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Balancing Risk Assessment and  
Social Fairness: An Auto Telematics  

Case Study

By Jean-Philippe Boucher, Ph.D., and Mathieu Pigeon, Ph.D.

Executive Summary

The paper explores the possibility of using telematics and usage-based 
insurance technologies to reduce dependence on sensitive information when 
pricing insurance. Actuaries commonly rely on demographic factors such as 
age and gender when deciding insurance premiums. However, some people 
regard that approach as an unfair use of personal information. Moreover, 
socioeconomic factors such as marital status, credit score, and geographic 
location may also be used in insurance pricing, leading to higher or lower  
premiums for policyholders from similar demographic groups. Furthermore, 
those factors may also be correlated with other sensitive information, such  
as income and race or ethnicity, creating concern of proxy discrimination 
among some consumers and regulators.

Telematics information, which provides detailed insights into driving behavior, 
may offer a more causal link to the probability of auto accidents than  
socioeconomic factors. By analyzing factors such as miles driven, driving  
patterns, and sudden maneuvers, insurers can better understand the  
underlying risk of accidents. Increasingly, insurers are using telematics  
technology in their pricing. However, many insurers continue to rely on  
traditional variables, likely because of the cost to implement telematics 
technology and consumer data privacy concerns.

Our analysis finds that telematics variables, such as miles driven, hard braking, 
hard acceleration, and days of the week driven, significantly reduce the need 
to include age, sex, and marital status in the claim frequency and severity 
models. Whereas the need for geographic territory and credit score appeared 
to have been significantly reduced in the model built on synthetic data, the 
reduction was significantly muted when the approach was validated with the 
real-world data set.

Although not all of the sensitive variables we tested could be eliminated 
from the model, the analysis shows there is still value in insurers testing the 
addition of telematics to their models to potentially reduce reliance on sensitive 
information that could result in actual or perceived bias. Many insurers still  
run into roadblocks to adopting telematics, such as the costs and challenges 
of explaining complex gradient-boosting models to regulators.
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Our analyses are based on a synthetic database generated from real-world 
data from a major Canadian insurer. Thus, all the results obtained can easily 
be reproduced. The main results obtained are validated on the original insurer 
data to confirm that the data reproduction process did not introduce significant 
bias. We built frequency and severity models substituting telematics variables 
for sensitive variables. Then we ran a comparison to evaluate whether we can 
eliminate sensitive variables by using telematics variables.

Our analysis considers two main approaches: one based on generalized linear 
models, a widely used method in insurance pricing, and a gradient-boosting 
model used in machine learning. The generalized linear model offers a balance 
between simplicity and accuracy, making it a popular choice. On the other 
hand, the gradient-boosting model provides significantly more accuracy, 
but at the cost of transparency and explainability.

The paper proposes a methodology based on synthetic data, and it is 
essential to note that individual insurers may arrive at different conclusions 
when using actual data or different rating variables. 
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1. Introduction
The1,2 insurance industry often bases its decisions on statistical models, which, in a nutshell, 
must determine whether an insured person is more or less risky. Therefore, carefully 
discriminating between risks would seem to be called for to establish the fairest possible 
premium. However, this practice may contravene principles prohibiting discrimination based 
on sensitive variables such as age, sex,3 marital status, and ethnicity. Thus, the line between 
a fair actuarial classification and an unfair discriminatory classification is thin and must be 
studied carefully.

To illustrate the delicate nature of some variables, we can, for example, refer to the practice 
of redlining in the United States to show the racial bias in such segmentation. Redlining refers 
to delimiting residential neighborhoods according to their level of desirability by assigning 
them a color (green, blue, yellow, or red). The Federal Housing Administration used  
redlining to determine eligibility to obtain insurance on a residence’s mortgage (Chibanda 
2022). The approach was subsequently criticized for discriminating against ethnicity because 
the neighborhoods identified as the least desirable were mainly those where minorities 
resided. Redlining became illegal under the Fair Housing Act of 1968.

