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A Brief History of Insurance Analytics*

How actuaries have moved from using univariate analysis to predictive
analytic approaches: the evolution of insurance analytics

* With apologies to Stephen Hawking
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Pre-1960 Classification Ratemaking

e Data aggregated
e Relativities determined one dimension at a time

* Simple homeowners example:
— All brick dwellings = brick rate
— All small dwellings =» small rate
— Small brick dwellings

* Insufficient data
* Includes some information (Brown)
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Pre-1960 Classification Ratemaking
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Indicated

Indicated Indicated Relativity|

Construction Exposures Loss & LAE PP Relativity to Base
Brick 280 195,500 698 1.359 1.000
Frame 25 §9,000 294 0.572 0.421
Total 515 264,500 514 1.000 0.736
Indicated

Indicated Indicated Relativity|

Sq Feet Exposures Loss & LAE PP Relativity to Base
Large 295 152,000 651 1.267 1.975
Small 20 72,500 330 0.642 1.000
Total 515 264,500 514 1.000 1.558




1960s — Minimum Bias

* “Two Studies in Automobile Insurance” — Robert Bailey and LeRoy Simon, 1960

* “Insurance Rates with Minimum Bias” — Robert Bailey, 1963
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Loss Costs
Large Small
Brick 800 300
Frame 400 200
Total 651 330
Exposures
Large Small
Brick 185 95
Frame 110 125
Total 295 220

Total
698
2594
514

Total
280
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515
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Frame

Large

Small
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Iteration:
0 1
2.1275
0.9684
1.970 1.9195
1.000 1.1217

2

21173
0.9456

1.9349
1.1334

3

2.0993
0.9412

1.9516
1.1432

Brick

Frame

Large
Small

Iteration 3 normalized results:

1.000
0.448

1.707
1.000




Bailey and Simon

* Four criteria for an acceptable set of relativities
— Should reproduce experience for each class overall
— Should reflect relative credibility of the various groups

— Should provide the minimum amount of departure from the raw data for the
maximum number of people

— Should produce a rate for each sub-group of risks, which is close enough to the
experience that the differences could reasonably be caused by chance
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1972 — Generalized Linear Models
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Generalized Linear Models

By J. A. NeLper and R. W. M. WEDDERBURN
Rothamsted Experimental Station, Harpenden, Herts

SUMMARY

The technique of iterative weighted linear regression can be used to obtain
maximum likelihood estimates of the parameters with observations distri-
buted according to some exponential family and systematic effects that can
be made linear by a suitable transformation. A generalization of the analysis
of variance is given for these models using log-likelihoods. These generalized
linear models are illustrated by examples relating to four distributions; the
Normal, Binomial (probit analysis, etc.), Poisson (contingency tables) and
gamma (variance components).

The implicati of the h in designi tatistics courses are
discussed.

Keywrds: ANALYSIS OF YARIANCE; CONTINGENCY TABLES; EXPONENTIAL FAMILIES;
INVERSE POLYNOMIALS; LINEAR MODELS; MANIMUM LIKELTHOOD:
QUANTAL RESPONSE; REGRESSION; VARIANCE COMPONENTS; WEIGHTED
LEAST SQUARES

INTRODUCTION

Linear models customarily embody both systematic and random (error) components,
with the errors usually assumed to have normal distributions. The associated analytic
technique is least-squares theory, which in its classical form assumed just one error
component; extensions for multiple errors have been developed primarily for analysis
of designed experiments and survey data. Techniques developed for non-normal
data include probit analysis, where a binomial variate has a parameter related to an
assumed underlying tolerance distribution, and contingency tables, where the distri-
bution is multinomial and the systematic part of the model usually multiplicative.
In both these examples there is a linear aspect to the model; thus in probit analysis
the parameter p is a function of telerance ¥ which is itself linear on the dose (or some
function thereof), and in a contingency table with a multiplicative model the logarithm
of the expected probability is assumed linear on classifying factors defining the table.
Thus for both, the systematic part of the model has a linear basis. In another extension
(Nelder, 1968) a certain transformation is used to produce normal errors, and a
different transformation of the expected values is used to produce linearity.




