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The Discrete Fourier Transform 
and Cyclical Overflow

by Leigh J. Halliwell

ABSTRACT

More casualty actuaries would employ the discrete Fourier trans-

form (DFT) if they understood it better. In addition to the many 

fine papers on the DFT, this paper might be regarded as just one 

more introduction. However, the topic uniquely explained herein 

is how the DFT treats the probability of amounts that overflow its 

upper bound, a topic that others either have not noticed or have 

deemed of little importance. The cyclical overflow originates in 

the modular arithmetic whereby the DFT evaluates characteris-

tic functions. To understand this is to attain a deeper understand-

ing of the DFT, which may lead to its wider use.
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1. Introduction

A common tool of casualty actuaries is the collective- 
risk model S = X1 + . . . + XN, according to which 
aggregate loss S is composed of a random number N of  
independent, identically distributed claims X. Although 
there are several techniques for deriving probability dis-
tributions for S, the discrete Fourier transform (DFT) is 
arguably the most elegant and powerful when severity 
X is both discrete and finite. However, it suffers from 
two drawbacks. First, its use of complex numbers may 
daunt some actuaries; certainly it does not easily pro-
gram into a spreadsheet.1 And, second, the finite sup-
port of S raises the issue of overflow, especially when 
the support of claim count N is unlimited. Since one 
can set an arbitrarily large common support for X and 
S, this issue is not a practical problem;2 however, how 
the true distribution of S overflows the DFT-derived 
distribution is an interesting topic. Moreover, under-
standing the overflow issue may enable and encourage 
others to employ the DFT. It is to this end that we will 
start in Section 2 with the necessary complex algebra. 
From there, in Section 3 we will define abstractly the 
DFT as an invertible transformation (a finite matrix of 
complex numbers). Bringing in probability, we will in 
Section 4 derive the DFT of S = X1 + . . . + XN in terms 
of N and X. Finally, in Section 5 we will show what 
happens to overflow in the DFT, relating it back to the 
complex algebra of Section 2.

2. The nth roots of unity

Euler’s formula eiq = cos q + i sin q forms the basis 
for the nth roots of unity.3 The magnitude of z = eiq is 
|z| = cos2 q + sin2 q = 1. Hence, eiq is a point on the 

complex unit circle, and the function z(q) = eiq can 
be imagined as a point moving counterclockwise 
around this circle as q increases. Plugging q = 2p 
into Euler’s formula, we have ei • 2p = cos 2p + i sin 
2p = 1. Since the circumference of a circle measures 
2p radians, the exponential function is periodic along 
the imaginary axis.

Now consider the equation zn = 1, where n is a 
positive integer. For any integer k,
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since
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Because an nth degree polynomial has at most n 
distinct roots,5 there can be no other nth roots of 
unity.

The operation of multiplication on G, the set of 
the nth roots of unity, constitutes an algebraic group 
(Clark 1984, pp. 17f). In addition to closure (if a, 

1The Analysis ToolPack of Excel allows one to work with complex num-
bers, as well as to perform a Fourier analysis through the menu “Tools/
Data Analysis.” But a matrix language with built-in complex arithmetic 
is far preferable.
2It becomes a practical problem if it involves limitations to computing 
speed, memory, and accuracy, which limitations we will ignore here. The 
fast Fourier transform (FFT) is a remarkable algorithm for reducing, but 
not eliminating, them.
3See in References the Wikipedia articles on “Euler’s formula” and “roots 
of unity.” No complex analysis will be used in this paper, but we presume 
the reader to be proficient in complex algebra.

