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Abstract
2
 

The Market Cost of Capital approach has emerged as the standard for estimating risk margins for 

insurers' fair value balance sheets. This paper takes some of the ideas developed for valuing life 

insurance liabilities and applies them to the problem of valuing credit risky bonds.  The basic 

idea is that credit spreads should cover the cost a) best estimate defaults plus the cost of holding 

capital for b) contagion risk (e.g. a credit crunch) and c) parameter risk, this risk that the best 

estimate is wrong and must be revised.  We argue that the margins required for parameter risk 

can capture liquidity issues.  In addition, the models developed here allow the cost of capital rate 

itself to be a random variable which allows credit spreads to open and close stochastically.   

 

Finally, the paper argues that it is reasonable to include something like AA best estimate default 

rates and liquidity spreads when valuing insurance liabilities.  The main rationale for doing so is 

the idea that there are elements of the total credit risk issue that can be hedged between the assets 

and liabilities.    

 

Introduction 
 

It is now 20 years since the SOA held its first research conference dedicated to the topic of how 

one should determine the fair value of life insurance liabilities.   One particularly vexing issue 

has always been the question of what yield curve one should use to discount some appropriately 

risk-adjusted set of liability cash flows.   

 

Some have argued that if a life insurer that wants to be considered an AA risk then it should use 

an AA yield curve to discount its liabilities.  While this makes some intuitive sense it can lead to 

the conclusion that the lower a life insurer’s credit rating is, the lower its liabilities.  This is 

controversial. 

 

If we try to fix this problem by ignoring all credit spread issues in the liability valuation, we 

create another problem that many companies trying to develop market consistent reporting 

models experienced during the financial crisis of 2008.  At the height of the crisis, the flight to 

quality decreased yields on risk free instruments (raising liability values)  while credit spreads 

increased enough to more than offset the drop in risk free yields.  The result, for many 

companies, was that the market value of their assets dropped while the fair value of their 

liabilities increased.  Many people, including this author, consider that result to be somewhat 

inappropriate, especially if assets and liabilities were reasonably well “matched” going into the 

crisis.  
                                                           
1
 The author is a research actuary at GGY AXIS based in Baltimore Md. USA. 

2
 The views and opinions expressed in this paper are those of the author and not GGY AXIS.  
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The Solvency II QIS 5 specification tried to address the issues outlined above by allowing 

insurers to use inter-bank swap rates plus a spread designed to remove credit risk and capture the 

idea that many insurance obligations are fairly illiquid
3
.  To the extent the allowed liquidity 

spread varies with market conditions there is an element of credit spread hedging going on 

between the assets and liabilities.  This goes some way to resolving issues raised above. 

 

The models developed in this paper ultimately lead to a liquidity adjustment for liability 

valuation as in the Solvency II QIS 5 approach. However, the path we take to get there and the 

resulting pattern of liquidity adjustments are quite different.     

 

Following this introduction, the paper is divided into three main sections 

 

1. We develop the key ideas in a simple two state model where a bond is either in good 

standing or in default.  This is where the analogy to life insurance is clearest.    We are 

able to formulate a reasonably tractable affine model where the cost of capital rate is a 

random variable.  For simplicity, we assume the risk free interest rate is deterministic. 

 

The main conclusion is that the forward default rates for a credit risky bond can be 

decomposed into the sum of  

 

i. A best estimate default rate (i.e. one that assumes the law of large numbers for a 

portfolio of bond applies). 

ii. A spread for contagion risk – the risk that current experience differs materially 

from best estimate 

iii. A dynamic spread for parameter risk – the risk that the best estimate is wrong 

and must be revised. We argue this spread also captures liquidity issues 

iv. A final spread that arises if the cost of capital rate itself is stochastic 

 

Each of items ii – iv is engineered to provide for holding a specific amount of economic 

capital. 

 

After this step we have enough theory to develop the author’s views on how credit risk 

issues should affect insurance liability valuation.  The main points are 

 

a) On the asset side the insurer should hold capital for each of risks ii – iv in the list 

above. 

b) For long liabilities we can take a capital offset for risks iii-iv.  Because these 

risks are being effectively hedged.  The contagion risk issue cannot be hedged. 

c) As a result of (b) it makes sense to build spreads iii – iv into the liability 

valuation.  We also argue that best estimate defaults should be included 

 

One consequence of taking this point of view is that the net credit risk capital 

requirement for an insurer whose assets and liabilities are “matched” in the sense defined 

here is reduced to the contagion risk requirement.  On the other hand a financial 

                                                           
3
 “QIS 5 Technical Specification:  Risk-free interest rates”, CRO/CFO Forum 2010. 

http://ec.europa.eu/internal_market/insurance/docs/solvency/qis5/cfo-forum-cro-forum-paper-risk-free-rates_en.pdf 
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institution, such as a bank, that does not have long liabilities would presumably have to 

hold more credit risk capital due the larger mismatch between assets and liabilities. 

 

2. The next step is to generalize the simple model to a multi-state world where the best 

estimate model is represented by a typical credit transition matrix.  While there are 

many different ways in which the two-state model can be generalized we choose an 

approach to minimize the technical details.  The end result is a model in the same 

general family as a model published in 1997 by Jarrow, Lando and Turnbull
4
. 

 

We don’t develop this model in a lot of detail.  Instead, the point is to show that the 

additional complexity can be handled in a reasonable way.  

 

There are two issues that are deliberately out of scope for this paper. These are 

 

1. How to calibrate the model to observed market data 

2. A detailed comparison with the current Solvency II approach to liability spreads 

 

These are both significant issues that deserve discussion. Unfortunately, an appropriate treatment 

of these issues could easily triple the length of the current paper.  The author hopes that other 

interested risk professionals will rise to the occasion and engage in this important discussion.  

 

The Two-State Model 
 

The starting point for our model is the actuary’s cost of capital approach.  This is usually a three 

step process where we start with a best estimate model of the default process and then adjust that 

model for two kinds of risk which are a) the risk that current experience differs materially from 

the best estimate and b) the risk that the best estimate is wrong and must be revised.   

 

A key difference between the mortality model and the credit risk model developed here is that 

we also take market sentiment into account by allowing the cost of capital rate to be stochastic 

rather than a constant.  This is a fourth step. 

 

The author’s life insurance version of this idea
5
 was developed in detail in a paper presented at 

the 2014 ERM Symposium held in Chicago in October.  A very short summary of that paper’s 

main conclusion is that we can capture the essential elements by taking our best estimate forward 

rates of default and then add a static margin for current experience risk and a dynamic margin for 

parameter risk. 

 

While this model was originally developed to value non-hedgeable insurance risk there are 

insights that can be gained by applying the model to valuing credit risk.  We will use those 

insights to justify our approach to applying credit spreads to the valuation of insurance liabilities.   