Mid-70s

* The first GLM packages
— GENSTAT

— GLIM software
* Linear regression
* Logistic and probit regression
* Poisson regression
* Log-linear models
* Regression of skewed continuous distributions (sa Gamma)

* Quasi-likelihood (Wedderburn 1974)
e Overdispersion
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1983 — GLMs
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Monographs
on Statistics and
Applied Probability 37

Generalized
Linear Models

SECOND EDITION

P. McCullagh and
J.A. Nelder

JIEWY[x)] = o + Prx1 + faxy + -+ ppx,




1988 — Improving Minimum Bias

“Minimum Bias with Generalized Linear Models” by Robert L. Brown, 1988

* Replace the bias function (the balance principal) with an expression from the
likelihood function

* Assumes a distribution for quantity being modeled

* Solves for parameters to maximize its value
* A “statistical modeling” approach
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1990 — GAMs introduced

Monographs
on Statistics and
Applied Probability 43

(Generalized

Additive
Models 9(Ev(y|z)) = Bo + fi(z1) + fa(z2) + ... + fo(zp)

T.J. Hastie and
R.J. Tibshirani

CHAPMAN & HALL/CRC
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1992 — GLMs in Ratemaking

JIA 119 (1992) 457-543

JA.A 119, 111, 457-543

STATISTICAL MOTOR RATING: MAKING EFFECTIVE USE
OF YOUR DATA

By M. J. BRockMaN, B.Sc., F.ILA. AND T. 8. WRIGHT, M.A,, F.§.S,, M.LS.

[Presented to the Institute of Actuaries, 27 April 1992]

ABRSTRACT

The paper gives details of statistical modelling techniques which can be used 1o estimate risk and
office premiums from past claims data. The methods described allow premiums to be estimated for
any combinaton of rating factors, and produce standard errors of the risk premium, The stalistical
package GLIM is used for analysing claims experience, and GLIM terminology is used and explained
thoughout the paper.

Arguments are put forward for modelling frequency and severity separately for different claim
types. Fitted values can be used to estimate risk premiums, and the incorporation of expenses allows
for the estimation of office premiums, Particular attention is given to the treatment of no claim
discount.

The paper also discusses possible uses of the modelled premiums. These include the construction of
‘standardised’ one way tables and the analysis of experience by postal code and mode! of vehicle. Also
discussed is the possibilily of using the results for assessing the impact of competition, and for finding
‘niche’ markets in which an insurer can operate both competitively and profitably.

KEYWORDS

General Insurance; Molor; Pricing; Statistical Analysis

PINNACLE

ACTUARIAL RESOURCES




1997 — The Tweedie Distribution

t D1spers1on
| ' Models

Bent Jgrgensen

@ CHAPMAN & HALL
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1999 — GLMs and Minimum Bias

A SYSTEMATIC RELATIONSHIF BETWEEN MINIMUM
BIAS AND GENERALIZED LINEAR MODELS

STEPHEN MILDENHALL
Abstract

The minimum bias method is a natural tool to use
in parameterizing classification ratemaking plans. Such

plans build rates for a large, heterogeneous group of in- Th e HI i N kS” betwee NnNs peCifl C

sureds using arithmetic operations to combine a small

sel of parameiers in many different ways. Since the arith- M i N | mum B | as te C h 8] |q ues an d

metic structure of a class plan is wsually not wholly ap-
propriate, rates for some individual classification cells 'f' G LM f

may be biased. Classification ratemaking therefore re- SpeCI IC orms.
gquires measures of bias, and minimum bias is a natural
objective to use when determining rates.

