
i

, such as the gamma or the inverse

Gaussian.

Gamma Distribution

If we suppose that αRE
i

follows a gamma distribution of mean 1 and variance 1
ν ,

the joint distribution can be expressed as :

Pr[Ni ,1 = ni ,1,...,Ni ,T = ni ,T ] =
 T∏

t=1

(λRE
i ,t )ni ,t

ni ,t !

 Γ(ni ,•+ν)

Γ(ν)

 ν

λRE
i ,• +ν

ν (
λRE

i ,• +ν
)−ni ,•

(4)

(ni ,• =
∑T

t=1 ni ,t and λRE
i ,• =∑T

t=1λ
RE
i ,t )
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Random Effects Model

MVNB

This well-known distribution is the multivariate negative binomial distribution.

1 This distribution is a generalization of the negative binomial distribution.

2 It is a basic distribution for panel count data modeling with overdispersion

(E[Ni ,t ]=λRE
i ,t <V[Ni ,t ]=λRE

i ,t +(λRE
i ,t )2/ν).

3 It is not a member of the linear exponential family.

4 GAM theory cannot be used to include smoothing functions.

It can be shown that the first-order condition to obtain β̂MLE is :

n∑
i=1

T∑
t=1

xi ,t

ni ,t −λRE
i ,t

ni ,•+ν

λRE
i ,• +ν

= 0. (5)
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Random Effects Model

GAMLSS

Instead, we use Generalized Additive Models for Location, Scale and Shape theory,

that can be used for other distributions than the members of the linear exponential

family of distribution.

Ï More flexible : can model a location parameter µi , a variance parameter σi

(scale), a skewness parameter νi and a kurtosis parameter τi as additive functions

of the covariates.

gk (θk)=Xkβk +
Jk∑
j=1

Zj,kγj,k (6)

Ï θ = {µ,σ,ν,τ }. µ,σ,ν and τ are vectors with n elements

Ï If a smooth function can be expressed in linear form, Equation (6) can be

rewritten as

gk (θk)=Xkβk +
Jk∑
j=1

hj ,k (xj ,k ),

where hj ,k is a smooth non-parametric function.
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Random Effects Model

Model Specification

It is possible to use a GAMLSS that specify only the location parameter. In this case,

θ would simply become θ = {µ}.

1 We choose to model the parameter λi,t with smoothing function ;

2 ν is kept constant for all individuals.

R package

1 To use GAMLSS, many distributions are available in the R package gamlss.

2 Unfortunately, the MVNB distribution is not one of them.

3 The distribution is however implemented by itself in the package multinbmod).

Consequently, we have to write our own code for convenience.
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Random Effects Model

What do you think ?

We model N∼MVNB(µ,ν), where µ= exp(s1(km))exp(s2(d))λ with real canadian

insurance data.

Questions :

1 What the relation between exp(s1(km)) [exp(s2(d))] and claim frequency would

look like ?

2 How would the results differ from the previous model ?

To help you :

Ï Would it be nonetheless nearly linear ?

Ï Would it stop increasing at some point ?

Ï Would it start to decline at some point ? Would it go up again ?

Ï Any other intuition ?
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Random Effects Model
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Figure 2: exp(ŝ1(km)) and exp(ŝ2(year)) from the GAMLSS with random effects model

Model Fitting

1 To fit the model, we maximize a penalized log-likelihood function lp , integrating

a quadratic penalty γTGγ.

2 Penalty matrix G : very often define as ΛDT
r Dr (different formulations possible).

3 A hyper-parameter, noted here Λ ∈R+, controls the weight given to the penalty.

The greater its value, the smoother the resulting estimated function.

4 To select the penalty parameters in G(Λ) associated with both p-splines, we test

out multiple combinations of values of Λ= {Λ1,Λ2}.
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A Fixed Effects Approach

The model

Poisson fixed effects model can be seen as a basic Poisson regression model without

an intercept. Being part of the linear exponential family of distribution, GAM theory

can then be used when smoothing functions are added to the mean parameter of

the distribution.