4More accurately, such multiplication is the basis of modular arithmetic. 
It has enriched the concept in classical number theory of congruence 
modulo n, i.e., p ≡ q mod n, and made complex analysis, culminating in 
the Riemann zeta function, essential to modern number theory.
5See Wikipedia, “Fundamental theorem of algebra,” for a history of the 
attempts to prove this. The article disputes the opinion of most mathe-
matical historians that Gauss in his 1799 doctoral dissertation produced 
the first rigorous proof. Appendix D of Havil [2003], “Complex Function 
Theory,” a readable introduction to complex analysis, contains an elegant 
proof of one version of the theorem, viz., that every finite polynomial 
with complex coefficients has a complex root (pp. 241f). Induction com-
pletes the proof: If r is a root, factoring z - r out of the polynomial leaves 
a polynomial for solution whose degree is one less.
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Intuitively, the formula for n > 1 is obvious from 
the equal dispersion of the roots about the circle; the 
origin is the center of their mass.6

3. The discrete Fourier transform

The DFT is simply an n × n matrix  involving 
the nth roots of unity wk. The jkth element of  is wj • k. 
As in the previous section, w is the principal nth root 
of unity, and the indexing starts at zero. Define the 
two n × 1 vectors:
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The DFT of p is p. Understanding the exponenti-
ation as elementwise, we can express this as  = wnn, 
which matrix is symmetric. But it is unnecessary to 
perform the exponentiation on w. Due to the cyclical-
ity of the multiplication, the elements of nn can be 
reduced modulo n to the set {0, 1, . . . , n - 1}, at which 
point they are just as much nth-root subscripts as they 
are exponents. In sum,  = wnn = wmod(nn, n).

To reclaim vector p, one needs the inverse DFT, 
or -1, whose existence we will now show. Define 
the conjugate of matrix , or 

—
, as the matrix of the 

conjugated elements of . According to Section 2,  
the conjugate of a root of unity is the inverse of the 
root. So the jk th element of 

—
 is w-jk. Since  is  

b ∈ G, then a z b ∈ G), multiplication on G has the 
three defining properties:

1. ∀a, b, c ∈ G (a z b) z c = a z (b z c)

2. ∃e ∈ G : ∀a ∈ G a z e = e z a = a

3. ∀a ∈ G $b ∈ G : a z b = b z a = e

The properties are (1) associativity, (2) identity 
existence, and (3) inverse existence. That multiplica-
tion is associative hardly needs to be mentioned. The 
identity element is w0 = 1. Abstractly, the identity 
element must be unique, for if e1 and e2 satisfy the 
identity property, then e1 = e1 z e2 = e2. Similarly, the 
inverse of an element must be unique, for, if both  
a z b1 = b1 z a = e and a z b2 = b2 z a = e, then

b b e b a b b a b e b bi i i i i i( ) ( )= = = = = .1 1 1 2 1 2 2 2

For group G, the inverse of wk is wk
-1 = wn-k = 

wmod(n-k, n); the third part of the equation applies to the 
identity element: w0

-1 = w0. But, again from Euler’s 
formula:
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This means that the inverse of a root of unity is its 
complex conjugate.

Of all the nth roots of unity, 1

2

e
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π

 is the princi-
pal, from which the others can be derived by expo-
nentiation wk = w k

1. We will often drop the subscript 
from the principal root and designate all the roots as 
wk = w k

1 = wk. The value of n will be understood; how-
ever, were it forgotten, it could always be reclaimed 
as the smallest positive integer for which wn = 1.

Finally, as to the sum of the nth roots of unity:
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6Alternatively, according to the theory of equations, the sum of the roots 
of zn + a1z

n-1 + . . . + an = 0 equals -a1. Since the wk are the roots of the 
equation zn - 1 = 0, they sum either to one (if n = 1) or to zero (if n > 1).
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function, unlike the mgf, always converges. However, 
since here we are concerned with discrete and finite 
random variables, whose mgfs do converge, this is 
of no advantage. Its advantage here lies in the sim-
plicity and accuracy of its inversion.