This paper introduces a family of linear bias mea-
sures and shows how classification rates with minimum
(zero) linear bias for each class are the same as those
obtained by solving a related generalized linear model
using maximum likelihood. The examples considered in-
clude the standard additive and multiplicative models
used by the Insurance Services Office (ISQ) for pri-
vare passenger auio ratemaking and general liability
ratemaking (see 150 [11] and Graves and Castillo |8],
respectively).

Knowing how fo associate a generalized linear model
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2000 — Present

e Rapid adoption of GLMs
* GLMs quickly become the standard tool for rating models
* Expansion of GLM usage to address other business questions

CovA
o
=
o
(0]
o
S |
o
= —~
T
oz n
@
03]
o
g A Actual
w
Pred_v1
/ A Pred_v2
o
S
«© L]

aaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaa
DDDDDDDDDDDDDDDDD
mmmmmmmmmmmmmmmmm
mmmmmmmmmmmmmmmmm
mmmmmmmmmmmmmmmmm

PINNACLE

ACTUARIAL RESOURCES




GLM Popularity

* Easyto develop

* Intuitive results

* Easy to visualize

* Explainable

* Wide variety of diagnostics

* Closed form results

* Regulatory acceptance (eventually)

* Transparency

* Wealth of insurance specific material on the use of GLMs
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ACTUARIAL RESOURCES



GLM Limitations

* Tendency to “torture” the data at times
* Poor choice for non-linear relationships
* Need for additional flexibility

PINNACLE
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Generalized Additive Models - GAMs

Generalized Linear Models Generalized Additive Models GAM
GLM
9(Ey(ylz)) = Bo + Prz1 + ... Bpp 9(Ey(ylz)) = Bo + fi(z1) + fa(z2) + ... + fo(zp)

 GAMs are an extension of GLMs
* Allows for non-linear effects through the functions
* Regulatory concerns
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Modelling and Models
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The Modelling Approach

Creating & using models

\

MODEL CREATION I

1

|

TRAIN DATA !
(explanatory variables, target, ...) !
1

MODELLING MODEL 1

|

EXPERTISE 1
1

/




The Modelling Approach

Creating & using models

MODELLING MODEL

e What is a transparent model?

e What is machine-learning?
e Why are they opposed?

e What happens when the two concepts are combined?



The choice between black-box ML and traditional GLMs (presentation by Swiss Re)

Model approach comparison
GLM vs. other ML-methods

XGBoost Random Forest GLM
Automatic Feature 0 0 °
selection
Model Runtime Longer Short
Performance (AUC) High

Interpretable results ° ° 0

* Different modelling techniques display different performance along key measurement criteria

» Setting clear expectations a priori helps to select the preferred one

arbeitsgruppen/fachgruppe-data-science/Ds%20AMs

@ Swiss Re Presented by Swiss Re at the Swiss Association of Actuaries on the 06/10/2021: https://www.actuaries.ch/de/fach- October 2021 12 ‘


https://www.actuaries.ch/de/fach-arbeitsgruppen/fachgruppe-data-science/Ds%20AMs

Model creation & structure

GBM & Black Box

.Q oLl LU (Trees Ensemble)
2 B
ack Box
Random Forest ot LLLLLLLLL (Trees Ensemble)
& Y Black B
0X
Neural Network o ‘;. (Neural Network)

Transparent
(Data-Prep + LM.)

Data-Prep + GLM "
GAM (manual) ‘.

kR

Transparent
(GAM)



Classic Actuarial approach
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Direct Models Visualization

To be understood, models must be:
While model interpretability techniques

e Reductible: the models can be splitted
can be applied to any model, a direct and visualized piece-by-piece
model understanding is restricted to the e Parsimonious: the model must
specific class of models incorporate a limited number of effects

to be analizable

This class of models restrict human-understandable models to:

- Simple rules
- Shallow tree
- Generalized Additive Models (including GLMs), with parsimonious interactions

