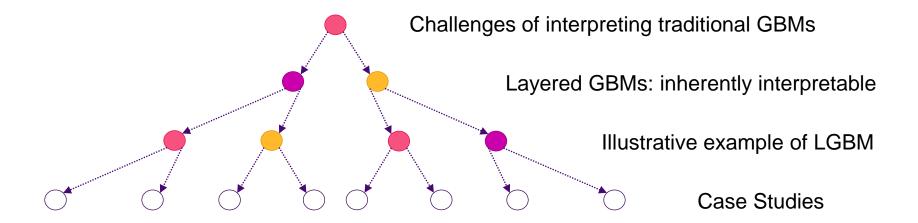


Made for insurance, interpretable by design

Liam McGrath and Justin Milam

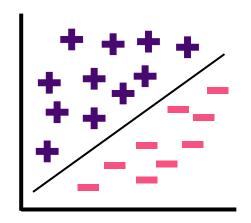
November 9, 2022

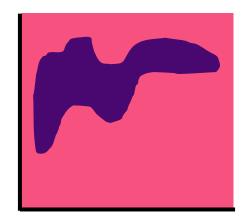
Agenda



Challenges with Traditional GBMs

Interpreting models



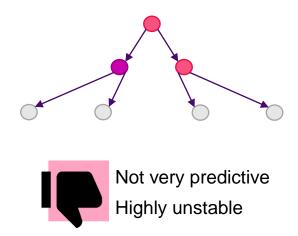


Question 1: Could you model this relationship with a GLM? Question 2: Could you explain this to a regulator?

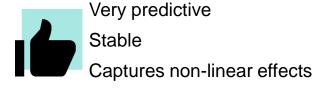
Traditional GBMs

Start with a decision tree

- 1. Consider every possible way of splitting our data, choose "best" split (greedy algorithm)
- 2. Assign the average response value of observations in a node as the node's parameter value
- 3. For each subsequent node, repeat from 1

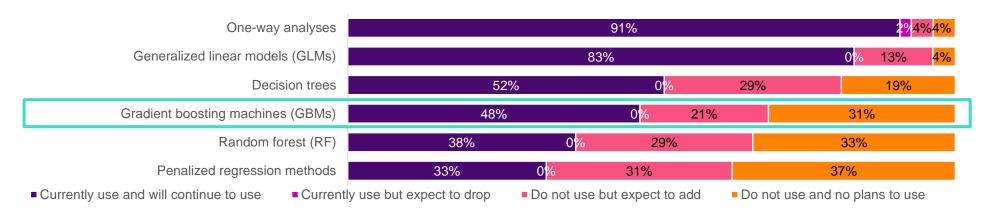


Boost many decision trees

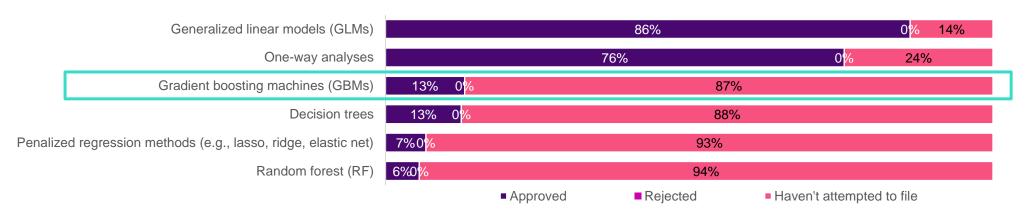


Reduced interpretability

Which techniques do you currently use and which do you plan to use in the next two years?