The use of the sex variable in pricing may also raise concerns regarding fairness. In 1985, 
Montana was the first state in the United States to ban its use in the insurance industry 
following the efforts of feminist groups in the fight for unisex pricing (Reid 1985). Several 
states, such as California, Hawaii, Massachusetts, and Michigan, have followed Montana’s 
lead by excluding this variable from the calculation of automobile insurance premiums. The 
European Union also banned the use of sex in the estimation of premiums in 2012, and the 
calculation is now done through variables directly linked to the insured’s driving, such as 
the brand of the car and the mileage traveled (Lichtenstein 2022). Because of these changes, 
several players in the insurance industry, i.e., companies, regulators, and the scientific 
community, are developing new methodologies, making it possible to include the notion 
of fairness in models without sacrificing the models’ predictive ability (see, for example, 
Lindholm et al. [2022] and Embrechts and Wüthrich [2022]).

1.1. TELEcommunications and InforMATICS Technology

Telematics technology is a blend of telecommunications and informatics that allows access 
to new sources of information through digitization and big data. This data is collected  
via an onboard diagnostics device or a smartphone application. In the past, auto insurers  
primarily relied on static attributes related to the vehicle or the insured, which were indirectly 
related to accident risk. However, with the emergence of telematics technology, insurers 

1 Artificial intelligence (AI) helped generate this project’s content, improve grammar, and translate some French 
expressions.
2 Computer applications do not claim to be the most efficient or elegant. The goal is mainly to demonstrate 
how theory can be applied to actual data. If it is possible to optimize the code, one should not hesitate.
3 As part of this project, we used the term “sex” rather than “gender” in the analysis because we worked with 
databases containing an Insured.sex variable.
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can offer more customized premiums based on the insured’s driving habits, style, and 
distance, which has the potential to more accurately determine their risk.

Usage-based insurance, in which the insured’s premium is estimated using their driving 
data, has become highly popular in the last decade. One piece of GPS-collected information 
that is directly related to the risk insured is distance driven. The relevance of including this 
variable in ratemaking has been studied by Ayuso, Guillen, and Pérez-Marín (2014, 2016b), 
Boucher, Pérez-Marín, and Santolino (2013), and Lemaire, Park, and Wang (2016), among others. 
Insurers estimate the insured’s premium through a pay-as-you-drive or pay-how-you-drive 
scheme (Tselentis, Yannis, and Vlahogianni 2016). Pay-as-you-drive focuses on driving habits, 
such as distance, time of day, or road type, while pay-how-you-drive considers driving 
style, such as aggressive acceleration, sudden lane shifts, or speeding.

Insurers are increasingly promoting usage-based insurance, citing its numerous benefits, 
such as allowing for more accurate pricing and a better customer experience. Consumers 
are also increasingly appreciating it. Of 1,005 U.S. insurance consumers surveyed by  
Willis Towers Watson, 80% were willing to share their recent driving information for a 
personalized insurance product (Bansag 2017). By accurately assessing people’s driving 
habits, insurers can more accurately determine their risk and offer a fair premium (see, e.g., 
Lemaire, Park, and Wang [2016] or Verbelen, Antonio, and Claeskens [2018]). Additionally, 
telematics has the potential to encourage people to drive more safely and drive less overall, 
which would help reduce traffic congestion, make roads safer, limit greenhouse gas  
emissions, and make insurance more affordable, among other things.

It is important to note that some obstacles to adopting telematics still exist. Entry costs, 
such as for technology development, hardware purchases, and advertising, can be a  
significant obstacle for smaller companies. In addition, the population is increasingly wary  
of sharing individual data, and a problem of social acceptability could arise. Finally, the 
costs associated with protecting confidential data and possible legal proceedings related  
to consumer privacy can weigh negatively in a company’s decision to opt for this approach.

1.2. Existing Telematics Models

Over the past 15 years, a wealth of research has been conducted and published in scientific 
journals spanning actuarial science, statistics, and transport. The extent of this body of 
work allows us to categorize these contributions based on their success in achieving  
one or both of the following objectives:

•  Demonstrate that a model performs better when one or more elements of  
telematics are considered. Such elements range from the distance traveled  
(measured by onboard diagnostics or a smartphone application) to a detailed  
analysis of position second by second.

•  Demonstrate that using one or more elements of telematics can replace use of a 
sensitive variable such as sex or age.

The models studied range from classic statistical approaches, such as generalized linear 
models (GLMs), generalized additive models (GAMs), and splines, to machine learning 
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approaches, such as neural networks and boosting models. Appendix A presents an 
overview of the scientific literature on telematics models. In recent years, the distance  
traveled by a motorist has been the most studied measurement provided by a telematics 
device. Key conclusions from past research include that driver usage significantly influences 
the expected number of accidents and that some variables, such as sex, may not be  
necessary if telematics provides enough information on driving habits.