CONFIDENTIAL



Direct Models Visualization
If a model can be decomposed, it can be visualized

Actuaries have been focusing during the past 20 years on the GAM modeling,
because it allows the modeler to decompose the model’s effects ﬁj(Xj) and:

e Validate the effects
e “Force” the effects if no exposure is available

The GAM models are defined by their shape: f(X) = g_1 Z Bd(Xd)
d

Ba,ge ) m )

A AEERCNY : o . 1-O- +5 other
y o Q + B N + + “ _ + ﬂ b‘L + variables

SEHENRARERRSEEEEROIFREREREANRFSRARERERIIT

ﬁspeed “) ﬁmll ()

Driver Age Driving Experience Vehicle Speed Contract Mileage Vehicle Age

Here the model itself is visualized and fully understood by a human.



Analysing a GAM

Only a limited number of variables play a role; each variable's impact is fully known

Relative values

driver_age

200%) vehicle_age
% 0.0%
> o
| 72@/’ < _mileage
K]
3
- I I I
vehicle_max_speed
10000 20000 30000 40000 50000 60000 7000.0 BO0D.O 9000.0
experienced_driver
20.0%|
§ vehicle_pw_ratio
5 10.0%
g
: \
]
E 0.0%
o -

False True
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Variables Importance

Relative values
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GLMs or GAMs

Linear or Additive
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Linear models, GLMs and GAMs

Linear Model

Simple and well know technique

First regression created & learned

Captures the linear relations in the data
Simultaneously select the variables and fit the trends

150% =

Risk

100% =1

50% =

v

I I I I
20 40 60 20

Driver Age

CONFIDENTIAL

Additive Model

Much more powerful models

Captures non-linear effects
Incorrectly called “GLMs”

Requires both variables selection and fitting

150% =
100% =
50% =
T T T T v
20 40 60 80
Driver Age



Creating a GAM with variables transformations

. - Heavy Data- Transformed GLM . o Aggregation .
Original Variables Preparation o Coefficients AN Functional Effects
Driver Age -2.50
Driver Age 3 -0.02
Annual Mileage 1.20
Annual Mileage Annual Mileage 2 0.30 ._H_k_k_._,—-/
Annual Mileage 3 -0.01
Vehicle Age 0.70
Vehicle Age Vehicle Age 2 -1.10 \\R\\
Vehicle Age 3 -0.04
Past Claims=0 -10.00
Nb. of Past Claims Past Claims=1 20.00 /
Past Claims=2+ 50.00 T



Building the GAMs manually

Only a limited number of variables play a role; each variable's impact is fully known

Generalized Additive Models are transparent by structure.

So, as modelers can understand and interact with them, it is possible
to create them manually (unlike ensemble of trees, which have to be
created by machines).

However, building GAMs through variables transformations and linear modeling leads
to severe limitations!

x The right set of variables need to be selected manually by the modeler

x The right transformations need to be manually created by the modeler

X They are limited to linear combinations of the basis of variables created.
x Complexity is limited as creating too many transformations leads to overfitting.

CONFIDENTIAL



Creating a GAM model through variable transformations...

- . Heavy Data- Transformed GLM . . A ti :
Original Variables T Variables Modeling  ASSGILEEIE e Functional Effects

Driver Age -2.50
Driver Age 2 0.10 \
Driver Age 3 -0.02
Annual Mileage 1.20
Annual Mileage 2 0.30 ._*_.r_r_.__,,/
Annual Mileage 3 -0.01

CONFIDENTIAL 6



... or creating a GAM with Machine Learning ?

Original Variables GAM Modeling Functional Effects

N

Annual Mileage ._._.r_r_,_./‘/

CONFIDENTIAL @



Classic ML approach



Black-Box models
Black-box models can be analysed

Most ML models are black-boxes: they can't be directly understood, but can be analysed.
For instance, a Gradient Boosting generates predictions from an ensemble of decision trees: j,"(X) = g‘l Z T; (X)
t

Each tree Tt leverages all the dimensions of the data, generating interactions between the variables.