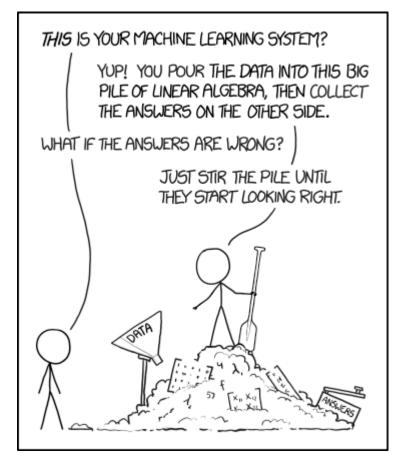


Which of these techniques have been approved by regulators in rate filings?



Source: 2021 P&C Advanced Analytics Survey, Willis Towers Watson

Why should we care about interpretability?



Source: https://xkcd.com/1838/

External

Regulatory compliance

Ethical standards

Policyholder retention

Internal

Domain knowledge

Robust models

Management approval

Informed decisions

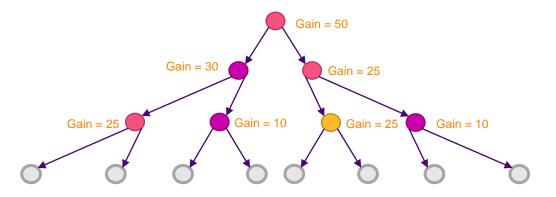
Debugging

Traditional GBMs

Interpretation: Variable Importance

It is unknown whether the gain of splits beyond the first level are due to main effects or interactions with higher splits.

- 1. For all splits involving a feature, calculate the gain (loss reduction) from the split
- 2. Add gains across all splits and trees



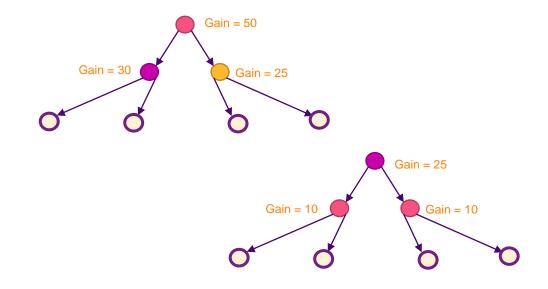
Feature	Total Gain	Gain from one-way effect	Interaction gain
	100	75 + ??	??
	50	??	??
	25	??	??

Improved* GBMs

Interpretation: Variable Importance

*In an ideal world

Imagine a GBM with one-way and interaction effects captured separately (layer 1 is main effects only, layer 2 is depth-2 interaction effects only, etc.).

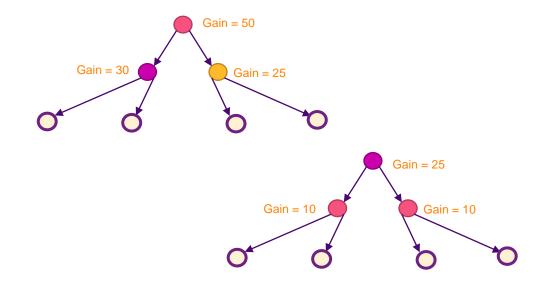


Feature	Total Gain	Gain from one-way effect	Gain from 2-way interaction
	70	50	20
	55	25	30
	25	0	25