1.3. Objectives

The proposed research project will analyze the importance of several sensitive covariates 
such as

•  territory of residence,

•  age,

•  sex,

•  marital status, and

•  credit score.

Some of these covariates, such as territory, marital status, and credit score, are not typically 
considered protected classes under national or state-insurance related regulations, and 
they can be used to rate policyholders in current insurance rating plans. However, we often 
observe a strong link between these covariates and certain protected variables, such as 
ethnicity (Bender et al. 2021). This raises questions about using such covariates and justifies 
including them in our studies.

The project’s objective is to see how a driver’s telematics information can reduce the  
importance given to sensitive covariates such as the insured’s age and sex. Whereas 
information on policyholder race and ethnicity was not available for this project, one could 
do a similar analysis to understand whether telematics information could reduce importance 
given to nonsensitive variables that are perceived as being correlated with race or ethnicity.

The work we present in this paper can be used to extract the main conclusions shown in 
Section 2.

1.4. Data Used for the Project

1.4.1. Synthetic Data Set

The data that could have been used in the project comes from a major Canadian insurer 
and is highly confidential. To protect that confidentiality, we generated a synthetic database 
from the insurer data for use in this analysis. Details can be found in So, Boucher, and Valdez 
(2021). The database can be accessed at https://emiliano-valdez.scholar.uconn.edu/data/. 
The synthetic data set generated has 100,000 policies, including observations about driver’s 
claims experience and associated classical risk variables and telematics-related variables. 
Table 1.1 shows the variables available in the synthetic database.

https://emiliano-valdez.scholar.uconn.edu/data/
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Table 1.1. Variables in the Synthetic Database

Type Variable Description

Traditional Duration Duration of the insurance coverage of a given policy, 
in days

Insured.age Age of insured driver, in years

Insured.sex Sex of insured driver (male/female)

Car.age Age of vehicle, in years

Marital Marital status (single/married)

Car.use Use of vehicle: private, commute, farmer, commercial

Credit.score Credit score of insured driver

Region Type of region where driver lives: rural, urban

Annual.miles.drive Annual miles expected to be driven declared by driver

Years.noclaim Number of years without any claims

Territory Territorial location of vehicle

Telematics Annual.pct.driven Annualized percentage of time on the road

Total.miles.driven Total distance driven in miles

Pct.drive.xxx Percent of driving day xxx of the week: mon/tue/. . ./sun

Pct.drive.xhrs Percent vehicle driven within x hrs: 2hrs/3hrs/ 4hrs

Pct.drive.xxx Percent vehicle driven during xxx: wkday/wkend

Pct.drive.rushxx Percent of driving during xx rush hours: am/pm

Avgdays.week Mean number of days used per week

Accel.xxmiles Number of sudden accelerations 6/8/9/. . ./14 mph 
per second per 1,000 miles

Brake.xxmiles Number of sudden brakes 6/8/9/. . ./14 mph per 
second per 1,000 miles

Left.turn.intensityxx Number of left turns per 1,000 miles with intensity 
08/09/10/11/12

Right.turn.intensityxx Number of right turns per 1,000 miles with intensity 
08/09/10/11/12

Response NB_Claim Number of claims during observation

AMT_Claim Aggregated amount of claims during observation
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We compare the results obtained with synthetic data to those obtained with the original 
data to ensure the accuracy of the conclusions.

As the synthetic database does not allow the different coverages to be distinguished, it isn’t 
possible to analyze them separately. However, the analysis and the code used could easily be 
reused to include that information if available. Finally, for the whole study, we’ve divided the 
database into a training portion, which contains 80% of the original synthetic data, and a test 
database, containing the remaining 20% of the synthetic data. All the code and more graphs 
can be found in the project’s GitHub folder (https://github.com/J-PBoucher/CAS_Project2024).

1.4.2. Nonrepresentative Sample

In analyzing telematics data, one must be careful not to jump to general conclusions about 
the driving behavior of the whole portfolio. Indeed, policyholders who have decided to place 
a telematics device on their car or to download an application on their phone that tracks all 
their car trips do not correspond to the general driver population. In our case, approximately 
10% to 15% of the insurance company’s portfolio chose to use the telematics option for 
their car insurance. Typically, such insureds correspond to one of two profiles:

1.  Technophile policyholders. They love new technology in general and want detailed 
information about their driving habits. Summary driving data is indeed continuously 
available to policyholders via a website.

