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Abstract  

The insurance regulations are undergoing a paradigm shift in determination of capitals and reserves.  

From Solvency II in Europe to PBR in the USA, the formula-based static approach is replaced or 

supplemented by the principle-based dynamic method.  This change requires enhanced modeling, 

stochastic simulation, and sensitivity analysis, which pose challenge to insurers whose infrastructure has 

not been built for big computation.  This paper introduces a method of building complicated models 

with small reusable modules and running them on Many Task Computing platform to achieve high 

performance with simplicity.  The paper presents an example of a term life insurance model which is 

built to take advantage of computer hardware for parallel computing at the task level. 
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1. INTRODUCTION 

The principle-based regulations, such as Solvency II [1] in Europe and PBR (Principle-Based Reserving) [2] 

in the USA, compared with traditional formula-based regulations, put more emphasis on tail risks in 

insurance contracts.  Tail risks are possible events that yield high impacts with low probability. They can 

send an otherwise financially sound institution to insolvency. Solvency II requires sufficient capital to be 

held such that there is only a 1-in-200 chance that an insurer is not able to cover the liabilities.  Under 

PBR, the stochastic reserve is set as the average of the highest 30% reserves calculated for multiple 

scenarios.  Under principle-based framework, it is not uncommon to calculate reserves or capitals using 

thousands of scenarios per risk factor.  In some cases when stochastic-on-stochastic calculation is 

involved, it may take days, or even weeks of computation to generate results for reporting.  The 

insurance industry has been searching for various ways of improving computation performance. Up to a 

few years ago, people have focused on faster CPU clock speeds in order to increase computational 

performances. Today, the era of increasing clock speed has been replaced by an era of increasing the 

number of cores or threads of execution in computer architecture.  Insurers have channeled 

investments in hardware, especially computer grids with multiple engines, to shorten the total runtime.  

This, in turn, requires changes in the structure of analytical programs in order to leverage the power of 

more threads.  The transition to multi-thread has been problematic so far because parallel programming 
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is notoriously hard for all practitioners from software developers to risk analysts including actuaries. The 

fact that most 4GL (fourth-generation programming language) languages used by risk professionals 

typically do not support parallel programming very well has made matters worse. 

 

This paper provides a methodology that promises to leverage the power of many threads while keeping 

the development of models to a manageable level of complexity.  Many Task Computing offers risk 

analysts a simple way to achieve high performance computing required in principle-based applications. 

 

 

2. MANY TASK COMPUTING 

Many Task Computing (MTC) is an approach to parallel computing that puts the emphasis on data 

synchronization rather than code synchronization [3]. In MTC, parallel programs are organized as 

sequences of computations called job flows. The main point of a job flow is to transform data through a 

set of tasks that perform calculations on a set of inputs to produce a set of outputs. Once all the inputs 

of a task are available, the task can be dispatched to a thread of execution independently of other tasks. 

The fact that the parallel scheduling of tasks is decoupled from the analytical code gives MTC its ease of 

use and performance. 

 

Another benefit of job flows is that they convey the overall structure of the parallel program in a 

graphical manner. For instance, the following job flow performs some analytical computing on SAS 

datasets: 

 



 

Figure 1 

 

The parallel nature of the computations is readily visible to the end users. 

 

The job flows can be created via a GUI in which end users can drag and drop tasks and their associated 

data. The MTC platform automatically figures out the sequence of execution and the parallelism, so 

there is no need for the risk analysts to synchronize the computations. 

 

The job flows can also be defined programmatically such as the following example in Python, which 

defines the job flow above. 

 
def test_simple_flow(self): 

    # We get a context for a flow definition (name) 

    definition_name = 'testDefinition_'+ str(datetime.now().timestamp()).replace('.', '_') 

    ic = Context(definition_name) 

 

    # We add analytical tasks to the flow 



    filter_analytics_option(ic) 

    filter_rd_glb(ic) 

    filter_corr_matrix_static(ic) 

    mkt_get_source_entity(ic) 

    filter_parameter_static(ic) 

 

    # We run the flow 

    ic.run() 

Note that in the example above, the computations are given to the system out of sequence, but here 

again, the system automatically figures out the order and the parallelism of the tasks. 

