

TRADITIONAL IBNR RESERVING

BASED ON JUDGEMENT AND HEURISTICS

- Traditionally used subjective expert judgement and heuristics to select a reserving method and parameters of the method (Loss Ratios/LDFs, etc)
- How scientific is the reserving process?
- e.g. Can we measure the impact of subjective choices on how well we predict future claims payments?
- Examine performance next year or quarter with AvE
- Often focus on ensuring reserves are enough
- Limited guidance on which techniques to choose and what parameters to select beyond "rules of thumb"

THE MACHINE LEARNING APPROACH TO IBNR RESERVING

ML APPROACH TO SELECTING METHOD AND PARAMETERS

- Partition data into "training" and "testing" subsets
- Determine ability of each model and parameter set to predict unseen data using the "test" subset
- Choose the model and parameter set that results in the best predictive
 performance on the unseen "test" subset

QED |

THE MACHINE LEARNING APPROACH TO IBNR RESERVING

- Define a set of IBNR calculation methodologies (such as CL, BF, CC with varying parameters)
- 2. Fit these methodologies on sub-triangles starting from a small initial triangle, and then increasing the triangle by one calendar year until the end of the available data
- At each sub-triangle, calculate the performance of the methodology using some performance metric (AvE/CDR)
- 4. Select the methodology that results in the best score across all sub triangles

QED | 5

5

THE MACHINE LEARNING APPROACH TO IBNR RESERVING

BRINGING IT ALL TOGETHER

Select a reasonably sized initial triangle Select several of the most recent colendar periods as the training set

- 3. For each reserving methodology, $\boldsymbol{M}_{\!\!\!\!}$ from a collection of possible methodologies:
 - a. Apply the reserving methodology to the **initial triangle**
 - b. Calculate the performance metric on the first diagonal of the training set
 c. Include the first diagonal of the training set in the initial triangle and apply M
 - d. Calculate the performance metric against the second diagonal of the training set
 - e. Repeat until all diagonals of the **training set** are exhausted
 - f. Calculate the average performance metric for M across all diagonals in the training set

4. Select ${\bf M}$ that achieves the best performance metric

QED

10

Г

O WHAT PERFO	RMANCE METRIC	TO USE?		
The initial though	t is the actual claims r	ninus our expected claims (AvE)		
This ensures prec	ictive accuracy is ma	ximised		
But this can caus	e instability in our rese	rves over time—we need consister	cy too	
WE PROPOSE TH	E CLAIMS DEVELO	OPMENT RESULT		
CDR = AvE + AIB	1R			
That is, we add t	ne change in the IBNR	from one calendar period to the n	ext as a penalty	
This ensures prec	ictive accuracy is ma	ximised, and reserve stability is acl	ieved	
This is equivalent	to minimising the cha	nge in ultimate claims over calend	ar periods	

11

		FOLLOWING PAK	AMETER SPACE
Method	Parameter	Choice Set	Description
CL, BF, CC	drop_high	[True, False]	Whether to drop the highest individual development factors in all development periods
CL, BF, CC	drop_low	[True, False]	Whether to drop the lowest individual development factors in all development periods
CL, BF, CC	n_periods	k∈[521]	Number of accident years over which to calculate development factors
BF	apriori	$\alpha \in \{0.40, 0.41,, 0.59, 0.60\}$	Apriori loss ratio for the BF method
сс	decay	$\gamma \in \{0.00, 0.05,, 0.95, 1.00\}$	Decay parameter for the CC method

METERS FOUN	D (CHAIN LADD	ER)	
PARAMETER		MINIMISE AVE	MINIMISE CDR
drop_high	False	False	True
drop_low	False	False	False
n_periods	19	11	11
apriori	n/a	n/a	n/a
decay	n/a	n/a	n/a
		Scores	
Basic CL	669.69		23 out of 40
Minimise AvE	675.38	+0.9%	27 out of 40
Minimise CDR	617.81	-7.8%	12 out of 40

METERS FOU	ND		
PARAMETER	BASICCC	MINIMISE AVE	MINIMISE CDR
drop_high	False	False	False
drop_low	False	False	False
n_periods	21	10	11
apriori	n/a	0.46	0.41
decay	0.75	n/a	n/a
		Scores	
MODEL			
Basic CC	3 170.88		1 073 out of 1 848
Minimise AvE	2 552.39	-19.5%	461 out of 1 848
Minimise CDR	2 893.23	-8.8%	832 out of 1 848

DEMONSTRATION OF PYTHON PACKAGE

Open-source package implementing methods

pip install tryangle

https://github.com/casact/tryangle

22

CONCLUDING REMARKS

UNDERSTANDING WHAT WORKED

- We presented a framework for selecting reserving models that are expected to perform well in predicting out of sample claims development experience
- We demonstrated that, on three example triangles, our proposal performs relatively well
- Thus, we conclude that scoring reserving models based on historic claims development data provides a useful way of determining which models are likely to predict future development well
- Finally, our framework provides an objective way to select methods that produce best estimate
 IBNR reserves

23

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>