First, we give a probability interpretation to vector p 
of Section 3. The k th element of pX will be the probabil-
ity for random variable X to equal k: Pr ob[X = k] = pk.  
So now the elements of pX must be non-negative 
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The last expression is the j th element of the matrix 
product pX. In fact, defining t as the n × 1 vector 
whose j th element is tj, and applying jX elementwise, 
we have jX (t) = pX. Therefore, the DFT is a dis-
crete form of the characteristic function, from which 
one can reclaim the probabilities as pX = -1 jX (t) = 

t .
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Even so, it seems that we are just playing games, 
jumping from probabilities to the characteristic func-
tion and back again. Must not one know the prob-
abilities before knowing the characteristic function? 
The answer is “Not necessarily.” The collective-risk 
model is a case in point, for if S = X1 + . . . + XN:
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The formula for the geometric series gives us
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But wk-j = 1 if and only if mod(k - j, n) = 0. Since 
j, k ∈ {0, 1, . . . , n - 1}, mod(k - j, n) = 0 if and only 
if j = k. So, finally,
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4. The discrete Fourier transform 
as a characteristic function

The relevance of the previous two sections will 
become clear in connection with the characteristic 
function, which is a moment generating function 
(mgf) with an imaginary argument. The characteristic 
function of any real-valued random variable X, or jX, 

is jX(t) = E[eitX]. Because E e e dF xitX itx
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7One could define the DFT as nn ,� n= ω ′ in which case -1 would 
simply be 

—
. But we have kept the standard definition, on account of 

which one must be careful to include the 1/n factor.
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Again, if Prob[X = 1] = 1, S = 11 + . . . + 1N = N. In 
this case jX (t) = E [eitX] = eit and
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This means that S is distributed as N; in the realm 
of the DFT, pS = pN.

In general, E[zN] is called the probability generating 
function (Klugman, Panjer, and Willmot (1998, p. 201) 
and denoted as PN(z). Therefore, jS(t) = E [jX (t)N] =  
PN (jX(t)). Klugman’s Appendix B contains the prob-
ability generating functions of many claim-count dis-
tributions, and our purpose here does not require us to 
duplicate his and others’ work. So we turn at last to 
the overflow problem.

5. The discrete Fourier transform 
and overflow

Example 4.11 of Klugman, Panjer, and Willmot  
(1998, pp. 319f) demonstrates the use of the DFT 
to obtain the distribution of S = X1 + . . . + XN, 
where N is Poisson-distributed with a mean of 3, 
and pX = [0  0.5  0.4  0.1  0  . . .]′. The dem-
onstration is performed twice, once over the sup-
port [0  1  . . .  7]′ and once over the support 
[0  1  . . .  4095]′. For the first support, n = 8; for 
the second, n = 4096. The purpose of the twofold 
demonstration is to show the importance of choos-
ing a value for n large enough for the overflow to 
be negligible. Having replicated his calculations, we 
present the results in Table 1.

Klugman remarks:

. . . all the entries for n = 4,096 are accurate 
to the five decimal places presented. On the 
other hand, with n = 8, the FFT gives values 
that are clearly distorted. If any generalization 
can be made it is that more of the extra prob-
ability has been added to the smaller values  
of S. [p. 319]

In other words, the values for n = 8 are distorted by 
the overflow; but the lower the value of s, the greater 

Finally, simplify due to the identical distribution 
of the X variables:
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Therefore, jS (t) = E [jX (t)N], in agreement with 
Heckman and Meyers (1983, p. 34), Klugman, Panjer, 
and Willmot (1998, p. 316), and Wang (1998, p. 864). 
The point is made: one can obtain the characteristic 
function of S without knowledge of its probabilities, 

and by DFT inversion (i.e., p
�

n
S S= ϕ ) work back to 

the probabilities.
If N is a constant, or Prob[N = k] = 1, then  

S = X1 + . . . + Xk and jS(t) = jX(t)k. Therefore,  
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So Prob[S = 0] =1, as it must.

8Even fractional convolutions make sense. The half convolution of X is 
a distribution of a random variable whose second convolution is the dis-
tribution of X. If X can be formed from a second convolution, the DFT 
will yield the correct result. For example, if pX = [0.25  0.50  0.25]′, 

then p p
3

0.5 0.5 0 .0.5�
S X( ) [ ]= Ω =  If X cannot be so formed and n  

is large enough (pX right-padded with zeros), non-zero probabilities will 
appear beyond max(X), even though all the probabilities will sum to 
unity. Moreover, when the convolution is impossible, negative probabili-
ties may arise.