 

 

3. MODEL DESIGN 

An MTC platform enables modelers to design contents without thinking about how to couple the model 

with the hardware to achieve parallelism.  This empowers risk analysts, such as actuaries, who possesses 

insurance domain knowledge but often lacks computer science background, to develop models at ease.  

We only remind modelers of the following 3 commonly used model design principles to take full 

advantage of hardware, such as computer CPUs and memories. 

 

Principle 1. Use vectors to replace loops whenever applicable.  When evaluating a block of polices under 

multiple scenarios, a computation procedure can loop through each scenario, and inside each scenario 

loop, through each policy.  Modern computer languages such as SAS and Matlab provide efficient vector 

operations, which are generally much faster than executing loops.  Grouping policies and/or scenarios 

into blocks and using vector operations to calculate each block as a whole significantly increase speed.  

The size of blocks depends on the purpose of the model and the hardware specification. 

 

Principle 2. Separate logic codes from data.  Many applications, such as simulation, execute the same 

logic on different data.  Compiling the same piece of codes once and using them multiple times save 

computing resources.  It also facilitates code maintenance and helps mitigating modeling error. 

 

Principle 3. Design the model as a collection of small tasks instead of a big indivisible program.  Single-

threaded programs, which are designed to run on one single thread in one computer, usually take all 

input data, calculate many steps sequentially, and then output the results.  Such a “one big task” 

approach does not fully utilize CPU power in a computer or a grid of computers with multiple threads.  

Alternatively, the model can sometimes be divided into many small tasks.  There are 4 advantages in 

structuring a program as a collection of small tasks, as long as they are in the right order.  (1) It enables 

parallelism at the task level.  When a MTC platform is available, the independent tasks can run 

concurrently as long as there are multiple computer threads available.  (2) It is easier to execute an 

entire small task in computer memory, therefore reducing I/O operations and increasing speed.  (3) It 

increases traceability. Debugging a model often requires more time than what is spent on developing 

the initial model.  Small tasks provide explicit breaking points for intermediate results.  Because each 

small task explicitly defines its input and output, when a final result is different from expectation, these 

intermediate results become very helpful in identifying the issues.  This is also a desirable feature for 

auditors to verify the data and processes.  (4) Models are easier to maintain and upgrade.  In the event 



that regulations for certain aspects (for example, reserve calculation) are changed, codes for other tasks 

(for example, premium and death benefit projection in a pricing model) can be reused without change. 

 

 

4. EXAMPLE 

In the following, we use a stochastic pricing model for level term life insurance products to illustrate 

how a well-designed actuarial model running on a MTC platform can help insurers easily achieve high 

performance. 

 

A level term life insurance contract guarantees level premiums and level death benefits over a term (a 

pre-specified period of years).  The premiums and death benefits can vary if a policy stays in force post 

term.  It is the simplest, therefore least expensive, life insurance product.  We choose the level term life 

pricing model as an example for two reasons.  (1) The product enjoys significant market shares.  (2) The 

model is simple yet complete as it covers core insurance underwriting risks and their related cash flow 

projection.  A simple model makes it easier for readers to understand the principles of good model 

design in order to take full advantage of computer hardware to achieve speed. More importantly, we 

want to discuss how to easily create new models for more complicated products like universal life 

products, by using/modifying existing task nodes or adding new nodes to the simple model.  Because 

the focus of this paper is on model design, we disguise real data while providing a description of data 

used in the model.  Please refer to [4] for more details on life insurance products and formulas. 

 

4.1. Model Data 

 

4.1.1. Policy Data 

The portfolio consists of 1,098 model cells representing 1 million level term life policies with a specified 

pricing distribution.  Each model cell is uniquely defined by a combination of policy characteristics such 

as term, issue age, gender, risk class, and policy size band. 