2.  Young and/or bad drivers. To motivate policyholders to buy the telematics option, 
insurance companies often offer an initial discount, and the renewal discounts range 
from 0% to 25% depending on the driving experience. Because auto insurance in 
Ontario is expensive and often unaffordable for some drivers, all discounts are  
welcome for policyholders with high insurance premiums. As a result, an unusually 
high proportion of risky insureds use telematics devices or telematics apps. Even 
if this conclusion contradicts the common belief that the best drivers will choose 
telematics because they know they are good, it has been proven through the first 
few years of telematics experience.

1.5. Modeling Approaches

This section presents the modeling approaches we took in the project. We present the 
more technical details in Appendix B. This paper separately models the frequency and 
severity components using traditional, telematics, and sensitive explanatory variables.  
In a regression context, we have a database of size n: {zi; xi}i=1,2,...,n, where xi is a vector on  
size q of covariates (continuous and categorical) and zi is the response variable (e.g., the 
severity of a claim). The objective is to predict the value of the response variable y* for a 
new observation whose covariates are x*.

We have selected two families of models—regression-like and black box. It is important  
to note that both families have advantages and disadvantages and that choosing to use 
one or the other depends on multiple factors, such as the need for interpretability, the legal 
framework, and computing resources. In actuarial practice, complex (but difficult to interpret) 
models are often used to find insights that can be incorporated into simpler models.

https://github.com/J-PBoucher/CAS_Project2024
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Regression-like models are a family of models for which the interpretation of the parameters 
is simple. We define a GLM with the following structure:

g E Y8 Bb l = b0 + b j x j,
j= 1

q

/

where g() is the link function. In this paper, we always assume a logarithmic link, i.e.,

E Y8 B = eb0+ b j x jj=1
q/ .

We add an elastic net (or GLM-net) regularization to this model to select the covariates and  
estimate parameters. This method is seen as a combination of lasso and ridge regressions,  
and we refer to Hastie, Tibshirani, and Friedman (2009) for more details about this approach. 
One of the advantages of this approach is that it solves the redundancy of variables and 
the multicollinearity of risk factors. The idea of the procedure is to impose constraints on 
the coefficients of the model. Excluding the intercept from the procedure, the constraint to 
be added to the log-likelihood score to be maximized is expressed as follows:

a b j + 2
1 - a

b j
2

j= 1

q

/
j= 1

q

/
J

L

K
K

N

P

O
O # m,m > 0,0 # a # 1.

This penalty constraint depends on the values chosen for the parameters α and λ. If α = 1, 
the elastic net method is equivalent to a lasso regression. In contrast, if α = 0, it is equivalent 
to a ridge regression. In our document, for each model, the optimal values of λ and α were 
obtained by cross-validation using deviance as a selection criterion.

Black box models are a family of models from the machine learning field, based on boosting, 
and widely used in the actuarial industry. However, the interpretation of the parameters is 
complex—hence the term “black box model.” Boosting is a meta-algorithm that improves 
the predictive power of a simpler model (weak learner). It aims to build B models sequentially: 
the model B depends on the model (B − 1), which depends on the model (B − 2), etc. Each 
new model is built specifically to improve the predictions made by the previous model.  
In particular, XGBoost (i.e., eXtreme Gradient Boosting) is an open-source software library 
that provides a regularizing gradient-boosting framework. In this paper, we use this 
meta-algorithm with trees as the weak learner. 

2. Main Results
Our analysis is focused mainly on the usefulness of telematics variables in replacing, totally 
or in part, five sensitive variables: credit score, age of the insured, sex of the insured, marital 
status, and territory. For frequency and severity, the final models consider the following 
variables (see Table 1.1 for definitions):

•  Traditional: Insured.sex, Marital, Car.use, Region, Credit.score, Insured.age, Car.age, 
Years.noclaims, and Territory
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•  Telematics: Miles.per.day, Avgdays.week, Pct.drive.xhrs, Pct.drive.rushxx, Pct.drive.xxx, 
Accel.xxmiles, Brake.xxmiles, Left.turn.intensityxx, and Right.turn.intensityxx

For the frequency model, we consider the contract duration and the variable Total.miles.driven 
as exposure measures. For many of these variables, we consider several transformations—
we describe those in the next sections.