Layered GBMs

Interpretation: Variable Importance

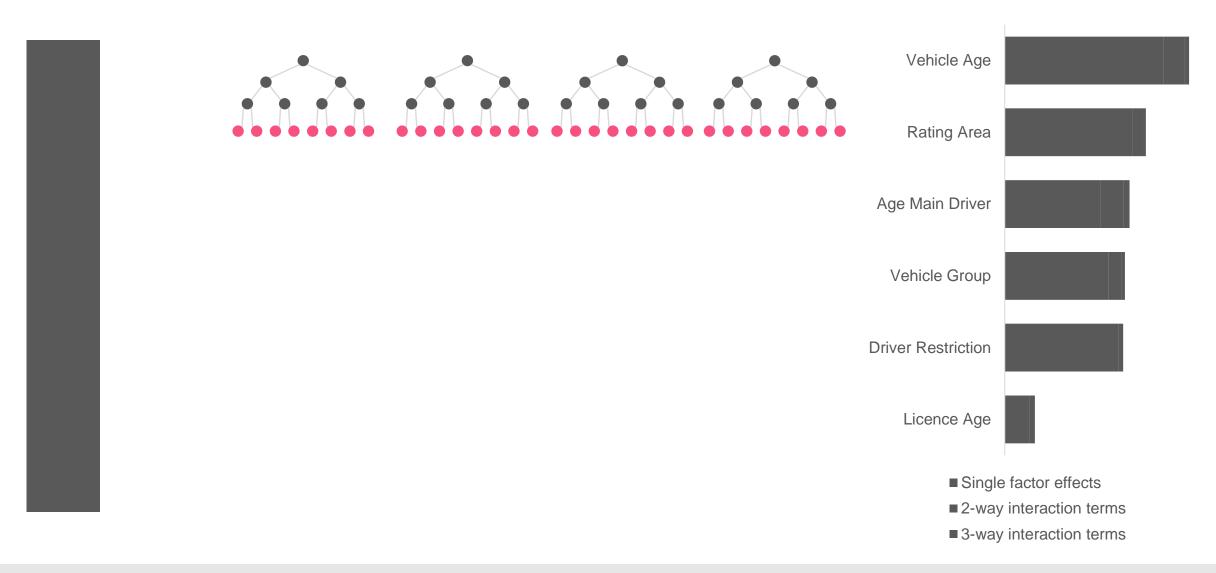
Imagine a GBM with one-way and interaction effects captured separately (layer 1 is main effects only, layer 2 is depth-2 interaction effects only, etc.).



Feature	Total Gain	Gain from one-way effect	Gain from 2-way interaction
	70	50	20
	55	25	30
	25	0	25

Introducing: Layered GBMs

Traditional GBMs



Layered GBMs

LGBM Illustrative Example

Layered GBM Experiment

Experiment design:

- Two different "true" processes
 - No Interactions
 - Interactions
- For each dataset, fit traditional GBM and Layered GBM
- 2. Compare factor importance
 - Which model tells us more?
- 3. Compare model fit
 - Is one model more predictive?

Process 1:

- Age of Main Driver
- BonusMalus
- Gender of Main Driver Male
- Marital Status
- Mileage
- Number of Drivers 1 ↑
- Rating Area

Process 2:

Everything from Process 1

Young, Low Age x Credit Score ↑

Age x Marital x Gender

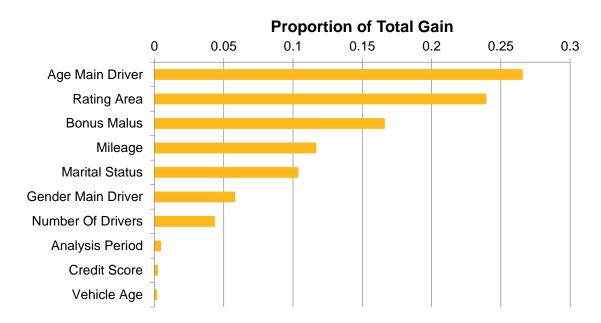
Young, Single, Male ↑

Experiment Results – Factor Importance

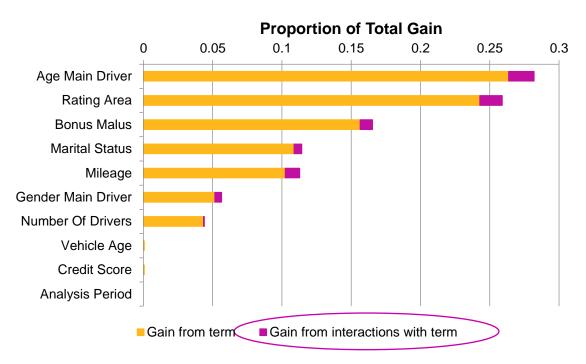
Process 1 (no interactions)