Variance Advancing the Science of Risk

78 CASUALTY ACTUARIAL SOCIETY VOLUME 8/ISSUE 1

� �

n p

i i

i i

i i

i i

X=



















=



















= − −
− −
− −



















= − −
− −

− −



















−

0
1
2
3

0.5
0.5
0.0
0.0

1 1 1 1
1 1
1 1 1 1
1 1

1

4

1 1 1 1
1 1
1 1 1 1
1 1

1

Hence, pC(n) = -1 (pX)n. Table 3 shows the DFT 
result.

As expected, C(2) and C(3) agree. But overflow 
begins with C(4), and the form of the overflow is 
cyclical. What should have been in the k = 4 row 
added to the k = 0 row; what should have been in the 
k = 5 row added to the k = 1 row.

The DFT cannot ignore overflow; rather it must 
recycle it. Instead of calculating probabilities for  
S = X1+ . . . + XN, it calculates them for mod(S, n). 
Its arithmetic is as modular as that of the G group 
of Section 2:

( )ω ω = ω = ω ⇒ + ≡ +( )+ + k l mod k l nk l k l mod k l n , .,

Alternatively, one may imagine the support to be 
infinite, over the set of natural numbers {0, 1, 2, . . .}. 
However, there is no least root of unity; one must 
settle for some finite n and its principal root. So to 
match the roots of unity with the natural numbers, 
one must cycle endlessly through  w0  w1  . . .  wn-1. 
The roots of unity are like ID variables according to 

the error. This is true enough; but more generalization 
can be made.

The probability for S to exceed 7, or to overflow 
the procedure for n = 8, is about 17.7 percent. The 
remarkable point is that the DFT preserves all the 
probability, regardless of n. Why does it not simply 
cut off accurately at s = 7? Instead, it compresses all 
the probability into the eight values. The explanation 
will appear from the following example.

Starting with a Bernoulli(0.5)-distributed X, we 
derived its next four convolutions and display them 
in Table 2. The probabilities of C(n) are binomial 
(n, 0.5).

Next, we calculated those probabilities according 
to the DFT with n = 4. Accordingly,

Table 2. Exact Probabilities of Convolutions of X

k X C(2) C(3) C(4) C(5)

0 0.5 0.250 0.125 0.0625 0.03125

1 0.5 0.500 0.375 0.2500 0.15625

2 0.250 0.375 0.3750 0.31250

3 0.125 0.2500 0.31250

4 0.0625 0.15625

5 0.03125

Table 3. DFT Probabilities with n = 4

k X C(2) C(3) C(4) C(5)

0 0.5 0.250 0.125 0.1250 0.18750

1 0.5 0.500 0.375 0.2500 0.18750

2 0.250 0.375 0.3750 0.31250

3 0.125 0.2500 0.31250

4

5

Table 1. Example 4.11 of Klugman, Panjer, and Willmot  
Loss Models (1998)

s n = 8 s n = 4096 s Cont’d

0 0.11227 0 0.04979 13 0.00666

1 0.11821 1 0.07468 14 0.00381

2 0.14470 2 0.11575 15 0.00212

3 0.15100 3 0.13256 16 0.00115

4 0.14727 4 0.13597 17 0.00060

5 0.13194 5 0.12525 18 0.00031

6 0.10941 6 0.10558 19 0.00015

7 0.08518 7 0.08305 20 0.00008

8 0.06134 21 0.00004

1.00000 9 0.04293 22 0.00002

10 0.02863 23 0.00001

11 0.01829 24 0.00000

12 0.01123 :

1.00000



The Discrete Fourier Transform and Cyclical Overflow

VOLUME 8/ISSUE 1 CASUALTY ACTUARIAL SOCIETY 79

References
Clark, A., Elements of Abstract Algebra, New York: Dover, 

1984.
Embrechts, P., and M. Frei, “Panjer Recursion versus FFT for 

Compound Distributions,” Mathematical Methods of Oper-
ations Research 69 (2009), pp. 497–508; corrected in www.
math.ethz.ch/~embrecht/ftp/PanjerVsFFTcorrected.pdf.