 

The Best Estimate Model 

                                                           
4
 Jarrow, R.A.,  Lando, D., Turnbull, R.M., “A Markov Model for the Term Structure of Credit Risk Spreads”, The 

Review of  Financial  Studies, Vol. 10, No. 2, pp. 481-523. 
5
 Manistre, B.J., “Down but Not Out:  A Cost of Capital Approach to Fair Value Risk Margins”.  This paper can be 

found on the Society of Actuaries’ (SOA) website.  A short summary of the paper appeared in the fall 2014 issue of 

the SOA’s section newsletter Risk Management.   
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Let 𝑉0 = 𝑉0(𝑡, 𝑇) be the value at time 𝑡 of a credit risky bond that is scheduled to mature at time 

𝑇 for $1 if it has not already defaulted.  No other cash flows are assumed. 

 

In a simple two-state model the first key credit risk parameter is the best estimate force of default  

𝜇0(𝑡) and the second key assumption is the residual value 𝑅𝑉 of the credit risky bond once it has 

actually gone into default.  A valuation equation that captures these two assumptions is  

 
𝑑𝑉0
𝑑𝑡

+ 𝜇0(𝑅𝑉0 − 𝑉0) = 𝑟𝑉0, 𝑉0(𝑇, 𝑇) = 1. 

 

What this equation says is that the total rate of change of the bond’s value due to both the 

passage of time and the occurrence of defaults is equal to the risk free rate 𝑟, which we assume is 

constant for now. 

 

The resulting value 𝑉0 is then calculated by discounting the maturity value with interest 𝑟 and an 

adjusted force of default 𝜇0(1 − 𝑅) i.e. 

 

𝑉0(𝑡, 𝑇) = exp [−∫ {𝑟 +
𝑇

𝑡

𝜇0(1 − 𝑅)}𝑑𝑠]. 

 

This looks a lot like traditional actuarial discounting and could apply to a portfolio of bonds that 

was structured so that he law of large numbers could be applied to average out the experience. 

 

Adverse Current Experience - Static Margins 

 

The only thing we know for sure about our best estimate model is that it is wrong.  No matter 

how much effort we put into developing our best estimate assumptions we cannot predict default 

costs precisely.  For our two-state example, we will assume that, even if our model is correct in 

the long run, it is still possible to experience 𝑛 years of best estimate credit risk losses in a single 

year.   

 

In order to protect its solvency, a risk enterprise that owns a portfolio of risky bonds should hold 

enough economic capital that it could withstand the adverse event if it occurred.   The kind of 

event we have in mind is one where the law of large numbers would not help.  In the mortality 

application this might the onset of a pandemic.  In the bond application this could be an 

economic crisis where many bonds are suddenly down-graded.  

 

If  𝑉(𝑡, 𝑇) is the new, risk adjusted, value of the bond then the risk enterprise needs to hold 

economic capital in the amount 𝑛𝜇0(1 − 𝑅)𝑉.  The new valuation equation, which reflects the 

cost of holding this amount of risk capital, is now 

 
𝑑𝑉

𝑑𝑡
+ 𝜇0(𝑅𝑉 − 𝑉) = 𝑟𝑉 + 𝜋𝑛𝜇0(1 − 𝑅)𝑉, 𝑉(𝑇, 𝑇) = 1. 

 

Here 𝜋 is a deterministic cost of capital rate that we will discuss in more detail later.  To the 

extent that the economic capital was invested at the risk free rate 𝑟, the total expected return to an 

investor putting up the risk capital is 𝑟 + 𝜋. 
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A little algebra shows that the valuation equation above is equivalent to   

 
𝑑𝑉

𝑑𝑡
+ 𝜇0(1 + 𝑛𝜋)(𝑅𝑉 − 𝑉) = 𝑟𝑉, 𝑉(𝑇, 𝑇) = 1. 

 

The important observation is that taking short term risk issues into account is equivalent to 

adding a simple loading 𝜋𝑐 = 𝜋𝑛𝜇0 to the best estimate default rate.  The resulting risk adjusted 

value can then be calculated as 

 

𝑉(𝑡, 𝑇) = exp [−∫ {𝑟 +
𝑇

𝑡

(𝜇0 + 𝜋𝑐)(1 − 𝑅)}𝑑𝑠]. 

 

Assumption Risk and Liquidity - Dynamic Margins 

 

The previous analysis assumed our model was basically right over the long term but was 

vulnerable to adverse short term fluctuations.   We now relax the long term assumption and ask 

what happens if we decide our best estimate default cost 𝜇 = 𝜇0(1 − 𝑅) is wrong and must be 

revised to a new value �̂� = (𝜇0 + ∆𝜇)(1 − 𝑅).  The economic loss that would occur if this 

happens is the difference between two bond values 𝑉 − �̂�, each based on its own default 

assumption.  The idea now is to work out what it means to build in the cost of holding this 

amount of capital into the bond value.  

 

In a principles based insurance model, assumptions are being examined and revised all the time 

as new information becomes available.  To the extent that the insurance models are well 

understood, and based on credible experience, the potential assumption shock  ∆𝜇 should be 

small.  However, if the business is not that well understood then the assumption shock should be 

larger.  At a high level, the size of the assumption shock therefore reflects the core elements of 

the liquidity issue. 

 

We now examine the mathematical consequences of building in risk margins for holding this 

kind of economic capital.  Once we have done this, the case for taking the assumption shock 

approach to modelling liquidity risk gets even stronger. 

 

If we continue on with the same path that we have already started, we would write down a 

valuation equation of the form 

 
𝑑𝑉

𝑑𝑡
+ 𝜇0(𝑅𝑉 − 𝑉) = 𝑟𝑉 + 𝜋𝑐(1 − 𝑅)𝑉 + 𝜋(𝑉 − �̂�), 𝑉(𝑇, 𝑇) = 1. 

 

Unfortunately, this approach raises the thorny issue of how to calculate the shocked 

value �̂�(𝑡, 𝑇).  The obvious next step is to write down a valuation equation for �̂� of the form  

 

𝑑�̂�

𝑑𝑡
+ (𝜇0 + ∆𝜇)(𝑅�̂� − �̂�) = 𝑟�̂� + 𝜋𝑐(1 − 𝑅)�̂� + 𝜋(�̂� − �̂̂�), �̂�(𝑇, 𝑇) = 1. 
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This equation makes the reasonable assumption that the shocked default rate is 𝜇0 + ∆𝜇 but has 

introduced a second shocked value �̂̂� which presumably depends on some secondary shocked 

default rate like  𝜇0 + ∆𝜇 + ∆𝜇.  Writing down a valuation equation for �̂̂� simply leads to the 

same problem. This is called the circularity problem in the insurance literature. 