Traditional GBM

Factor Importance



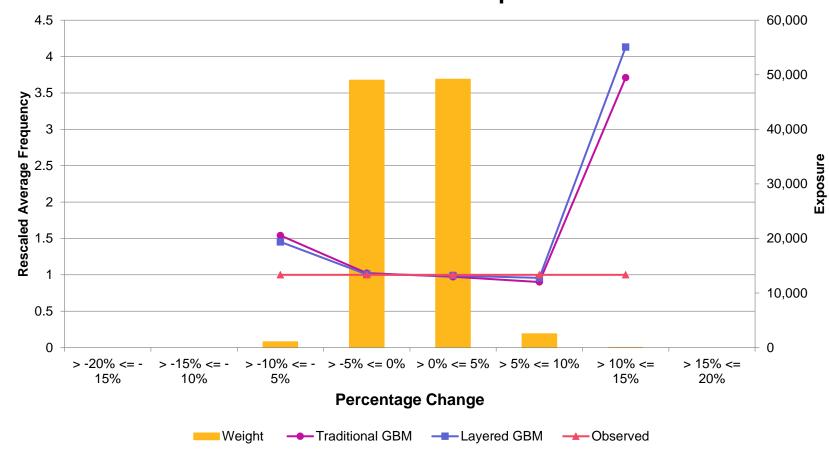
Layered GBM



Experiment Results – Model Comparison

Process 1 (no interactions)

Rescaled Model Comparison

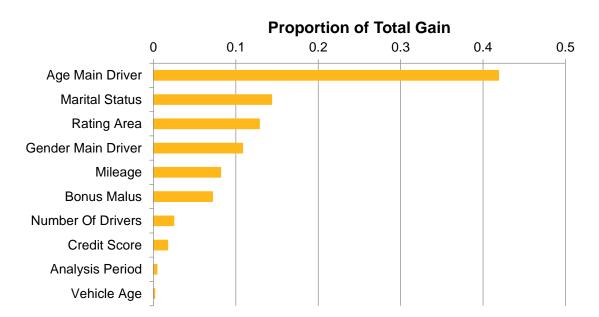


Experiment Results – Factor Importance

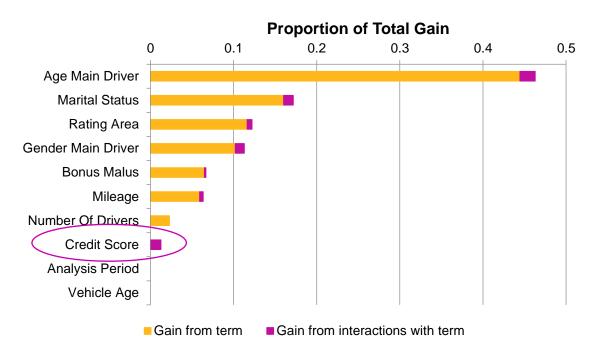
Process 2 (interactions)

Traditional GBM

Factor Importance



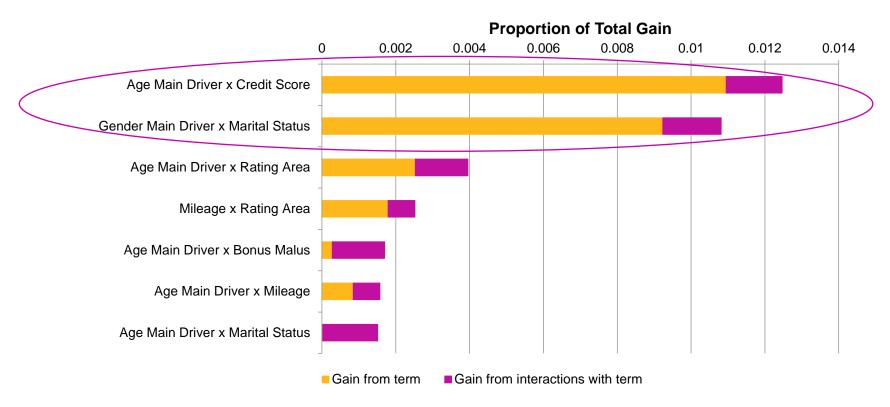
Layered GBM



Experiment Results – Factor Importance

Process 2 (interactions)