A first descriptive analysis in which we reviewed the potential impact of each individual rating  
variable on frequency and severity (see Section 3) showed that among the sensitive variables, 
two (Credit.score and Insured.age) have an impact, one (Insured.sex) may have a small 
impact, and two (Marital and Territory) have some impact on both frequency and severity.  
In addition, we observe that some sensitive variables present a nonnegligible correlation 
with each other: Credit.score, Marital, and Insured.age (see Section C.2 in Appendix C).

In a basic model with only categorical covariates (see Section 4.1), such as the insured’s sex, 
marital status, vehicle usage, and region, the conclusions from the descriptive analysis are 
confirmed: the insured’s sex has no impact and the marital status has a minimal impact. 
This suggests that maintaining these two sensitive variables in this particular ratemaking 
model may not be justified at this stage, but this may not generalize to other insurers.

After adding continuous variables, the different models considered make it possible to 
improve the scores consistently: XGBoost performs better than GLM-net, which performs 
better than GLM (trad.). In frequency and severity modeling, the transition from a transparent 
approach (GLM) to a black box approach (XGBoost) is accompanied by a notable improvement 
in model performance (see in Sections 4 and 5). In a future project, evaluating the financial 
gain associated with this transition could allow a more informed decision to be made.

After adding the telematics variables to the analysis on the synthetic database, we observe 
the following regarding the sensitive variables (see Section 5):

•  The credit score, while its impact is diminishing, remains a significant factor. It stands 
out as the only sensitive variable that telematics data cannot fully negate, affecting 
both frequency and severity. Figure 2.1 illustrates this conclusion for frequency and 
the severity.

•  Notably, the insured’s age, which was once a key factor, now appears to have lost  
its significance in our analysis for both frequency and severity. Figure 2.2 illustrates 
this conclusion for frequency and severity.

•  Similarly, the territory variable, except for one or two regions, no longer exerts a  
substantial influence on frequency and severity, as Figure 2.3 shows.

•  The effect of marital status on both response variables (frequency and severity), which 
initially seemed weak in the data, is reduced, or even canceled, by adding telematics  
variables, thus confirming the lack of interest in this variable in the presence of 
telematics data (Figure 2.4).

•  The effect of the insured’s sex on both response variables (frequency and severity)  
is reduced, even if it does not seem statistically significant in our data, as illustrated  
in Figure 2.5.
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(a) Frequency

(b) Severity

Figure 2.1. Impact of Credit Score Before (Red Line) and After (Blue Line) Adding Telematics 
Variables in an XGBoost Model

Note: This type of chart illustrates the predictive power of a covariate (here the credit score) without (red line) 
and with (blue line) adding telematics variables. A horizontal line indicates that the covariate no longer has  
predictive power and therefore is no longer useful in the model.
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(a) Frequency

(b) Severity

Figure 2.2. Impact of Insured’s Age Before (Red Line) and After (Blue Line) Adding Telematics 
Variables in an XGBoost Model
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(b) Severity

(a) Frequency

Figure 2.3. Impact of Territory Before (Red Line) and After (Blue Line) Adding Telematics  
Variables in an XGBoost Model
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(b) Severity

(a) Frequency

Figure 2.4. Impact of Marital Status Before (Red Line) and After (Blue Line) Adding Telematics 
Variables in an XGBoost Model
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The avoidance of unfair discrimination in the insurance industry is a pertinent issue, as age 
and marital status are often considered protected information in many jurisdictions and 
industries. The use of telematics variables to derive the same information could provide a 
feasible solution to the problem. Such an approach could prove particularly beneficial for 
certain groups, such as younger groups or those affected by historical systemic barriers 
that have led to significant differences in marriage rates. By relying on telematics variables, 
the industry can reduce the risk of unfair discrimination, thereby enabling a fair and just 
outcome for all insured.

The effectiveness of telematics variables in replacing sensitive variables appears  
more remarkable when an XGBoost model is used, as compared to the GLM. This  

(b) Severity

(a) Frequency

Figure 2.5. Impact of Insured’s Sex Before (Red Line) and After (Blue Line) Adding Telematics 
Variables in an XGBoost Model
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conclusion is not particularly startling, as the XGBoost model has greater flexibility  
than the GLM-net model. That is primarily because the former incorporates a larger  
number of parameters and offers the ability to account for interactions between  
covariates.