A +95 other
y=§§g§+%§§§+%§§§+g§ %+%§ §2+ trees

GBMs are really great because they just work:
it is straightforward to produce automatically good models.

As a GBM typically involves hundreds of trees of depth 2 to 6 (generating 2 to 6-ways interactions),
this model is not directly understandable by a human.

For this reason, powerful model-analysis tools have been developed.

CONFIDENTIAL



Global Parameters and Model Parameters

GLOBAL PARAMETERS DATA

Models creation is automated:

o The user defines global parameters e Number of trees e Explanatory Variables
and data. e Trees depth e Target Variable
« The algorithm 7it= on the data and e Learning Rate

produces the model.

FIT

@i
The model itslf is often less looked-at than the

global parameters.
e Ensemble of trees

For instance, when building a GBM, a user will find the global (split points, split variables, leaves estimates)

parameters maximizing the back-test results (through a k-
fold), not the best model.

CONFIDENTIAL °



Finding the best Global Parameters
The Grid-Search approach

The grid-search approach seeks at finding the best Global Parameters. t
Based on a modeling data-set, models are fitted with different global 5] ® ® ® ® ®
parameters, and their performance is measured.
4 o o o o o
The models themselves are not looked at: only the out-of-sample Tree
performance is considered. Depth
e
P, ® © ©® @ o
The set of global parameters leading to the best performances is 27 ® ® ® ® ®
considered as the best one.
| | | | | >
100 200 300 400 500

They are used to fit a model on the entire data-set: this model will be
the one used in production.

It is possible to follow this whole process without ever looking at the
selected model.

Number of Trees

CONFIDENTIAL



Testing a models performance
The K-Fold approach

As the grid-search approach of modeling is “blind”, it relies a
lot on performances measures.

To make sure the performance measure is as precise as
possible, a k-fold approach is used: the data is splitin K
subsets (typically 4) and K models are created on all the
subsets but one. The performances of these models are
tested on the last subset.

This approach is very efficient, and works perfectly well
independently of the model. However, it requires a completely
automated model creation process.

TEST

FIT o




Testing a models performance
The K-Fold approach

As the grid-search approach of modeling is “blind”, it relies a
lot on measures of performances.

To make sure the performance measure is as precise as
possible, a k-fold approach is used: the data is splitin K
subsets (typically 4) and K models are created on all the
subsets but one. The performances of these models are
tested on the last subset.

This approach is very efficient, and works perfectly well
independently of the model. However, it requires a completely
automated model creation process.

K-FOLD
SCORE

TEST

TEST




Example of black-box analysis
PDP : understand the global impact

Relative values

25.0%
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Driver Age

For example: a Partial Dependence Plot (PDP)) and Individual Conditional Expectation (ICE) showing the impact of a driver’s age.
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Example of black-box analysis
ICE: visualize the conditional impacts

—#— Observed (%) —#— Partial Dependence (%)

25.0%
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Driver Age

For example: a Partial Dependence Plot (PDP)) and Individual Conditional Expectation (ICE) showing the impact of a driver’s age.

CONFIDENTIAL *Screenshot from Akur8's interface ‘



Example of black-box analysis
ICE: visualize the conditional impacts

—#— Observed (%) —#— Partial Dependence (%)
25.0%
800
20.0%
i
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Driver Age

For example: a Partial Dependence Plot (PDP)) and Individual Conditional Expectation (ICE) showing the impact of a driver’s age.

CONFIDENTIAL *Screenshot from Akur8's interface ‘



The Dilemma
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Trees Ensembles and GAMs
Strengths and Limits

Strengths associated with Trees ensembles models are related to their creation process.

Strengths associated with GAMs are related to their models structure.