 

A number of practical ways to resolve the circularity problem were discussed in a paper 

presented at the 2014 ERM Symposium
6
.   The approach taken here was called the explicit 

margin method in that paper.  We assume there is a margin variable 𝛽 which allows the risk 

loaded default rate to be written for times 𝑠 > 𝑡 as 

 

𝜇(𝑠) = 𝜇0(𝑠) +  𝜋𝑐(𝑠) + 𝛽(𝑡, 𝑠)∆𝜇(𝑠). 
 

The margin variable 𝛽 is assumed to be 0 in the real world so 𝛽(𝑡, 𝑡) = 0, but for 𝑠 > 𝑡 it is 

assumed to evolve according to the dynamical rule 

 

𝑑𝛽 = [𝜋 − 𝛽∆𝜇(1 − 𝑅)]𝑑𝑠. 
 

When we come to do a new valuation at some later point in time 𝑡′ > 𝑡 the margin variable 

resets to zero at that time.  The graphic below illustrates the idea just described
7
. 

 

 
 

In the example above, the best estimate forward default rate is 𝜇0 =.50%.  The static load 

assumes a short term shock equal to 4 years’ worth of best estimate defaults and a cost of capital 

rate equal to 𝜋 = 10%.  The resulting load is then .10 × 4 × .005 =  .20%.    

 

                                                           
6
 See footnote 5. 

7
 Under the stated assumptions, we can calculate the margin variable in closed form as 𝛽(𝑡, 𝑠) = 𝜋

1−𝑒−∆𝜇(1−𝑅)(𝑠−𝑡)

∆𝜇(1−𝑅)
 

which is approximately 𝜋(𝑠 − 𝑡) when ∆𝜇(1 − 𝑅) is small.  Later in this paper it will be convenient to approximate 

the dynamics of 𝛽 by 𝑑𝛽 = 𝜋𝑑𝑠. 
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Chart 1: Risk Loaded Default Rate Example

Best Estimate Best Est. + Static Load

Risk Neutral Default t=0 Risk Neutral when t = 10
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The dynamic load calculation assumes the same 10% cost of capital rate but then uses a 

parameter shock of  ∆𝜇 = .20%  and a recovery rate of 𝑅 = 50%. Under these assumptions, the 

margin variable 𝛽 grades from 0.00 to roughly 1.98 over the 20 year projection.  When we come 

to do a new valuation 10 years later the static load has not changed but the dynamic load has 

been pushed out. 

 

Deriving the dynamic load model from first principles is beyond the scope of this paper but it is 

fairly easy to show that the resulting structure has the desired properties.  To do this, we think of 

the value of the risky bond, in the valuation measure, as a function 𝑉 = 𝑉(𝑠, 𝛽, 𝑇)  that for 𝑠 ≥
𝑡 it satisfies the following evolution equation,   

 
𝜕𝑉

𝜕𝑠
+ [𝜋 − 𝛽∆𝜇(1 − 𝑅)]

𝜕𝑉

𝜕𝛽
= [𝑟 + (𝜇0 +  𝜋𝑐 + 𝛽(𝑡, 𝑠)∆𝜇)(1 − 𝑅)]𝑉, 𝑉(𝑇, 𝛽, 𝑇) = 1. 

 

What this equation says is that the total expected rate of change of the value, in the valuation 

measure, is equal to the risk free interest rate plus the appropriate risk loaded default cost.  On 

the valuation date, when 𝑠 = 𝑡 and 𝛽(𝑡, 𝑡) = 0 the real world expected rate of change is  

 
𝜕𝑉

𝜕𝑠
|𝑠=𝑡 + 𝜇0(𝑡)(𝑅 − 1)𝑉(𝑡) = [𝑟(𝑡) + 𝜋𝑐(𝑡)(1 − 𝑅)]𝑉(𝑡) − 𝜋

𝜕𝑉

𝜕𝛽
|𝑠=𝑡. 

 

This result makes sense if the greek 𝛿 =
𝜕𝑉

𝜕𝛽
|𝑠=𝑡 can be interpreted as a reasonable negative 

amount of economic capital to hold for parameter risk i.e.  𝛿 = �̂� − 𝑉.  That this is in fact the 

case can be shown by differentiating the valuation equation above with respect to the margin 

variable 𝛽 to get 

 
𝜕𝛿

𝜕𝑠
+ [𝜋 − 𝛽∆𝜇(1 − 𝑅)]

𝜕𝛿

𝜕𝛽
= [𝑟 + (𝜇0 + ∆𝜇 +  𝜋𝑐 + 𝛽(𝑡, 𝑠)∆𝜇)(1 − 𝑅)]𝛿 + ∆𝜇(1 − 𝑅)𝑉. 

 

The solution to this equation at time 𝑡 is  

 

𝛿(𝑡) = −∫ 𝑒−∫ [𝑟+(𝜇0+∆𝜇+ 𝜋𝑐+𝛽(𝑡,𝑣)∆𝜇)(1−𝑅)]𝑑𝑣
𝑠
𝑡

𝑇

𝑡

∆𝜇(1 − 𝑅)𝑉(𝑠)𝑑𝑠. 

 

This result tells us that the greek 𝛿, at the valuation date, is minus the present value of losses that 

would occur if we valued the risky bond assuming the best estimate default rate was 𝜇0 but the 

actual experience turned out to be 𝜇0 + ∆𝜇.  This means 𝛿 = �̂� − 𝑉 where �̂� is calculated using 

shocked best estimate default rates but with the same static and dynamic default rate loadings 

that were deemed appropriate for the base case.  Variations on this theme are possible.   

 

We conclude that the dynamic margin mechanism is releasing margin into income in a way that 

is consistent with the cost of capital concept provided the “greek” method outlined above is used 

to estimate the economic capital for parameter risk.    

 

Chart 2 below is the same as Chart 1 except that we have added the “capital” forward default rate 

scenario used to compute �̂� at the valuation date. 
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We can now develop the argument that we can capture bond liquidity issues by varying the size 

of the parameter shock.  Liquid bonds would have small parameter shocks while illiquid bonds 

should have larger parameter shocks, even if they have the same short term best estimate default 

rates.  This suggests a bond valuation model in which a risky bond’s value is driven by both its 

rating (a proxy for current best estimate default rate) and a liquidity rating factor embedded in 

the shock ∆𝜇.
8
 

 

A short summary of the argument so far:  The valuation model developed has three components: 

 

1. A best estimate default assumption 

2. A capital requirement and associated static risk loading to deal with the risk that the best 

estimate could be wrong in the short run i.e. a credit crunch. 

3. A capital requirement and associated dynamic risk loading to deal with the risk that the 

best estimate itself could be wrong and require revision.  

 

We argued that we can capture liquidity issues with this last element.   

 

One thing this model cannot explain yet is the way credit spreads open and close in a seemingly 

random fashion.  A classic example of such a phenomenon would be a “flight to quality”. Note 

that this is different from a contagion event because it does not necessarily imply any ratings 

down-grades. 