Having conducted our analysis on a synthetic database constructed from an actual  
database from a Canadian insurer, we determined that we should validate the main  
conclusions on the original insurer database. Most conclusions obtained regarding the 
impact of telematics on the usefulness of sensitive variables remain valid on the original 
database, but the effect is sometimes less significant (see Section 6). For example,  
Figures 2.6, 2.7, 2.8, and 2.9 illustrate the impact of credit score and territory on frequency 
in the synthetic and in the original data set. In both cases, we observed a similar effect 
for severity. Although this paper proposes a methodology that is based on synthetic data,  
it is essential to note that individual insurers may arrive at different conclusions when 
using actual data or different rating variables.

In the following sections of the paper, we trace our analytical approach, including

•  Section 3: evaluation of available covariates, including traditional nonsensitive, 
traditional sensitive, and telematics covariates;

•  Section 3: transformation of covariates where needed;

•  Section 4: construction of GLM and XGBoost models with only traditional  
covariates;

•  Section 5: construction of GLM and XGBoost models including telematics variables 
and excluding traditional sensitive covariates; and

•  Section 6: validation of conclusions from the synthetic data set on the original 
data set.

Figure 2.6. Credit Score—Synthetic Data Set
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Figure 2.7. Credit Score—Original Data Set

Figure 2.8. Territory—Synthetic Data Set
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3. Data Summary
Before delving into the development of more advanced statistical models for variable 
selection and parameter estimation, it is pertinent to analyze all the covariates available in 
the data set used for this study. We thus conduct an individual and more in-depth analysis  
for each of these segmentation variables. This approach will notably allow us to better 
understand how these covariates could explain the risk of accidents and to propose 
transformations or groupings of modalities. We cover all segmentation variables available  
in the database. We have divided variables into different categories:

1. Section 3.1: Traditional covariates

– Section 3.1.1: Traditional (nonsensitive)

– Section 3.1.2: Sensitive information

– Section 3.1.3: Contract duration

2. Section 3.2: Telematics covariates

– Section 3.2.1: Vehicle usage level

– Section 3.2.2: Type of vehicle usage

– Section 3.2.3: Quality of driving

We emphasize that the covariates under study will all exhibit strong correlations  
among themselves. For instance, younger insured individuals will likely have different 
credit score distributions than older insured individuals, driving behaviors of men may 
differ from driving behaviors of women, or the total distance traveled by an insured  
individual will be linked to the duration of their contract. Thus, the marginal impact of 
each segmentation variable may partly be explained by the effects induced by other 
covariates.

Figure 2.9. Territory—Original Data Set
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3.1. Traditional Covariates

3.1.1. Traditional (Nonsensitive)

We start our analysis by examining nonsensitive traditional segmentation variables,  
i.e., socially accepted variables in automobile pricing.

3.1.1.1. Age of the Car

Figure 3.1 (top) highlights the relationship between claim frequency and the age of  
the vehicle. A fairly clear link is observed: the newer the vehicle, the higher its risk  
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Figure 3.1. Car Age

Note: This type of chart illustrates a relationship between a continuous covariate (horizontal axis) and a response 
variable (vertical axis). The red line represents a smoothing of the data (central trend), and the gray zone is a 
95% confidence interval, i.e., an area where we find 95% of the data.
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of having an insurance claim. For claim severity (Figure 3.1 [bottom]), we observe the  
same relationship.

3.1.1.2. Use of the Car

In the data used, we have categorized vehicle usage into four levels: commercial, commute, 
farm, and private. We observe some difference in the average number of claims between 
each of the categories, as Figure 3.2 (top) shows. It is also important to note a significant 
difference in the distribution of this variable: the vast majority of insured individuals are in 
the commute and private groups. Thus, even if the claim frequency of insured individuals 
in the commercial and farm groups differs, the small number of contracts in these groups 
likely limits the predictive capacity of this variable.
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Figure 3.2. Use of the Car

Note. This type of chart illustrates a relationship between a categorical covariate (horizontal axis) and a response 
variable. The red line represents the averages for the different categories (right scale), and the gray area  
measures volume (left scale).
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In Figure 3.2 (bottom), we see that the use of the vehicle has an impact on the average claim 
severity. We notice a very low exposure for two categories: farm and commercial. If we focus 
only on the other two categories, the difference remains significant (the p-value is very 
close to 0). However, this effect seems to disappear if we consider the car’s age because 
the test’s p-value exceeds the generally accepted limit of 5%.