 

4.1.2. Scenario Data 

Mortality and lapse are the two major risk factors that greatly impact the profitability of a term life 

business.  An insurer can run into financial distress if the actual experience of either factor adversely 

deviates too much from the best estimates.  A projection model, which captures the variation of 

mortality and lapse, can provide insights for insurers into the potential risk distribution due to the two 

policyholder decrements.  The level term life model we present here does cash flow projection for one 

or multiple mortality/lapse combined scenarios.  A mortality scenario is a matrix of mortality multipliers 

to be applied against the base mortality rates.  We apply multipliers which reflect possible variation in 

mortality experience.  They vary by projection year and term length.  They remain the same for different 

polices with the same term length during the same projection year.  A lapse scenario has the same 

structure as a mortality scenario.  The corresponding multipliers are factors to be applied against the 

base lapse rates.  Please see [5] for details of how to generate the stochastic mortality and lapse 

scenarios.  We run 1 million stochastic mortality/lapse combined scenarios to test the model’s speed 

and scalability. 

 



4.1.3. Output Data 

The model generates 1 million aggregate 30-year income statements for the block of business for 1 

million mortality/lapse combined scenarios. 

 

4.2. Runtime Environment 

The model is written is SAS language and runs on SAS workspace servers.  The MTC platform is tested on 

a testing computer with a 1TB RAM, 80 hyper-threaded cores at 3.20GHz. 

 

4.3. Modeling steps 
 

For each model cell, the model starts with one unit (1,000 face amount) at issue, takes a mortality/lapse 

combined scenario to compute the number of deaths, lapses, and in-force lives for each projection 

month, determines unit statutory reserves, and then calculates cell-level income statement for 30 years.  

The model further rolls up cell-level income statements into an aggregate income statement for the 

block of business for each scenario. At the end, 1 million 30-year aggregate income statements are 

produced.  Figure 2 describes the high-level job flow.  

 

 

Figure 2 

The boxes with wheels at the top left corner represent task nodes.  A task node is a calculation unit.  It 

has input and output tables as shown in Figure 1.  We disguise the input and output tables for task 

nodes on the job flow figures from now to the end of the paper to increase readability. The boxes 

without the wheels represent sub-flows. A sub-flow is a collection of related task nodes grouping in a 

certain order.  There can be as many layers of sub-flows as needed.  One can always drill down a sub-

flow to see the tasks or sub-flows it includes.  Sub-flows increase flow readability and help readers to 

understand the flow logic.  However, they do not contribute to calculation.  Task nodes are the only 

calculation units. 

 

Step 1.  Enrich policies to link policies with assumption and product data.  It is conducted in sub-flow 

PolicyEnrichment.  This step extracts data from various input tables so that each policy gets its 

corresponding assumptions and product information such as mortality rates and premium rates. 

According to Model Design Principle 1, we treat the 1,098 model cells as a block and calculate them as a 

whole using column operations in SAS.  We do this for 2 reasons.  (1) It is easier to compute the 

aggregate result for the block of business when packing all model cells into one block.  (2) The SAS 

language treats columns as variables, and does efficient variable operations, such as addition, 



subtraction, multiplication, division, and comparison, among columns.  Reflecting our earlier discussion 

of Principle 1 in Section 3, such operations are much faster to execute than using loops. 

 

For example, we use a SAS data table, which stores policy keys, their corresponding base mortality rates 

and mortality multipliers, to calculate modeling mortality rate for each policy. Formula (I) treats all rows 

in the table as a whole and calculates mortality rates for each row in the table.   
 

Mortality_Rate = Base_Mortality_Rate * Mortality_Multiplier    (I) 
 

The policy enrichment step involves many data movements and may take much time.  The assumption 

and product data are related to policy data, but do not depend on each other.  According to Model 

Design Principle 3, we break down the enrichment tasks into small ones so that they can run in parallel 

when possible.  Figure 3 shows the enrichment tasks. 