Havil, J., Gamma: Exploring Euler’s Constant, Princeton:  
Princeton University Press, 2003.

Heckman, P. E., and G. G. Meyers, “The Calculation of Aggre-
gate Loss Distributions from Claim Severity and Claim 
Count Distributions,” Proceedings of the Casualty Actuarial 
Society 70 (1983), pp. 22–61, www.casact.org/pubs/proceed/
proceed83/83022.pdf.

Klugman, S. A., H. H. Panjer, and G. E. Willmot, Loss Models: 
From Data to Decisions, New York: Wiley, 1998.

Wang, S. S., “Aggregation of Correlated Risk Portfolios: Mod-
els and Algorithms,” Proceedings of the Casualty Actuarial 
Society 85 (1998), pp. 848–939, www.casact.org/pubs/proceed/ 
proceed98/980848.pdf.

Wikipedia contributors, “Euler’s formula,” Wikipedia, The Free 
Encyclopedia, http://en.wikipedia.org/wiki/Euler%27s_formula 
(accessed July 2013).

Wikipedia contributors, “Fundamental theorem of algebra,” Wiki-
pedia, The Free Encyclopedia, http://en.wikipedia.org/wiki/
Fundamental_theorem_of_algebra (accessed July 2013).

Wikipedia contributors, “Root of Unity,” Wikipedia, The Free 
Encyclopedia, http://en.wikipedia.org/wiki/Root_of_unity 
(accessed July 2013).

which the probabilities may be summarized, as in the 
summation:
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Summarizing the n = 4096 probabilities of Table 1  
according to mod(s, 8) will produce the n = 8 
probabilities.

6. Conclusion

Many actuaries have neither the temperament nor 
the fortitude to penetrate the thicket of Σ operators 
found in many treatments of the discrete Fourier trans-
form. Hopefully, they will find this treatment gentler, 
starting as it does with the nth roots of unity. The 
addition of a dash of group theory, about which much 
more could be said,9 is suggestive of the modular 
arithmetic underlying the DFT and of the behavior of 
any overflow. The magic10 of the DFT is not dispelled 
by its being opened to examination. But to those who 
understand the preceding sections of this paper, any 
impediments to working DFT magic will pertain only 
to computer hardware and software.11

9The properties of an algebraic group ensure that for any element a of 
group G, a ⋅ G and G ⋅ a are in one-to-one correspondence with G. Because  
of this, group theory is all about shifts, cycles, or rotations, especially 
for finite groups. Moreover, a finite group with a generating element 
(i.e., an element by repeated operations on which all the elements of G 
can be generated, such as a primitive root of unity) has a counting mech-
anism, from which a modular arithmetic can be developed. One who 
understands this can apply the DFT to abstractions of {0, 1, . . . , n - 1}.
10A friend of the author and former colleague, James C. Sandor, FCAS, 
MAAA, who introduced the Fourier transform into his company’s pric-
ing models, never tires of saying, “The Fourier transform works like 
magic.”
11After this paper was reviewed and revised, the author was made aware 
of the paper, “Panjer Recursion versus FFT for Compound Distribu-
tions,” by Paul Embrechts and Marco Frei (2007). On page 8, the authors 
wrote, “Compound mass which lies at M and beyond will be ‘wrapped 
around’ and erroneously appears in the range 0, . . . , M - 1. For severities 
with considerable tail mass, the truncation and wrap-around error (the 
so-called aliasing error) can become quite an issue.” Although they did 
not explicitly claim the wrapping around to be modulo M, it is likely 
that they so understood it. Also, they called DFT overflow “aliasing” by 
analogy with a problem in signal processing (cf. Wikipedia, “Aliasing”).