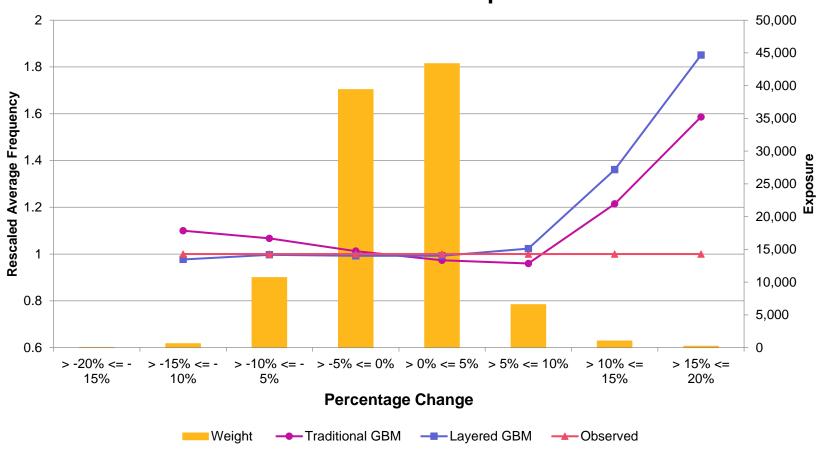
Layered GBM 2-way Interactions



Experiment Results – Model Comparison

Process 2 (interactions)

Rescaled Model Comparison



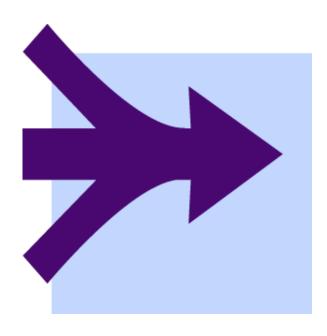
LGBM: Looking Ahead

Interpretability techniques vs. Interpretable models

- Improved variable importance (covered here)
- Improved versions of PDPs
 - No need for a "representative" sample of data
 - Explicitly separate the marginal effects for each layer
- More useful guidance when building GLMs
 - Separately identify interactions

Case Studies

- You are doing a personal auto pricing review for the state of Minnesota.
- The product manager has asked you to review individual rating variables but you do not have time to review the entire rating algorithm.
- You decide to use a layered GBM to determine which variables should be reviewed.