In practice, as mentioned, it is relatively easy to implement the fixed effects model

with R ; we simply used the gam function from the package mgcv.

1 To include fixed effects in the model the intercept of the model is dropped.

2 We include a unique identifier variable for each policyholder as a factor variable

and we include the distance driven in the model using a cubic spline s.
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A Fixed Effects Approach

Parameters estimation

In the fixed effects model, we consider each αi , i ∈ {1, ...,n} as an unknown parameter.

1 At least n+p+1 parameters should be estimated, which is quite a high number of

parameters given that Ti is usually small for insurance datasets.

2 The large number of parameters in the model causes what is called incidental

problem, which means that an incorrect estimation of the fixed effects α

generates incorrect estimates of β associated with covariates in the mean.

3 It has been shown that a fixed effects model based on a Poisson distribution does

not have this problem (see (Cameron and Trivedi, 2013)) for a detailed

explanation).

First-order condition equation

For the β parameters, the first condition by MLE can be shown to be equal to :

n∑
i=1

Ti∑
t=1

xi ,t

ni ,t −λFE
i ,t

ni ,•
λFE

i ,•

= 0. (7)

When we compare the first-order condition equation of the random effects model and

(7), we see that when T is large, or when ν→ 0, random and fixed effects models are

equivalent.
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A Fixed Effects Approach

What do you think ?

We model Ni ,t ∼Pois(µi,t), where µi,t = exp(ai)exp(s(km)).

Questions :

1 What the relation between exp(s(km)) and claim frequency would look like ?

2 Will the “learning effect” be there again ?

Rating structure based on distance driven

We decided to model the Poisson fixed effects by not including a smoothing function

for the duration.

1 Our objective is to measure the marginal effect of the distance on the claim

frequency. If we want to measure the risk of each additional kilometer the insured

decides to drive, the duration of the contract is not important.

2 We want to construct a rating structure based solely on the distance driven as a

risk measure.
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A Fixed Effects Approach
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Figure 3: GAM with fixed effects estimated with Canadian data

Results Analysis

1 The relationship between distance traveled and claim frequency is always

increasing, and is even almost linear.

2 What has been called the “learning effect” has disappeared.

3 We observe a much more logical and coherent relationship between distance

traveled and frequency than before.
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A Fixed Effects Approach

Marginal impact of each additional kilometer

1 The relationship between claim frequency and the distance driven should be

understood as the marginal impact of each additional kilometer driven or

not-driven.

2 Explicitly, as we approximated exp(s(km)) by 0.25+ 1
15000 kmi ,t (the red line), we

then have

Nit ∼ Poisson(exp(αi )exp(s(km)))

∼ Poisson
(
exp(αi )(a+b kmi ,t )

)
∼ Poisson

(
0.25 exp(αi )+

1

15000
exp(αi )kmi ,t

)
.

3 We see that the slope, i.e., the marginal impact of each additional kilometer

driven or not-driven, is not the same for each insured because it depends on αi.
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A Fixed Effects Approach
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Figure 4: Exposure measure for different individual parameters.

Results Analysis II

Ï With this model, we then reconcile the intuition that each kilometer should

increase the risk for an individual, but that this increase could be different for

each driver.
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A Fixed Effects Approach

“Learning effect”

In summary, instead of referring to the “learning effect” to understand the left-hand

graph of Cross-sectional data model, we should understand instead that

1 Typical insureds who drive more than 60,000 km per year are better risks per

kilometer than insureds who drive approximately 40,000 km per year.

2 However, for each driver, independently of their driving risk per kilometer, the risk

of an accident will always increase for each additional kilometer driven (by

approximately 1
15,000 ).
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Comparative Analysis

Which Effect Should Be Used in Practice ?

The fixed effects model is more general than the random effects model, which means

that in case of contradictory results, fixed effects should always be preferred.

