

RED Session 3.1: Parameter Uncertainty

Moderator: Brian Matthew Hartman, ASA

Presenters: Brian Matthew Hartman, ASA

SOA Antitrust Disclaimer SOA Presentation Disclaimer

Parameter Uncertainty

Brian Hartman, Robert Richardson, and Rylan Bateman 2017 ERM Symposium

Project supported by the Joint Risk Management Section and Research Committee

Project Overview

- Literature Review
- Health Case Study
 - Predict diabetes improvement using regression
 - Variable selection through spike and slab prior
- Property/Casualty Case Study
 - Predict claim counts for 79K policyholders using Poisson and negative binomial regression
 - Show the impact of including parameter uncertainty in the regression parameters
- Life Case Study

Life Case Study

- Can incorporate parameter uncertainty into either the actual/tabular ratio or the mortality rates directly.
- Will show both the impact on the mortality rates and the expected present value of simple insurance products.

Actual/Tabular Model

$Y_a \sim Bin(E_a, \theta T_a)$

$\theta \sim N(1, 1^2)$

 E_a is the number of exposures for age a, T_a is the tabular mortality rate.

Impact of Sample Size

Impact on SPIA

Figure shows present value of SPIA contracts both with (dashed line) and without (solid line) parameter uncertainty.

- *d* = 0.03
- Annual payment of 10,000
- 65-year-old female insured
- Portfolio of 1,000 contracts

Possible Extension

• Our current model is

$$Y_a \sim Bin(E_a, \theta T_a)$$
$$\theta \sim N(1, 1^2)$$

 To allow θ to vary by a subgroup, say gender and age, the model can be adjusted as follows:

$$Y_{ag} \sim Bin(E_{ag}, \theta_{ag}T_{ag})$$

$$\theta_{ag} \sim N(\mu + \tau_g + \nu_a, 0.02^2)$$

$$\mu \sim N(1, 1^2)$$

$$\tau_g \sim N(0, 0.1^2)$$

$$\nu_a \sim N(0, 0.1^2)$$

Modeling the mortality rates directly a^{ind}

$$q_a \sim Beta(Nq_a^{ina}, N(1 - q_a^{ina}))$$
$$q_a | E, X \sim Beta(\alpha + X, \beta + E - X)$$

where

- q_a is the company mortality rate for age a
- q_a^{ind} is the industry mortality rate for age a
- N is the prior sample size
- *E* is the number of exposures in your data
- X is the number of deaths for age a.

Impact of the prior sample size, N

Impact of the prior sample size, N

Estimating the entire mortality curve

Solid line: Table rate Dotted: N = 500Dashed: N = 10,000

Impact on SPIA

10,000 SPIA issued to age 65 female

Solid line: No Parameter Uncertainty Dotted: N = 500Dashed: N = 10,000

Company data follows industry table

Company data better than industry table

Tail Quantiles

	75%	90%	95%	99%	99.5%	99.9%
No Parameter Uncertainty	156011.5	156309.3	156487.8	156828.9	156944.6	157182.7
Actual-to-Tabular	157364.6	158117.2	158571.7	159410.9	159718.1	160333.2
Individual, N=500	156134.6	156543.7	156784.8	157230.1	157400.4	157739.5
Individual, N=10,000	156048.6	156374.6	156569.8	156940.2	157076.4	157349.6

Parameter Uncertainty

Brian Hartman, Robert Richardson, and Rylan Bateman 2017 ERM Symposium

Project supported by the Joint Risk Management Section and Research Committee