Variables

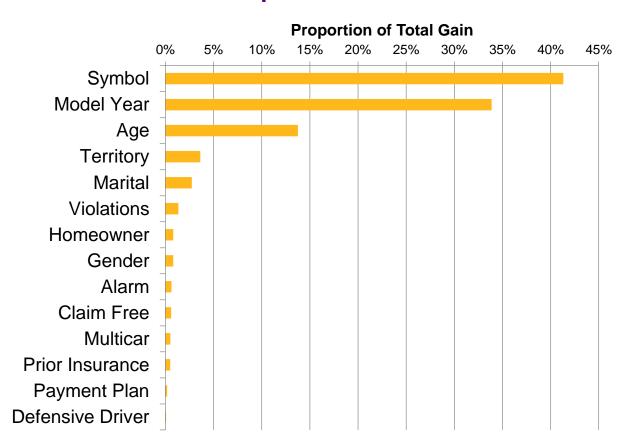
- Symbol
 - Marital
- Alarm
- Territory

- Model Year
- Violations
- Claim Free
- Gender
- Prior Insurance Payment Plan

- Age
- Homeowner
- Multicar
- Defensive Driver

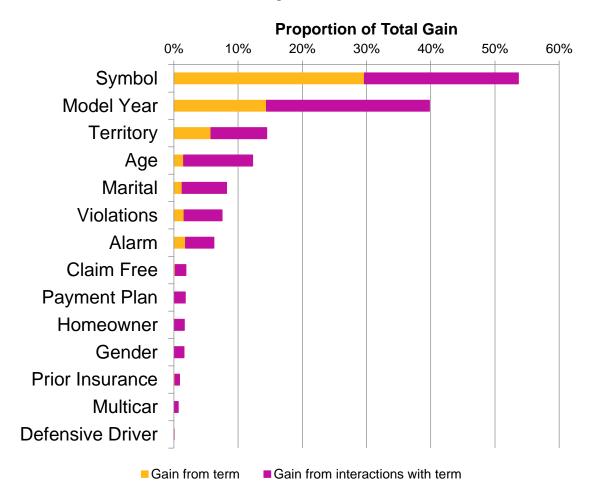
Proportion of Total Gain

Variable	Factor Importance
Symbol	41%
Model Year	34%
Age	14%
Territory	4%
Marital	3%
Violations	1%
Homeowner	1%
Gender	1%
Alarm	1%
Claim Free	1%
Multicar	0%
Prior Insurance	0%
Payment Plan	0%
Defensive Driver	0%



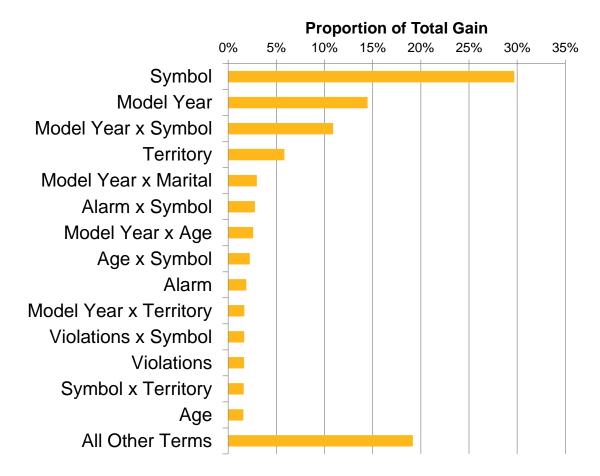
Proportion of Total Gain

Variable	Gain from term	Gain from interactions with term
Symbol	30%	24%
Model Year	14%	25%
Territory	6%	9%
Age	2%	11%
Marital	1%	7%
Violations	2%	6%
Alarm	2%	4%
Claim Free	0%	2%
Payment Plan	0%	2%
Homeowner	0%	2%
Gender	0%	2%
Prior Insurance	0%	1%
Multicar	0%	1%
Defensive Driver	0%	0%



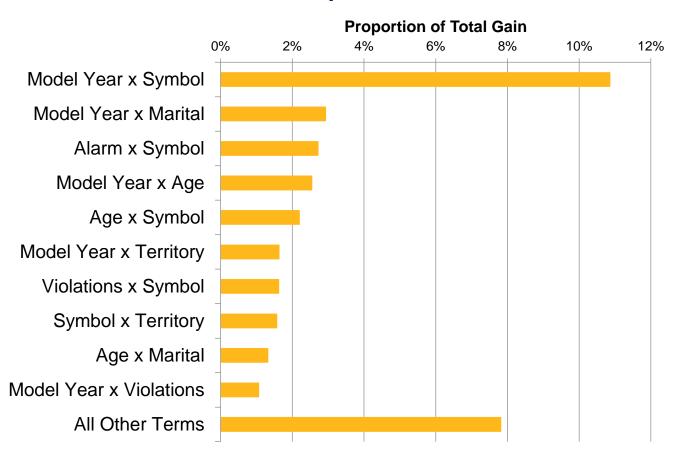
Proportion of Total Gain

	Factor
Variable	Importance
Symbol	30%
Model Year	14%
Model Year x Symbol	11%
Territory	6%
Model Year x Marital	3%
Alarm x Symbol	3%
Model Year x Age	3%
Age x Symbol	2%
Alarm	2%
Model Year x Territory	2%
Violations x Symbol	2%
Violations	2%
Symbol x Territory	2%
Age	2%
All Other Terms	19%