3.1.1.3. Region

In addition to territory, a slightly coarser grouping of the insured individual’s residence has 
been done for insurance contracts: urban and rural. It is important to note that this variable 
was not constructed from territories. Thus, a territory can contain observations for which 
the region is “rural” and “urban.” The difference in claim frequency between these two types 
of insured persons is illustrated in Figure 3.3 (top). According to Welch’s two-sample t-test, 
the difference in means is significant (p-value very close to 0).

Figure 3.3 (bottom) shows the difference in severity between urban and rural claims. 
The p-value is very close to 5%, and we conclude there is no significant difference between 
these two region types.

3.1.1.4. Years Without Claim

The variable tracking the number of claim-free years is also of critical importance in  
modeling risk in automobile insurance. According to various papers (see, for example, 
Lemaire 1985, ch.7), this variable is considered particularly significant to the extent that if 
only one segmentation variable were to be used in ratemaking, it would likely be something 
related to the insured’s past claims experience.

Figure 3.4 (top) illustrates the relationship between the number of claim-free years and the 
number of reported automobile claims. As indicated by numerous studies, a decreasing 
relationship can be observed, suggesting that insured individuals who have had few or no 
claims in the past are also likely to make fewer claims in the future. As many jurisdictions in 
the United States limit how many years a claim can affect rating, we also analyzed by limiting 
the history to a maximum of five years, and the conclusions were similar: a decrease in risk 
with, for example, the frequency going from about 10% to about 5%.

We see a negative trend in Figure 3.4 (bottom), but it seems weaker than in the case  
of frequency and presents larger variability. The empirical correlation between these  
two variables is −0.13.

3.1.1.5. Correlation

In Figure C.1 (Appendix C), we can observe the correlation that exists between the traditional 
segmentation variables. The correlation matrix on the left indicates a strong dependency 
between vehicle usage and the number of claim-free years. On the right, emphasis is placed 
on the relationship between the covariates studied in this subsection and the sensitive 
variables. Thus, we observe a strong dependency between the age of the insured and the 
number of claim-free years. Vehicle usage is also linked to the age of the insured. We present 
the same matrices in Figure C.2 for the severity.
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3.1.2. Sensitive Information

3.1.2.1. Credit Score

In Canada, the credit score for auto insurance ratemaking is based on the score the main 
credit bureaus (Equifax and TransUnion) calculate for mortgages and loans, as opposed to  
a score constructed specifically for insurance rating. The main factors that may affect the 
score include how long a person has had credit, how long each credit has been in their report, 
if they carry a balance on their credit cards, if they regularly miss payments, the amount of 
their outstanding debts, being close to, at, or above their credit limit, the number of recent 
credit applications, the type of credit they are using, if their debts have been sent to a collection  
agency, and any record of insolvency or bankruptcy. In the United States, this is different, 
because insurers mainly use a credit-based insurance score whose definition can vary greatly 
from one company to another. Figure 3.5 (top) shows the distribution of the credit score in the 
insurance portfolio: the points indicate the observed claim frequency, the size of the points 
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measures the total exposures for each group, and a trend curve (in red) for the frequency has 
been added. Thus, we can see that the relationship between the number of claims and the 
credit score is not linear, but generally, a better credit score implies a lower claim frequency.

The link between frequency of auto insurance claims and credit scores has been previously 
examined. Wu and Guszcza (2003) concluded that this relationship persisted even after 
controlling for numerous other variables. Despite the statistical association between claims 
experience and credit score, establishing causality remains elusive. Some argue that a 
correlation exists between responsible financial behavior and safe driving, or that people 
with higher credit scores may have easier access to newer vehicles equipped with better 
safety features, potentially reducing accident risk. Others suggest that the use of credit 
scoring appears to target young drivers lacking established credit histories, new immigrants, 
or generally economically disadvantaged populations. Coupled with the opacity of credit 
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score calculation by private entities, it is reasonable to view credit score as a sensitive 
variable warranting scrutiny in automobile pricing.