                                                           
8
 For most bonds it would be logical to assume ∆𝜇 > 0 but for some applications this might not be the case.  For 

example, people often take the swap curve to define the “risk free” rate.  If we do this, we might have to use a 

negative parameter shock to model US Treasury bonds. Note that this leads to the conclusion that the economic 

capital required for holding Treasury bonds could be negative.  This makes sense in the context of the current model.  

It makes even more sense once we consider “flight to quality” issues in the next section. 
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Chart 2: Risk Loaded Default Rate Example
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Market Sentiment and Stochastic Cost of Capital Rates 

 

When the model described above is applied to value life insurance underwriting risk one 

normally assumes a constant cost of capital rate such as 𝜋 = 6.00%.  For the credit risk example 

it makes more sense to allow the cost of capital rate itself to be a random quantity in order to 

allow the credit risk spreads to open and close with changing market sentiment.   

 

 We therefore extend the model by allowing the cost of capital rate 𝜋 to follow a Cox, Ingersoll 

&Ross process of the form  

 

𝑑𝜋 = 𝜅(𝜋∞ − 𝜋)𝑑𝑡 + 𝜉√𝜋𝑑𝑧. 
 

This will lead to a tractable affine model with a non-negative cost of capital rate.  For the 

moment, we continue to assume a deterministic risk free interest rate 𝑟 and we will also be 

deliberately ambiguous as to whether these are P measure (real world) or Q measure (risk 

adjusted) parameters.  

 

If the cost of capital rate is stochastic, then we have to think of the risky bond’s value 𝑉 as a 

function of time and two state variables 𝛽, 𝜋 i.e. 𝑉 = 𝑉(𝑠, 𝛽, 𝜋, 𝑇). The fundamental valuation 

equation then generalizes to    

 

𝜕𝑉

𝜕𝑠
+ [𝜋 − 𝛽∆𝜇(1 − 𝑅)]

𝜕𝑉

𝜕𝛽
+ 𝜅(𝜋∞ − 𝜋)

𝜕𝑉

𝜕𝜋
+
𝜉2𝜋

2

𝜕2𝑉

𝜕𝜋2
 

= [𝑟 + (𝜇0 +  𝜋𝑐 + 𝛽(𝑡, 𝑠)∆𝜇)(1 − 𝑅)]𝑉, 𝑉(𝑇, 𝛽, 𝜋, 𝑇) = 1. 
 

This equation can be solved by using the well-known financial engineering trick of assuming an 

affine solution of the form  

 

𝑉(𝑡, 𝛽, 𝜋, 𝑇) = exp [𝐴(𝑡, 𝑇) + 𝛽𝐵(𝑡, 𝑇) + 𝜋𝑃(𝑡, 𝑇)]. 
 

We can then derive the following system of ordinary differential equations for the quantities 

𝐴, 𝐵, 𝑃, as a function of 𝑡, 
 

�̇� + 𝜇0(𝑅 − 1) + 𝜅𝜋∞𝑃 = 𝑟,   𝐴𝑇(𝑡, 𝑇) = 0,      
�̇� + ∆𝜇(𝑅 − 1) = ∆𝜇(1 − 𝑅)𝐵,   𝐵(𝑇, 𝑇) = 0,  

�̇� − 𝜅𝑃 +
𝜉2

2
𝑃2 = 𝑐(1 − 𝑅) − 𝐵,   𝑃(𝑇, 𝑇) = 0. 

 

The middle equation for 𝐵(𝑡, 𝑇) does not depend on any of the other variables so we discuss that 

first. This equation is simple enough that it can be solved in closed form.  The result is  

 

𝐵(𝑡, 𝑇) = −(1 − exp[−∆𝜇(1 − 𝑅)(𝑇 − 𝑡)]) ≈ −∆𝜇(1 − 𝑅)(𝑇 − 𝑡). 
 

As we saw in the previous section, the economic capital required for parameter risk is 

 

−
𝜕𝑉

𝜕𝛽
= −𝐵(𝑡, 𝑇)𝑉(𝑡, 𝛽, 𝜋, 𝑇) ≈ ∆𝜇(1 − 𝑅)(𝑇 − 𝑡)𝑉(𝑡, 𝛽, 𝜋, 𝑇). 
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This is a reasonable formula for the assumed liquidity capital that varies in a simple way by 

maturity.  The longer the bond, the riskier it appears to be.  This makes intuitive sense and differs 

from the contagion risk capital factor 𝑐(1 − 𝑅) which does not depend on the maturity of the 

risky bond. 

 

For a more complex bond with coupon payments, the formula for liquidity risk capital clearly 

generalizes to  

 

𝐸𝐶 ≈  ∆𝜇 (1 − 𝑅)𝐷𝑉, 
 

where D is the usual (modified) duration of the bond. 

 

Now that we know 𝐵(𝑡, 𝑇) we can substitute it into the third equation for 𝑃(𝑡, 𝑇) to get 

 

�̇� − 𝜅𝑃 +
𝜉2

2
𝑃2 = 𝑐(1 − 𝑅) + (1 − exp[−∆𝜇(1 − 𝑅)(𝑇 − 𝑡)]). 

 

The case 𝜉 = 0 

 

When 𝜉 = 0, this equation can also be solved in closed form to get a function we will call 

𝑃0(𝑡, 𝑇).  The result is  

 

𝑃0(𝑡, 𝑇) =
𝑒−∆𝜇(1−𝑅)(𝑇−𝑡) − 𝑒−𝜅(𝑇−𝑡)

𝜅 − ∆𝜇(1 − 𝑅)
− (𝑐(1 − 𝑅) + 1)

1 − 𝑒−𝜅(𝑇−𝑡)

𝜅
. 

 

For short maturity bonds we have 

 

𝑃0(𝑡, 𝑇) ≈
(∆𝜇(1 − 𝑅))

2
− 𝜅2

𝜅 − ∆𝜇(1 − 𝑅)

(𝑇 − 𝑡)2

2
− 𝑐(1 − 𝑅)(𝑇 − 𝑡) 

= −{𝑐(1 − 𝑅)(𝑇 − 𝑡) + (𝜅 + ∆𝜇(1 − 𝑅))
(𝑇 − 𝑡)2

2
}. 

 

This is clearly negative if ∆𝜇 > 0.   

 

For long maturity bonds we clearly have 

𝑃0(𝑡, 𝑇) ≈

{
 
 

 
 −

𝑐(1 − 𝑅) + 1

𝜅
, 𝑖𝑓 ∆𝜇 > 0,

𝑒−∆𝜇(1−𝑅)(𝑇−𝑡)

𝜅 − ∆𝜇(1 − 𝑅)
, 𝑖𝑓 ∆𝜇 < 0.