Proportion of Total Gain

Variable	Factor Importance
Model Year x Symbol	11%
Model Year x Marital	3%
Alarm x Symbol	3%
Model Year x Age	3%
Age x Symbol	2%
Model Year x Territory	2%
Violations x Symbol	2%
Symbol x Territory	2%
Age x Marital	1%
Model Year x Violations	1%
All Other Terms	8%

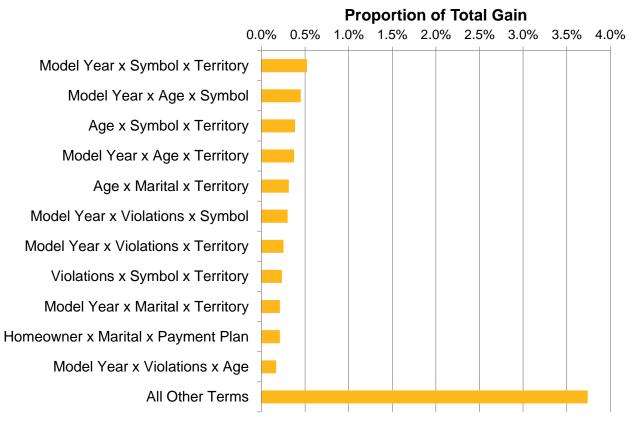


Proportion of Total Gain

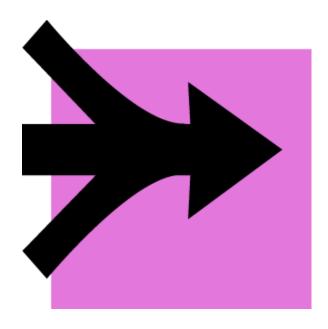
	Factor
Variable	Importance
Model Year x Symbol x Territory	0.5%
Model Year x Age x Symbol	0.4%
Age x Symbol x Territory	0.4%
Model Year x Age x Territory	0.4%
Age x Marital x Territory	0.3%
Model Year x Violations x Symbol	0.3%
Model Year x Violations x Territory	0.2%
Violations x Symbol x Territory	0.2%
Model Year x Marital x Territory	0.2%
Homeowner x Marital x Payment Plan	0.2%
Model Year x Violations x Age	0.2%
All Other Terms	3.7%

Factor Importance

-



- You are building a model for underwriting to determine which of your independent agents should have their book of business reviewed.
- The following variables are available for analysis:



Variables

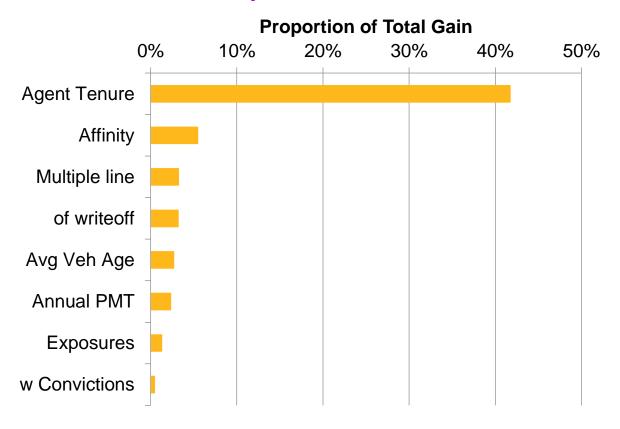
- Agent Tenure
- % of Writeoff
- Exposures