Pr[Ni ,1 = ni ,1,...,Ni ,T = ni ,T ]

=
∫ ∞

0
Pr[Ni ,1 = ni ,1,...,Ni ,T = ni ,T |xi ,1,...,xi ,T ,αRE

i ]f (αRE
i |xi ,1,...,xi ,T )dαRE

i

=
∫ ∞

0

(
T∏

t=1
Pr[Ni ,t = ni ,t |xi ,1,...,xi ,T ,αRE

i ]

)
f (αRE

i )dαRE
i

=
∫ ∞

0

 T∏
t=1

exp(−αRE
i λRE

i ,t )
(αRE

i
λRE

i ,t )ni ,t

ni ,t !

 f (αRE
i )dαRE

i

We can see that we have to suppose an additional assumption : from the first to the

second line of development, f (αRE
i

|xi ,1,...,xi ,T ) becomes f (αRE
i

). The interpretation

of random effects results are tricky.
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Comparative Analysis
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Figure 5: Comparison between the random effect approach and the fixed-effect approach for the

median value of the individual parameter

Which Effect Should Be Used in Practice ?

1 Fixed effects modeling, even if theoretically better, is not amenable

to ratemaking.

2 On the other hand, the MVNB can be used for predictive rating, where it can be

shown that the predictive distribution of Ni ,T depends on past values of λi ,t and

ni ,t , for t = 1, . . . ,T −1.
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To Conclude

Take-home points

1 Fixed effects should be used to understand the “true” relationship between

covariates and claims experience.

2 For ratemaking, fixed effects should be used to compute the premium surcharge

for each additional kilometer the insureds drive.

3 In our case, it represents an increase of α̂i
1

15,000 per km, for claim frequency.

Ï Using this approach, insurers will avoid the situation where an insured could

see a premium reduction if, for example, he decides to drive 50,000 km

instead of 40,000 km, as we saw with a basic GAM approach.

4 Fixed effects can be used to construct PAYD insurance solely based on kilometers

driven for self-service vehicles, where drivers’ profile cannot be directly used for

ratemaking.

5 Research is required in this area.
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Claim Classification Using Partial Telematics

Information
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Overview

Research question

When has an insurer collected enough information about an insured’s driving habits ?

General idea

Ï Supervised classification with classic and telematics covariates.

Ï Modeling the indicator of one or more claims.

Ï Calculation of telematics covariates at different stages of the contract : after 1

month, 2 months, . . ., 12 months. Then, comparison of the performance.

Motivations

Ï An insurer wishes to keep a minimum of telematic information on its

policyholders for reasons of :

• Confidentiality

• Data storage

Ï But still wants to take advantage of this information, for instance, to avoid

adverse selection.
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Trip data

Extract from the trip database

VIN Trip ID Starting time Arrival time Distance Maximum speed

A 1 2016-04-09 15:23:55 2016-04-09 15:40:05 10.0 72

A 2 2016-04-09 17:49:33 2016-04-09 17:57:44 4.5 68
...

...
...

...
...

...

A 3312 2019-02-11 18:33:07 2019-02-11 18:54:10 9.6 65

B 1 2016-04-04 06:54:00 2016-04-04 07:11:37 14.0 112

B 2 2016-04-04 15:20:19 2016-04-04 15:34:38 13.5 124
...

...
...

...
...

...

B 2505 2019-02-11 17:46:47 2019-02-11 18:19:22 39.0 130

C 1 2016-01-16 15:41:59 2016-01-16 15:51:35 3.3 65
...

...
...

...
...

...

Ï These are the only telematic data we have. All telematic covariates are derived

from these 4 measurements.
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Contract data

Extract from the contract database

VIN Contract start date Contract end date Classic covariate #1 ... Claim(s) indicator

A 2015-01-09 2016-01-09 F . . . 0

A 2016-01-09 2017-01-09 F . . . 1

A 2017-01-09 2018-01-09 F . . . 0

B 2015-12-14 2016-12-14 M . . . 0

B 2016-12-14 2017-12-14 M . . . 0

C 2015-04-26 2016-04-26 F . . . 1

C 2016-04-26 2017-04-26 F . . . 0

C 2017-04-26 2018-04-26 F . . . 0

...
...