 

 

The final equation for 𝐴(𝑡, 𝑇)  can be written as an integral  

 

𝐴(𝑇, 𝑇) − 𝐴(𝑡, 𝑇) = ∫
𝑑𝐴(𝑠, 𝑇)

𝑑𝑠

𝑇

𝑡

𝑑𝑠, 

= ∫ [𝑟
𝑇

𝑡
+ 𝜇0(1 − 𝑅) − 𝜅𝜋∞𝑃0(𝑠, 𝑇)]𝑑𝑠. 



11 

 

 

This is enough information to allow us to compute the risk adjusted forward discount rates at the 

valuation date when 𝛽 = 0.  The result is  

 

𝐹0(𝑡, 𝑇) = −
𝜕

𝜕𝑇
ln (𝑉(𝑡, 𝛽, 𝜋, 𝑇), 

= −[
𝜕𝐴

𝜕𝑇
+ 𝛽

𝜕𝐵

𝜕𝑇
+ 𝜋

𝜕𝑃0
𝜕𝑇
] , 

= [𝑟 + 𝜇0(1 − 𝑅) −  𝜅𝜋∞𝑃0 + 𝜋
𝜕𝑃0
𝜕𝑡
]. 

 

Using the first ordinary differential equation for 𝐴(𝑡, 𝑇), and the solutions already derived, we 

can write 

 

𝐹0(𝑡, 𝑇) = 𝑟 +  𝜇0(1 − 𝑅) + 𝜋𝑐(1 − 𝑅) 

                 +𝜋(1 − 𝑒−∆𝜇(1−𝑅)(𝑇−𝑡)) + 𝜅(𝜋 − 𝜋∞)𝑃0(𝑡, 𝑇). 
 

Each term in the equation above makes sense for the problem at hand.  The total forward 

discount rate is the sum of 

 

1. A risk free interest rate (there would be other terms if 𝑟 were stochastic). 

2. A best estimate recovery adjusted default rate 

3. A static spread for contagion risk 

4. A dynamic spread for liquidity risk that starts from 0 at the valuation date and then 

grades to 𝜋 at a rate determined by the size of the parameter shock ∆𝜇(1 − 𝑅).  This is 

consistent with the pattern of liquidity capital requirements.  It is not consistent with the 

current Solvency II model referred to earlier. 

5. A final spread that vanishes if the current cost of capital rate is equal to its long term 

mean reversion target 𝜋∞ on the valuation date. 

 

If you substitute the known closed form expression for 𝑃0(𝑡, 𝑇), we get the same basic model but 

with some reasonable adjustments for the time varying cost of capital rate.   

 

A quantity of some interest is the sensitivity −
𝜕 ln(𝑉)

𝜕𝜋
= −𝑃 which is another duration-like 

quantity that measures the impact on value if the cost of capital rate itself were to change.  We 

will therefor call −𝑃 the capital duration.  In the simple case where 𝜋 = 𝜋∞ we can see that the 

capital duration is just the total economic capital required for contagion and liquidity risk.  

 

Asset/Liability Management in a world driven by this kind of model would want to keep the 

difference between the capital and liquidity durations of assets and liabilities under close 

scrutiny. 

 

The case 𝜉 ≠ 0 

 

We now discuss the case where the volatility 𝜉 of the cost of capital rate is non-zero. In this 

situation the differential equation for 𝑃(𝑡, 𝑇) does not have a simple closed for solution although 
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it can be simplified by introducing a new unknown function 𝑈(𝑡, 𝑇) such that 𝑃(𝑡, 𝑇) =
2

𝜉2
𝑈

𝑈

̇
.
9
 

This will give us the right behaviour as long as 𝑈 satisfies the linear second order differential 

equation  

�̈� − 𝜅�̇� =
𝜉2

2
 {𝑐(1 − 𝑅) + (1 − exp[−∆𝜇(1 − 𝑅)(𝑇 − 𝑡)]}𝑈. 

 

This equation can be attacked numerically, or, if ∆𝜇 is constant, by assuming a power series 

solution of the form  

𝑈(𝑡, 𝑇) =∑𝑎𝑗[𝑇 − 𝑡]
𝑗 ,  𝑎0 = 1,  𝑎1 = 0

∞

𝑗=0

. 

A recurrence relation for the constant coefficients 𝑎𝑗  is   

 

𝑎𝑗+2 = − 𝜅
𝑎𝑗+1

𝑗+2
+
𝜉2

2

1

(𝑗+2)(𝐽+1)
[𝑐(1 − 𝑅)𝑎𝑗 − ∑

(−∆𝜇(1−𝑅))
𝑘

𝑘!
𝑎𝑗−𝑘]

𝑗
𝑘=1 . 

 

This series converges quickly and is fairly easy to implement in a spreadsheet environment. 

 

It is not hard to show that, if ∆𝜇 > 0,  then  0 ≥ 𝑃(𝑡, 𝑇) ≥ 𝑃0(𝑡, 𝑇) and the new forward discount 

rates are then given by 

𝐹(𝑡, 𝑇) = 𝑟 +  𝜇0(1 − 𝑅) + 𝜋𝑐(1 − 𝑅) 

                                           +𝜋(1 − 𝑒−∆𝜇(1−𝑅)(𝑇−𝑡)) + (𝜋 − 𝜋∞)𝜅𝑃 −
𝜉2

2
𝑃2, 

                                                   = 𝐹0(𝑡, 𝑇) + 𝜅(𝜋 − 𝜋∞)(𝑃 − 𝑃0) − 𝜋
𝜉2

2
𝑃2,   (𝑃 > 𝑃0). 

 

Interestingly, there is no simple conclusion which states that allowing 𝜉 > 0 makes the forward 

default rates go consistently up or down.  The last term 𝜋
𝜉2

2
𝑃2 clearly reduces the forward 

default rates but that may, or may not, be offset by the term 𝜅(𝜋 − 𝜋∞)(𝑃 − 𝑃0).  Only when 

 𝜋 < 𝜋∞ , is it clear that using a non-zero volatility 𝜉 reduces the forward default rates. 

 

One definite conclusion we can draw is that assuming a stochastic cost of capital makes risky 

bond values less sensitive to a change in the cost of capital rate.  

 

Chart 3 below shows the impact of using a non-zero cost of capital rate volatility under the 

assumptions that 𝜋 = 𝜋∞ = 10%, 𝜅 = 15%  and 𝜉 = 50%. 

 

                                                           
9
 This is a standard applied math trick for solving differential equations of the Ricatti type. 
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Chart 4 is presented to show what happens if the cost of capital rate at the valuation date is not 

equal to the long term mean.  This particular example assumes 𝜋 = 15%  at the valuation date 

with all other parameters unchanged from Chart 3. 
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As expected, the long term default spreads have not changed. 