- Affinity
- Avg Veh Age
- % with Convictions
- Multiple line
- Annual PMT

Variable	Exp(Value)	SE %
Agent Tenure	0.76	29.6
Affinity	1.42	22.9
Multiple line	NA	NA
% of writeoff	1.11	189.3
Avg Veh Age	NA	NA
Annual PMT	1.83	50.1
Exposures	NA	NA
% w Convictions	NA	NA

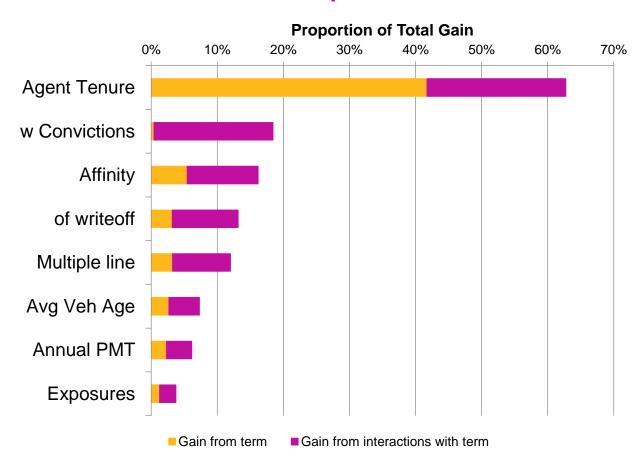
28 potential interactions

Proportion of Total Gain Factor Variable Importance Agent Tenure 42% **Affinity** 5% Multiple line 3% % of writeoff 3% Avg Veh Age 3% **Annual PMT** 2% Exposures 1% % w Convictions 0%



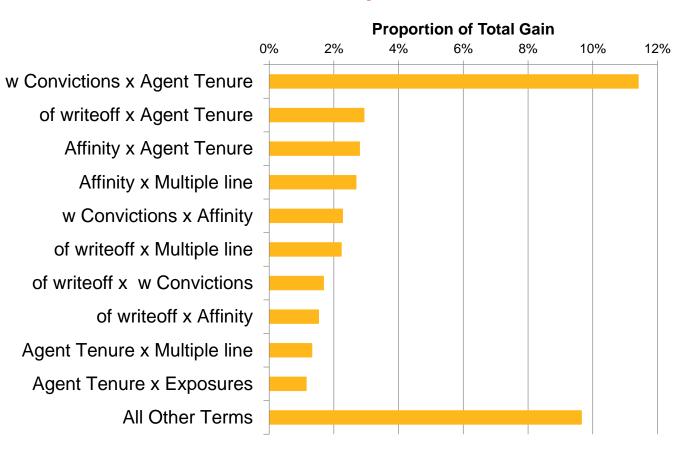
Proportion of Total Gain

Variable	Gain from term	Gain from interactions with term
Agent Tenure	42%	21%
% w Convictions	0%	18%
Affinity	5%	11%
% of writeoff	3%	10%
Multiple line	3%	9%
Avg Veh Age	3%	5%
Annual PMT	2%	4%
Exposures	1%	2%



Proportion of Total Gain

Variable	Factor Importance
% w Convictions x Agent Tenure	11%
% of writeoff x Agent Tenure	3%
Affinity x Agent Tenure	3%
Affinity x Multiple line	3%
% w Convictions x Affinity	2%
% of writeoff x Multiple line	2%
% of writeoff x w Convictions	2%
% of writeoff x Affinity	2%
Agent Tenure x Multiple line	1%
Agent Tenure x Exposures	1%
All Other Terms	10%



Proportion of Total Gain

Variable	Factor Importance
Agent Tenure	42%
% w Convictions x Agent Tenure	11%
Affinity	5%
Multiple line	3%
% of writeoff	3%
% of writeoff x Agent Tenure	3%
Affinity x Agent Tenure	3%
Avg Veh Age	3%
Affinity x Multiple line	3%
All Other Terms	24%