 

Figure 3 



 

Step 2. Partition scenarios.  Task node ScenarioPartition splits stochastic mortality/lapse combined 

scenarios into blocks.  The blocks of scenarios are then fed to Step 3 to calculate lives roll.  Either the 

MTC platform or a modeler determines the number of scenarios inside each block, taking into account 

of computation efficiency.  After testing a range of block sizes, we found 10 scenarios per block lead to 

best performance in our testing environment described in Section 4.2.  Therefore, we split the 1 million 

scenarios into 100,000 blocks.  This task node has one table containing 1 million scenarios as an input, 

and 100,000 tables each containing 10 scenarios as outputs.  To facilitate model design, the MTC 

platform treats the 100,000 tables as a collection.  A modeler only has to define the tables as a 

partitioned table with one table name to represent the collection. 

 

Step 3. Calculate lives roll. Task node LivesRollCalculation calculates how many lives of death, lapse, and 

in-force for each projection month.  It applies corresponding multipliers to each policy’s base mortality 

rates and base lapse rates in different scenarios to obtain modeling mortality and lapse rates, and then 

projects monthly policy statuses.  The same lives roll calculation code repeatedly processes 1 million 

scenarios to generate 1 million lives roll projection. We apply Model Design Principle 2 to separate 

calculation logic from data, and then follow Principle 3 to create small tasks for parallel execution.  The 

task takes the partitioned scenario table generated from Step 2 as an input, runs 100,000 partitioned 

tasks, and then produces a partitioned lives roll table (a collection of 100,000 tables) as the output. 

Notice that even though there are 100,000 tasks, the job flow only shows one Task Node 

LivesRollCalculation.  This is because the MTC platform is designed to automate task scheduling.  As long 

as a modeler defines the task node as a partitioned node, the MTC platform automatically provides 

multiple threads to run the partitioned tasks on the background. This makes model design easy and 

clean.  Modelers can focus on contents instead of the underlying execution. 

 

Step 4. Calculate unit statutory reserves.  This is done in sub-flow ReserveCalculation.  We can see from 

Figure 2 that this sub-flow runs independently from the ScenarioPartition and LivesRollCalculation tasks.  

Because unit reserves use prescribed mortality and lapse assumptions differently from what are used in 

pricing, pricing scenarios and lives roll projections do not affect unit reserve calculation.  Figure 4 shows 

the composition of the sub-flow.  Basic reserve and deficiency reserve are calculated in parallel.  They 

rely on different mortality assumptions and premium rates while using the same piece of computation 

logic.  We again apply Model Design Principle 2 to call the same compiled codes for each of them. 

 
Figure 4 



 

 

Step 5. Calculate income statements.  Task node IncomeStatementCalculation calculates premiums, 

death benefits, reserve increase, investment income, expenses, tax, and distributable earnings to form 

cell-level income statements for 30 years.  The model then multiplies each cell’s per-unit-issued results 

with the number of units defined in the pricing distribution to generate gross results for each cell.  In the 

end, it sums up the gross results from all cells to create the 30-year aggregate income statement for the 

entire block of business.  The task takes the partitioned lives roll table and non-partitioned reserve table 

as inputs, runs 100,000 partitioned tasks, and generated a partitioned aggregate income statement 

table (a collection of 100,000 small tables) as the output.  A modeler can choose to combine the 

collection of small tables into one big table or leave them as they are. 

 

The model produces 1 million aggregate income statements for 1 million mortality/lapse combined 

scenarios.  A modeler can add additional task nodes to slice and dice the results for more insights into 

the portfolio.  For example, one can take the present values of each aggregate income statement’s line 

item and form a distribution for each line item to see their risk characteristics.  A modeler can also add 

cell-level income statement as another output partitioned table of Step 5, then add another node to 

summarize income statement items by policy characteristics, such as gender, age, risk class, product 

size, and term.  This can provide useful information on what type of policies are more profitable than 

others. 