 

While cost of capital volatility may not have that much impact on model values, it does have 

significant risk management implications.  Imagine, for simplicity, that the two-state model we 

have been developing is actually good enough to describe the real world of risky bonds.  Assume 

also that we have found a reasonable way to calibrate the model so that we know the key 

parameters and state variables.   

 

An investor holding a credit risky bond is then subject to a number of risks 

 

1. Best Estimate credit default experience – portfolio risk diversified away by the law of 

large numbers 

2. Short term credit crunch (correlated ratings downgrades in a more sophisticated model) 

3. A change in the bond’s perceived  liquidity   

4. Fluctuations in the risk free yield curve 

5. Fluctuations in market sentiment 

 

To the extent that the risky bond is being used to back a long term insurance liability we can ask 

which, if any, of these risks can be naturally hedged between the asset and liability.  If an insurer 

is holding capital and risk margins for all of risks 2-5, and the bond’s value reflects that, then we 

are entitled to do two things for risk that can be hedged: 

 

 Take a capital offset for any risk that can be reduced by taking on a matching liability. 

0.30%

0.40%

0.50%

0.60%
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0.90%
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Chart4: Stochastic Adjustment Example

Best Estimate Best Est. + Static Load

Add Liquidity Spread Add Stochastic Adjustment
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 Take credit for the cost of capital savings when putting a fair value on the liability. 

 

The author’s point of view is that it is appropriate to take credit for items 1, 3, 4, 5 in the list 

above when valuing life insurance liabilities.  We discuss each item in turn. 

 

1. Best Estimate default experience.  As noted near the beginning of this paper this idea is 

controversial and has been debated for many years. The author’s point of view is that 

insurance company customers are taking some credit risk when buying a life insurance 

product and are entitled to some form of premium for taking that risk.  The best estimate 

default probability makes sense in this case. 

 

2. To the extent a credit crunch occurs, and 𝑛 years’ worth of defaults and credit 

downgrades happened over night, this is not the policyholder’s problem.  The contagion 

spread should not be used when valuing an insurance liability. 

 

3. If the market suddenly changes its point of view about bond liquidity (at a portfolio level) 

then it makes sense for this risk to be passed through to the liability side by introducing a 

similar adjustment to liability values.  A liquidity spread should therefore be included 

when valuing insurance liabilities. At a high level this is consistent with Solvency II in 

Europe.  As mentioned earlier the details of the liquidity model developed here are 

different from the details of the current Solvency II model
10

. 

 

4. Most insurers already assume that fluctuations in the risk free yield curve can be hedged 

between assets and liabilities.  The usual way to handle this issue is to hold capital for the 

net mismatch between assets and liabilities.  When pricing liabilities some companies 

assume a mismatch budget to take account of the fact that matching can never be perfect. 

In principle the idea of a mismatch budget could be expanded to cover the broader sense 

of “match” discussed in this paper. 

 

5. The last issue requires more discussion because we have not stated, yet, what the risk 

associated with a change in market sentiment really is.  Our point of view though is that 

this risk can be hedged between assets and liabilities.   

 

At the beginning of this section we stated that our assumption for the dynamics of the cost of 

capital rate was  

𝑑𝜋 = 𝜅(𝜋∞ − 𝜋)𝑑𝑡 + 𝜉√𝜋𝑑𝑧. 
 

We will now argue that the development above makes sense if this is the risk neutral process.  To 

see this, assume we start with a real world process of the form  

 

𝑑𝜋 = 𝜅′(𝜋′∞ − 𝜋)𝑑𝑡 + 𝜉
′√𝜋𝑑𝑧. 

 

A sudden change in market sentiment 𝜋 → 𝜋 + ∆𝜋 causes the risky bond’s value to change by  

 

                                                           
10

The current Solvency II mode for this issue takes observed CDS spreads as an input. This is reasonable in that it 

takes observable market data into account. However, the resulting patter of liquidity adjustments is flat for a certain 

period and then drops to zero after a fixed time horizon.  This is not consistent with the risk insights that come out of 

the model described in this paper. 
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𝑉(𝑡, 𝛽, 𝜋 + ∆𝜋, 𝑇) − 𝑉(𝑡, 𝛽, 𝜋, 𝑇) ≈ ∆𝜋
𝜕𝑉

𝜕𝜋
+
(∆𝜋)2

2

𝜕2𝑉

𝜕𝜋2
. 

 

Now assume that the bond’s owner is holding economic capital to cover this potential loss. The 

cost of capital concept then says the fundamental valuation equation should be 

 

𝜕𝑉

𝜕𝑠
+ [𝜋 − 𝛽∆𝜇(1 − 𝑅)]

𝜕𝑉

𝜕𝛽
+ 𝜅′(𝜋′∞ − 𝜋)

𝜕𝑉

𝜕𝜋
+
𝜉′
2
𝜋

2

𝜕2𝑉

𝜕𝜋2
+ 𝜇0(𝑅 − 1)𝑉 

= 𝑟𝑉 + [( 𝜋𝑐 + 𝛽(𝑡, 𝑠)∆𝜇)(1 − 𝑅)]𝑉 − 𝜋 [∆𝜋
𝜕𝑉

𝜕𝜋
+
(∆𝜋)2

2

𝜕2𝑉

𝜕𝜋2
].   

 

 On rearranging, this becomes the risk neutral equation studied earlier  

 

𝜕𝑉

𝜕𝑠
+ [𝜋 − 𝛽∆𝜇(1 − 𝑅)]

𝜕𝑉

𝜕𝛽
+ 𝜅(𝜋∞ − 𝜋)

𝜕𝑉

𝜕𝜋
+
𝜉2𝜋

2

𝜕2𝑉

𝜕𝜋2
 

= [𝑟 + (𝜇0 +  𝜋𝑐 + 𝛽(𝑡, 𝑠)∆𝜇)(1 − 𝑅)]𝑉, 𝑉(𝑇, 𝛽, 𝜋, 𝑇) = 1 

 

provided the following relationships hold between risk neutral and real world parameters 

 

𝜅 = 𝜅′ − ∆𝜋, 
𝜋∞ = 𝜋′∞𝜅

′/ (𝜅′ − ∆𝜋), 

𝜉2 = 𝜉′
2
+ ∆𝜋2. 

 

These are all reasonable results. Risk adjustment reduces the rate of mean reversion, increases 

the long term cost of capital assumption and also increases the assumed volatility. 

 

Using the risk neutral parameters to value insurance liabilities is then equivalent to assuming we 

take economic capital credit for the market sentiment risk on the liability side of the balance 

sheet.  That this is reasonable is the current paper’s main argument
11

. 

 

The Multi-State Model and Other Enhancements 

 

Once a modelling process has started there is never an end to the enhancements that could be 

made.  The main point of this section is to show that some important issues ignored so far do not 

really change any of the important risk management conclusions derived in the context of the 

two-state model.   

