

GP GPU in Risk Management

Iouri Karpov, Prudential Financial

From Avatar to GP GPU

GPU – Graphics Processing Unit

- Every video game console, computer, and smart phone has one
- Consumer GPU technology driven primarily by video gaming and ever improving HD standard

GP GPU – General Purpose GPU Computing

- GPU's are designed for efficient matrix computations
- Offload numerically intensive and parallelizable calculations to GPU
- Used heavily in scientific computing, finance, cryptography

High Performance GPU Cards

- Nvidia
 - Tesla cards are prevalent in high performance computing
- AMD Radeon (formerly ATI)
 - Not as popular in HPC, but offers similar hardware benefits

HPC Needs in Insurance ERM/ALM

Stochastic Liability Valuation

- Market consistent pricing
- Statutory reserves

ALM/Hedging

- Liability greeks
- Hedge strategy impact/optimization

Forecasting and Stress-Testing

Reserve, capital, and liquidity projections

Nested Stochastic / Stochastic-On-Stochastic Projections

Required in forecasts and ALM strategy

Why GP GPU?

Massive Parallelization

 Typical insurance valuation involves running a significant number of policies with similar payoff definition across multiple economic scenarios

Technological Alternative to Inforce Reduction/Clustering and LSMC

Large Number of Policies = Better Efficiency

 Monte Carlo pricing convergence and efficiency can be dramatically improved using variance reduction techniques such as independent and importance sampling

Reduced Runtime and Reduced Costs/Footprint

- Possible 10x (or greater) reduction in cost while achieving same runtime
- Portability most "everyday" analytics can be run using only 1-2 cards on a single desktop

Practical Considerations

Most Efficient and Flexible Solution Achieved Using CUDA C

- Full control and efficiency in throughput optimization
- Optimal use of GPU memory architecture

Generic, Modular Design

- In practical CUDA C++ implementation, can be achieved using templates
- Device agnostic benefit logic. Same payoff code runs on CPU or GPU.
 GPU nuances handled in the architecture, not the core policy implementation

Scaling it Up

- Interface, and organizing multiple parameter and data inputs
- GPU cluster management
 - Parallelized execution across nodes and devices
 - Job scheduler