...
...

...
...

Ï Linking of the 2 datasets on the basis of the VIN and the start/end dates of the

contract.

Ï Expansion of the contract database with 14 telematics variables calculated using

the trip dataset.

Ï We only consider one-year contracts.
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Creation of the classification datasets

1 For each row (contract) in the contract dataset, associate the right trips from

the trip dataset.

2 Compute the 14 telematics variables with different levels of information : 1

months of telematics data, 2 months, 3 months, etc. until 12 months.

Ï We end up with 13 tables 29 799 × 25 (10 classic covariates, 14 telematic

covariates and 1 target).

• 1 table with only classic covariates

• 12 tables with classic and telematic covariates, respectively calculated with

1, 2, . . ., 12 months of data.

Ï We keep 70% of the rows (contracts) for the training set and 30% for the test

set.
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Classic covariates – Categorical

Preprocessing :

Lump rare categories −→ target encode −→ normalize −→ Yeo-Johnson transform
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Classic covariates – Numeric

Preprocessing :

Normalize −→ Yeo-Johnson transform
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Telematic covariates

Ï Here, the distributions of the covariates calculated with full information (12 months) are shown.

Ï Preprocessing is the same as classic numeric covariates.
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Choice of the classification algorithm

Ï Need to be an off-the-shelf algorithm.

Ï Need to be robust to redundant or unnecessary predictors.

Question

Ï Which classification algorithms do you think are good candidates ?

Answer

Ï 2 good candidates are penalized logistic regression and random forest.

• Easy to tune hyperparameters

• Robusts to “noise” predictors

*Figure taken from Feature Engineering and Selection : A Practical Approach for Predictive Models, by Max Kuhn and Kjell Johnson.
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Choice of the classification algorithm

Ï In order to choose the classification algorithm, I use the database with complete

information and compare the performance of an elastic net logistic regression, a

LASSO logistic regression and a random forest.

Question

Ï Which classification algorithms do you think will perform the best between

LASSO, elastic net and random forest ?
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Choice of the classification algorithm

Ï Same plot, but on the test set instead of cross-validation.
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A glimpse at LASSO logistic regression

Loss function

L(β,y)=− 1

n

n∑
i=1

{
yi ln(pi )+(1−yi )ln(1−pi )

}+λ
p∑

j=1
|βj |, où pi =

1

1+e
−x>

i
β

Estimation

Ï We find the β coefficients that minimize the loss function, which is equivalent to

minimizing the negative of the log-likelihood with a constraint on the sum of the

absolute values of the coefficients :

β̂LASSO = arg min
β

{
− 1

n

n∑
i=1

yi ln(pi )+(1−yi )ln(1−pi )

}
s.c.

p∑
j=1

|βj | ≤ s

Prediction

Ï Same prediction formula as a non-penalized logistic regression, but using LASSO

coefficients β̂LASSO :

ŷi =
1

1+e
−x>

i
β̂LASSO
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LASSO logistic regression coefficients
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Logistic LASSO performance on the 13 datasets

Question

Ï I’m about to show you the performance of the model on the 13 datasets. After

how many months do you think that telematics information no longer significantly

improves performance ?

Ï The AUC has improved significantly with the 4-measure trip summaries !

Ï Telematics information becomes redundant after about 3 months.

Longitudinal analysis of distance traveled Claim Classification Using Partial Telematics Information



Logistic LASSO performance on the 13 datasets – km

Ï Telematics information becomes redundant after about 4000 km.
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Future considerations

Conclusion

Ï We found out that telematics information we have at our disposal becomes

redundant after about 3 months or 4000 km, at least in the collision claim

classification framework.

Integration of contracts of less than one year

Ï Here, only one-year contracts were used.

Test on other insurance coverage

Ï In our analysis, only collision type coverages are considered.

Ï Do we come to the same conclusion if we use, for instance, comprehensive

coverage claims (theft, hail, etc.) ?
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