 

1. Stochastic risk free rates.  The model developed here could easily be incorporated into 

any affine model of the risk free rate. Examples of affine models are the Hull & White 

model and its higher dimensional cousins such as G2++.  One would have to consider 

how the risk free rate and cost of capital rate processes are correlated. 

 

2. Additional parameter risk.  The model developed here assumed the parameters governing 

the cost of capital process were known with certainty.  Since this is certainly not the case 

one could argue that an important parameter such as 𝜋∞ should get the same kind of 
                                                           
11

 Note that if ∆𝜇 < 0 then a “flight to quality” event where ∆𝜋 > 0 could cause the bond’s value to rise.  This 

makes sense as long as we allow very high quality bonds to have negative liquidity capital requirements.   
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treatment that we gave to 𝜇0.  This is certainly possible and should be considered if the 

issue is material to the problem at hand. 

 

3. Income Tax Effects.  To the extent one thinks of an income tax system as a risk sharing 

arrangement, it may be appropriate to tax effect the both required economic capital and 

the associated risk margins described in this document
12

.  The models in this document 

ignore income tax issues.     

 

4. Multi state bond ratings.  There are a number of commercial bond rating services that 

publish their analysis of the credit worthiness of individual bond issues.  In most 

situations these ratings are intended to indicate a given bond’s probability of default over 

some relatively short time frame such a year or less.   

 

Many authors have studied the process of bond transitions where a rating agency changes 

a bond’s rating as new information about the bond issuer’s credit worthiness becomes 

available.  The simplest version of a model which takes this multi-state issue into account 

is an annual ratings transition matrix 𝑇 which we assume most readers of this paper are 

already familiar with.   

 

The two state model building process described earlier can then be generalized as 

follows: 

 

 Best Estimate Defaults are modelled by a transition intensity matrix 𝑀 such that 

the annual transition probabilities are given by a matrix  𝑇 = exp [𝑀].  The value 

function 𝑉 gets generalized to a vector of values 𝑽 = (𝑉1, … , 𝑉𝑛) . Here 𝑉𝑖 is the 

value of the risky bond give that it is in rating class 𝑖.  Realistic examples of such 

matrices are given in Tables 1 and 2 below
13

. 

 

 
 

                                                           
12

 The author’s views on this subject were laid out in the article “An ERM Approach to Income Tax Risk”, which 

appeared in the spring 2009 edition of the SOA newsletter Risk Management. 
13

 This particular matrix was adapted by the author from a study by Moody’s covering the decade of the 1990’s.  All 

we claim here is that it is broadly representative of what a realistic transition matrix looks like. 
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 The state 𝑖 = ′𝐷′ is usually assumed to mean actual default.  A typical 

simplifying assumption is that 𝑉𝐷(𝑡, 𝑇) = 𝑅𝑒−𝑟(𝑇−𝑡) where 𝑅 is the recovery 

rate. 

 

The best estimate equation of value is then   

 
𝑑𝐕

𝑑𝑡
+ 𝑀𝑽 = 𝑟𝑽. 

 

Based on this equation one can develop time dependent best estimate forward 

default rates that take into account a scenario where a risky bond gradually 

declines from a high credit rating to default.    

 

Putting 𝑟 = 0 for convenience, the solution to the equation above can be written 

as  

𝑉𝑖(𝑡, 𝑡) = (1, . . ,1, 𝑅)′ 

𝑉𝑖(𝑡, 𝑇 + 1) =∑𝑇𝑗
𝑖

𝑗

𝑉𝑗(𝑡, 𝑇). 

 This could be one way to develop a best estimate default assumption 𝜇0 = 𝜇0(𝑡) 
that reflects the multi-state environment. Table 3 below shows the forward 

default rates implied by the assumed best estimate transition matrix.  These rates 

were calculated using  

𝑑𝑇
𝑗
(𝑡) = ln [

𝑉𝑗(𝑡, 𝑇 − 1)

𝑉𝑗(𝑡, 𝑇)
]. 
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Note that if we want to assume insurance liabilities have a AA rating we are 

talking about a fairly small best estimate default spread.  The behavior of the C 

bond’s forward default rates can be explained by noting that such a bond will 

only survive to 30 years by migrating back to a higher rating class at some future 

point in time. 

 

 Contagion risk can still be modelled by assuming a capital requirement equal to, 

approximately, 𝑛 years’ worth of best estimate credit transitions overnight.  The 

capital requirement would be, if the eigen values of 𝑇 are small enough, 

 

𝑬𝑪 = (𝐼 − 𝑇𝑛)𝑽 ≈ −𝑛𝑀𝑽. 
 

The new valuation equation becomes  
𝑑𝐕

𝑑𝑡
+ (1 + 𝑛𝜋)𝑀𝑽 = 𝑟𝑽14. 

 

This equation can be solved for a set of risk loaded forward default rates by using 

the same approach as was used for the best estimate case except that we now use 

a risk loaded transition matrix  �̂� = exp[𝑀(1 + 𝑛𝜋)].   The table below shows 

the impact on default rates of assuming 𝑛 = 4 and 𝜋 = .10.  This table shows the 

difference between the forward default rates consistent with the loaded model 

and the forward default rate in Table 3. 

 

                                                           
14

 At this point we are close to the model of Jarrow, Lando and Turnbull referenced in footnote 4. Their model could 

be understood as a version of the current model where the cost of capital is a vector 𝝅(𝑡) which varies by rating 

class and with time. They then use the time dependence of 𝝅 to calibrate the model to observed yield curves by 

rating class.  Their derivation does not use cost of capital concepts.  The author’s main critique of this approach is 

that the concept of say, a AA yield curve, does not really exist since many similar bonds, with the same current 

rating, can have different prices due to liquidity considerations. 
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According to the author’s point of view, this is the component of the forward 

default rate that should not be used to discount insurance liabilities.  It is very similar to 

the best estimate forward default rate if 𝑛 = 4. 
 

 The fact that some of the risk adjusted forward default rates can be lower is not 

an error. This table simply shows that adding a contagion loading to the best estimate 

default matrix simply exaggerates the survival issue we saw in Table 3.  

 

We can also use these calculations to derive economic required capital factors for 

contagion risk.  Table 5 below shows the factors that should apply by rating class and 

cash flow maturity 

𝑐𝑇−𝑡
𝑖 =

𝑛∑ 𝑀𝑗
𝑖𝑉𝑗(𝑡, 𝑇)𝑗

𝑉𝑖(𝑡, 𝑇)
. 
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The bottom row of this table shows the current Canadian
15

 regulatory capital 

requirements by bond rating class.  They would appear to be reasonable for a mix of 

bond maturities if contagion risk were the only issue on the agenda. 

 

  The idea of parameter or liquidity risk can be incorporated by assuming a 

potential shock ∆𝑀 = 𝜑𝑀. Assuming the shock is proportional to the best 

estimate is merely the simplest place to start.  More complex models are possible.   