Models structure Models structure
e Sum of small effect of all the variables e Sum of effects of single variables.
e Trees depth

Models Understanding Models Understanding
e Via reverse-engineering or local analysis e Direct visualization.
Models Creation Models Creation

e Machine learning e Human-creation

e Machine-learning

CONFIDENTIAL



Models creation & structure

Creation Process

CONFIDENTIAL

GBM

Black Box

ssssssses (Trees Ensemble)
Black Box
Random Forest LLLLLLLLL (Trees Ensemble)
’l
Neural Network ‘;—. Black Box
=) (Neural Network)

Data-Prep + LM

Transparent
(Data-Prep + LM.)

GAM (manual) ‘. ;gm?sparent
Q Transparent
GAM (automated) e oo



Mixing ML & Actuarial
approaches



Global Parameters and Model Parameters
Applying ML to GAMs

GLOBAL PARAMETERS DATA

It is possible to design an algorithm fitting GAMs, e Smoothness level e Explanatory Variables
based on 2 global parameters: e Parsimony level e Target Variable

e Level of smoothness: how significant
should the selected effects be?

e Level of parsimony: how many variable
should be included in the model?

FIT
o
We developed this algorithm: Models can be
for many values of the

global parameters (machine-learning Grid-Search e Effect functions values
approach), tested on back-tests and fully (one function per selected variable)
analysed.

CONFIDENTIAL @



The Fitting Process

Optimizing the Likelihood with Constraints

Maximum of Likelihood

Maximize the Likelihood of the
observations.

This is the standard approach used
in GLMs modeling, where the
probability of observing the target
given the predictors and a loss
function (the likelihood) is optimized.

CONFIDENTIAL

Smoothness Constraint

Similar to a credibility approach: all
effects are supposed to be null.

This hypothesis is tested for every
level and, if the effect is significant
enough, it is included in the model.

More or less sensitive models are
obtained by modulating the
significance  threshold:  models
selecting only significant effects will
be very smooth and robust, models
with more permissive threshold will
be more sensitive.

Parsimony Constraint

In order to improve the readability of
the models created, all the least
significant variables are removed
from the model.

These are the variables that would
provide the lowest gains in likelihood
if included in the model.

This approach provides an optimal
subset of variables to be included in
the model.



1. Controlling the smoothness: Signal and Noise

Raw data contains both
signal and noise.

A trade-off needs to be

found between
M sensitivity 2

CONFIDENTIAL

300.0%

200.0%

Relative values
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*Screenshot from Akur8’s interface ‘



1. Controlling the smoothness: Signal and Noise

=il Observed (%) Exposure train === Coefficient (%)
Robust model £ Ui
Elooo% s
Missing part of the
predictive signal o0

I8 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 G4 66 68 70 72 74 76 78 BO 82 84 B6 B 90 92 94 96 08
Driver Age

CONFIDENTIAL *Screenshot from Akur8’s interface



1. Controlling the smoothness: Signal and Noise

Over-fitted model

Capturing noise

CONFIDENTIAL

300.0%
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Relative values
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*Screenshot from Akur8’s interface e



1. Controlling the smoothness: Signal and Noise

—f— Observed (%) Exposure train == Coefficient (%)

300.0%

200.0%

Efficient model

Good trade-off,
capturing signal 00%
and rejecting noise

Relative values
g
[=]
=

.
I8 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 G4 66 68 70 72 74 76 78 BO 82 84 B6 85 90 92 94 96 98
Driver Age

*Screenshot from Akur8’s interface a
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1. Controlling the smoothness: Signal and Noise
What is overfitting?

300.0%

200.0%

100.0%

Relative values

0.0%

Which model should be selected?

Out-of-sample Gini: 20.5%
Robust model

T T e —
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18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99
Driver Age

Model on the left might lead to better
results once deployed in production.

—— o o o o e e e —

400.0%

300.0%

200.0%

100.0%

Relative values

0.0%

-100.0%

N\

Out-of-sample Gini: 21% \I

Noisy Model I

I

1

1

I

I

1

1

I

I

1

1

18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 |

Driver Age /
___________________________ -~

Model on the right has stronger results on the
back-test but does not inspire much trust.