 

4.4. Performance 

We ran a range of scenarios to test the performance.  Table 1 shows the performance results of our SAS 

model running on the 80-thread MTC platform. 

 

 

Table 1 

We compare our model performance with a single-threaded Excel model.  Both models use the same 

input data, do the same calculation, and generate the same output data for any one of the 

mortality/lapse combined scenarios.  For a single scenario, the Excel model runs for 88 seconds, while 

our SAS model based on MTC only 3 seconds.  Because Excel is single threaded, it has to use VBA to loop 

through all 1,098 model cells, then do aggregation.  The only parallel computing Excel can achieve is to 

distribute scenarios to computer grids.  It would take over 12 days for the Excel model to generate 1 

million scenario results were it to run on a grid with 80 cores, comparing to 7 hours our model needs. 

 

 

Number of Scenarios Run Time Total
 Run Time (in seconds) 

per Scenario per Thread
1 3 seconds 3.00 

1,000 35 seconds 2.81 

1,600 42 seconds 2.10 

1 million 6 hours and 55 minutes 1.99 



4.5. Varying models 

Because an MTC model is composed of a collection of small tasks, it is convenient for a modeler to 

create new models by adding, replacing, or modifying some nodes of an existing model.  For example, 

one can take the term life pricing model described in Figure 2 and turn it into a universal life (UL) pricing 

model.  Both models need to link polices with assumption and product data.  Sub-flow PolicyEnrichment 

can be modified to link UL related assumption and product data to policies. For example, we can replace 

Task Node LinkLevelPremium with Task Node LinkTargetPremium.  Many formulas for reserve 

calculation and income statements also need to be changed for UL products.  Because interest rate risk 

is critical to UL products, a modeler may want to do stochastic simulation on interest rate instead of 

mortality and base lapse.  Therefore we use Task Node ScenarioPartition to partition interest rate 

scenarios.  Furthermore, the codes for Task Node LivesRollCalculation should be modified to take into 

account of dynamic lapse, which is directly affected by interest rates.   

  

 

5. SUMMARY AND FUTURE WORK 

We have shown that models built on the concept of MTC and run on a MTC platform can significantly 

reduce runtime to meet the big computation challenge faced by principle-based applications.  The 

example illustrated in Section 4 demonstrates a 40x performance improvement of our model, 

comparing to what Excel does.  

 

To bring computing performance to higher order of magnitude, we are looking into using Graphics 

Processing Unit (GPU) to further reduce runtime with lower cost Error! Reference source not found..  A 

GPU is a programmable logic chip that are traditionally used to process graphical data in animation, 

visual effects, and video editing.  In most computers, the Central Processing Unit (CPU) handles the 

majority of the processing and farms out graphical processing to one or more GPUs.  A key difference 

between CPU and GPU is that a GPU handles thousands of threads of executions of the same program 

(e.g. the transition of an animation frame) on different data (e.g. tiles in the frame) while a CPU handles 

tens of threads of executions. In other words, it is possible to leverage the many threads of a GPU when 

a task requires the same computation repeated for a variety of data. Several problems in risk 

management, including stochastic simulations, are a good fit for a GPU architecture.  Alas, the coding 

aspects of GPUs are non-trivial.  Therefore acceptance of using GPUs for analytics has been rather slow. 

We are working on delivering components of job flows that automatically harness the many threads of 

GPUs and hides the coding complexities of GPU programming.  We believe such a high-level tool can 

make the power of GPU within the grasp of risk analysts so that they can easily harness thousands of 

threads of execution. 

 

If a GPU chip with 5,000 threads is used for the MTC platform, we estimate that the runtime of the 

model described in Section 4 can be further reduced from 7 hours to less than half an hour for 1 million 

scenarios.  Because a GPU chip with thousands of threads only costs thousands of dollars, we believe 

this represents the future of high performance computing in principle-based modeling. 
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