 

Given this particular approach to liquidity risk, the valuation equation becomes, 

for 𝑽 = 𝑽(𝑡, 𝛽, 𝑇),  
 

𝜕𝐕

𝜕𝑡
+ 𝜋

𝜕𝑽

𝜕𝛽
+ (1 + 𝑛𝜋 + 𝛽𝜑)𝑀𝑽 = 𝑟𝑽16. 

 

This equation can be solved by assuming we know the left eigen vectors of the 

matrix 𝑀.  This is a matrix 𝐿 such that  

 

𝐿𝑀 = −𝐷𝑀, 
 

i.e. each row of 𝐿 is an eigen row of 𝑀 and  𝐷 is a diagonal matrix of the form  

 

𝐷 = (
𝜇1 0 0
0 … 0
0 0 𝜇𝑛

). 

 

For this particular example, the eight diagonal eigen-values are, in increasing 

order 

 

 
 

and the eigen-row matrix is given by  

 

 

                                                           
15

 These factors are very similar to the ones used by US regulators. The acronym OSFI stands for Office of the 

Super-Intendant of Financial Institutions which is the Canadian federal government regulator for both banks and 

insurers. 
16

 This particular model assumes 𝑑𝛽 = 𝜋𝑑𝑡 without any adjustment. This is a simplification that is usually 

immaterial in most practical examples. One alternative is to assume the eigen-vectors of 𝑀 are known with certainty 

and then apply the two state model to each eigen value of 𝑀 sepateately.  The next level of complexity is to allow 

for uncertainty in the eigen vectors of 𝑀.  Such considerations are beyond the scope of this paper.   
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If we now define a new vector by 𝑾 = 𝐿𝑽 then the fundamental valuation 

equation becomes 

 
𝜕𝑾

𝜕𝑡
+ 𝜋

𝜕𝑾

𝜕𝛽
= (𝑟 + 𝐷(1 + 𝑛𝜋 + 𝛽𝜑))𝑾. 

 

This equation is subject to the boundary condition 𝑾(𝑇, 𝑇) = 𝐿𝑽(𝑇, 𝑇).  Based on 

the particular matrix chosen
17

 above we find 𝑾(𝑇, 𝑇) = (. 9375,1,1, … ,1)′. 
 

Because the matrix 𝐷 is diagonal, we only need to consider the diagonal components 

which are very similar to the two-state model described earlier.  Each diagonal 

component is of the form  

 

𝑑𝑊𝒊

𝑑𝑡
+ 𝜋

𝜕𝑊𝒊

𝜕𝛽
= (𝑟 + 𝜇𝑖(1 + 𝑛𝜋 + 𝛽𝜑))𝑊

𝒊. 

 

If the cost of capital rate 𝜋 is a constant, then 𝛽(𝑡, 𝑠) = 𝜋(𝑠 − 𝑡) and the closed form 

solution for 𝑊𝒊(𝑡, 𝑇) is  

 

𝑊𝒊(𝑡, 𝑇) = 𝑊𝒊(𝑇, 𝑇)exp [−∫ (𝑟 + 𝜇𝑖(1 + 𝜋(𝑛 + (𝑠 − 𝑡)𝜑))𝑑𝑠]
𝑇

𝑡

, 

= 𝑊𝒊(𝑇, 𝑇)exp [− [𝑟(𝑇 − 𝑡) + 𝜇𝑖(𝑇 − 𝑡) (1 + 𝜋 (𝑛 + 𝜑
(𝑇 − 𝑡)

2
))]. 

 

We can recover the original vector value from 𝑽 = 𝐿−1𝑾 and then compute forward 

default spreads as before. Table 6 below shows the results that follow from the 

assumptions stated earlier along with 𝜑 = .25 i.e. ∆𝑀 = .25 𝑀. 

 

 
 

Interestingly, a 25% parameter shock can have more impact on high quality bond spreads 

than it does on low quality bond spreads as the bonds get longer. 

                                                           
17

 The rows of the matrix 𝐿 can be permuted and scaled arbitrarily without affecting the end results. 
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 Allowing the cost of capital rate to be stochastic still does not change very much.  

 

The model becomes 

 

𝑑𝐕

𝑑𝑡
+ 𝜅(𝜋∞ − 𝜋)

𝜕𝑽

𝜕𝜋
+
𝜉2𝜋

2

𝜕2𝑽

𝜕𝜋2
+ 𝜋

𝜕𝑽

𝜕𝛽
+ (1 + 𝑛𝜋 + 𝛽𝜑)𝑀𝑽 = 𝑟𝑽. 

 

As before we let 𝑾 = 𝐿𝑽 and 𝑾(𝑇, 𝑇) = (. 9375,1,1, … ,1)′.  The diagonal 

component equations are then  

 

𝑑𝑊𝒊

𝑑𝑡
+ 𝜋

𝜕𝑊𝒊

𝜕𝛽
+ 𝜅(𝜋∞ − 𝜋)

𝜕𝑊𝒊

𝜕𝜋
+
𝜉2𝜋

2

𝜕2𝑊𝒊

𝜕𝜋2
= (𝑟 + 𝜇𝑖(1 + 𝑛𝜋 + 𝛽𝜑))𝑊

𝒊. 

 

This is slightly different from the equation studied in the two-state model section but the 

main technical conclusions do not change.  We will not go further into the details of 

solving this model here.   

 

Conclusion 

 

The main risk management conclusion of this paper is that there are several credit related 

risks that can be naturally hedged between the asset and liability side of a life insurer’s 

balance sheet.  In particular, we have argued that the risks associated with credit loss 

parameter risk are essentially the same as liquidity risk and that the issues associated with 

market sentiment can also be passed through to the liability side of the balance sheet.  If 

the reader accepts this point of view, then it makes sense to include those components of 

a credit risky bond yield curve into the valuation of life insurance liabilities.  Taking this 

approach to liability valuation would go a long way towards resolving the issues raised in 

the introduction to this paper. 

 

To the extent a life insurer matches its long assets with its long liabilities the only 

remaining risk that it needs to hold capital for is the contagion risk element (credit 

crunch).  At a high level, this is already where most regulatory capital models are
18

. 

 

A second conclusion is that institutions that do not have long liabilities (such as banks) 

should be holding more regulatory capital for risky bonds because there is no capital 

offset with their liabilities. 

  

 

 

   

 

 

                                                           
18

 To be fair, most of these regulatory models were developed for a book value accounting world where the risks 

associated with short term market fluctuations are swept under the rug by accounting tricks such as book value 

accounting.  If you take the risk management point of view, as we do here, that this is inappropriate, then the capital 

models need to be adjusted.  This may include allowing very high quality bonds to have negative capital 

requirements.  
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