*Screenshot from Akur8’s interface ‘



2. Parsimony has a cost (but it is worth it)
Understanding / Accuracy trade-off

Best models with interactions

Complex GAM

Bad models

Simple GAM
No Model

&

Linear Models

A
Complex GAM

Higher Accuracy

<

Better Understanding

The accuracy is measured on a back-test; actual results when moving to productions will not be

CONFIDENTIAL

Black-box models

(GBMs, RF, NN...)




2. Parsimony has a cost (but it is worth it)
Grid-search result

Gini Score

22.00% ° .
o * ¢ $ Grid-search results:
®
o ¢ ! * each point represents
20.00% one model.
The gain in models quality and
18.00% o ! the fading marginal
improvement are clearly
16.00% visible.
14.00% |
5 10 15 20 25 30

Number of Variables

CONFIDENTIAL *Screenshot from Akur8's interface ‘



2. Parsimony has a cost (but it is worth it)
Grid-search result

22.00%

20.00%

18.00%

Gini Score

16.00%

14.00%

CONFIDENTIAL

Number of Variables

o] I
i ae] -
contactmieace l
e max seed . [ ]
I * 4
[
V,hic.,,mml e o
* g
1
* 4
5 10 15 20 25 30

Grid-search results:
each point represents
one model.

The gain in models quality and
the fading marginal
improvement are clearly
visible.

*Screenshot from Akur8’s interface ‘



3. Interact with the models
Spotting the issues is nice..

Exposure train —#— Observed Average (%) —#%— Fitted Average (%) —#— Coefficient value (%)

70k

300 60k

S0k

40k
200

30k

% Exposure

Risk

20k

100
10k

# Rooms
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3. Interact with the models
.. solving the issues is better !

Exposure train —®&— Initial Coefficient value (%) —8— Observed Average (%) —%— Fitted Average (%) —8— Coefficient value (%)

70k

300 60k

50k

40k
200

30k

% Exposure

Risk

20k

100
10k

# Rooms
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GLOBAL PARAMETERS DATA

e Smoothness level e Explanatory Variables
e Parsimony level e Target Variable

3. Interact with the models
A 3-step process

It is possible to directly leverage a model right out of the fit Ig;r
%

process.

This would be similar to a classic data-science approach.
MODEL PARAMETERS

However, handling transparent models opens the possibility

of interacting with them, integrating expert knowledge in the o Effect functions values

modeling. Fitted from a purely data-driven process
ADAPT
So the process is (on purpose) mixing elements of: ‘.
- Machine-Learning: , purely data-driven

model creation, acting on global parameters to

control overfitting.
- Direct interaction with the models: control of all the FINAL MODEL PARAMETERS

effects captured in the fitting model, analysis and )
potentially edition of the effects to ensure a good e Effect functions values

extrapolation of the model. Adapted based on expertise, to ensure safe
extrapolation on low-data segments

CONFIDENTIAL \



Conclusion
Mixing Data-Science automation and Actuarial Expertise

ML & Back-test Actuarial expertise
performance and transparency

Understanding and capability to interact with
a model is key; model’s simplicity has value.

e Allows automated models Q e Minimizing the back-test e Models must allow the inclusion of expertise
creation error is not enough safety and provide extrapolation capabilities.

e Based on statistical criteria e Performance can't be

measures before dep]oyments Transparent modeling can and should be

(and sometimes not even combined with machine-learning techniques.
after)

e FEasyto measure &
reproduce

e Data-driven

e Direct interactions with the Transparency is not “under-sophistication” or
model itself is key to include “primitiveness” but realism and efficiency.
all the operational constraints.

e Pushes toward complexity
over understanding
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Thank you!

Guillaume Béraud-Sudreau

guillaume.beraud@akur8.com
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