Figure 3.5 (bottom) shows the relation between credit score and claim severity in the  
portfolio: in this case, the points indicate the observed claims’ average severity, the size  
of the points measures the number of claims for each group, and a trend curve (in red) for 
the average severity has been added. As we did with frequency, we observe a nonlinear 
relationship, but overall, a better credit score implies a lower claim severity.

3.1.2.2. Age

Like the credit score, the age of the insured is a sensitive variable in ratemaking. Figure 3.6 
(top) illustrates the fairly strong negative relationship between the age of the person insured 

0.00

0.04

0.08

500 600 700 800 900
Credit score

C
la

im
 fr

eq
ue

nc
y

Total exposures
5000

10000

2000

4000

6000

500 600 700 800 900
Credit score

Av
er

ag
e 

cl
ai

m
 s

ev
er

ity

Number of claims
100

200

300

400

Figure 3.5. Credit Score



24       Casualty Actuarial Society Research Paper: Series on Race and Insurance Pricing

 Balancing Risk Assessment and Social Fairness: An Auto Telematics Case Study

and their claim frequency. As we discussed earlier, age is a controversial segmentation  
variable. Indeed, one might argue that there is no causal relationship between age and 
the likelihood of having an accident, and that age is rather used to identify drivers who 
may lack driving experience, who could be more reckless, and who might be less mature. 
We can hypothesize that driving behavior measured by telematics devices could better 
identify such drivers. Figure 3.6 (bottom) illustrates the negative relationship between age 
and claim severity.

3.1.2.3. Sex

Figure 3.7 (top) shows the distribution of the insured individual’s sex in the portfolio (in bars), 
as well as the observed claim frequency for each of the two groups (in red). It can be seen 
that there are more men in the portfolio. It can also be observed that the claim frequency 
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for both men and women is highly similar. Using Welch’s two-sample t-test, we obtain a 
p-value of 0.2705, meaning that the null hypothesis—the true difference in means is equal 
to 0—cannot be rejected, or, at least, can be rejected with an error probability of 27.05%, 
which is considerably higher than the generally accepted maximum error probability (5%).

Figure 3.7 (bottom) shows a similar result for the observed average claim severity (in red). 
The p-value of Welch’s two-sample t-test is 0.2573. Thus, this variable does not seem to 
have a significant impact on either of the response variables (frequency and severity)  
in the synthetic database.

3.1.2.4. Marital Status

The marital status of the insured is not one of the more important segmentation variables 
(see Figure 3.8, top). However, a statistical test rejects the null hypothesis (the true difference 
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in means is equal to 0), so we keep this variable in our analysis. We see in Figure 3.8 (bottom) 
that marital status has minimal impact on the average claim severity.

3.1.2.5. Insured’s Territory

The pricing of automobile insurance based on the territory of usage is common in  
many insurance companies worldwide. The approach relies on the principle that the  
risk incurred by a driver may vary depending on the geographical location where they 
most frequently drive. Thus, insurers may assess the risks associated with different  
geographical areas, considering traffic density, crime rates, weather conditions, and  
road quality. In practice, territories in automobile insurance are often chosen based on 
practical criteria such as blocks of streets, the same postal code, and divisions created  
by a river or highway.
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Therefore, while using territory in automobile insurance pricing may seem like an objective 
method of evaluating risks, it can also have significant social implications. Indeed, it has 
been shown that this approach can contribute to dividing population groups based on 
criteria such as race, economic level, or even profession. For example, if disadvantaged 
or ethnically predominant urban neighborhoods are grouped into one territory, while more 
affluent neighborhoods are grouped into another territory, insurers may inadvertently be 
building socioeconomic criteria into their pricing models.

To protect the privacy of the insured in the database, their specific addresses and  
postal codes are not available. Instead, a variable known as Territory is used, which  
is represented by a numerical value ranging from 11 to 91. However, that numerical  
representation makes it challenging to interpret or correlate with current public data.  
Figure 3.9 (top) demonstrates the influence of territory on the modeling of claim numbers. 
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Upon analysis, we find that territory does not have a significant impact on claim frequency, 
except for category 54. In the absence of this category, a statistical test known as the 
F-test fails to reject the null hypothesis, indicating that territory has no effect on the 
response variable (with a p-value of 0.064). However, due to the abstract nature of  
the Territory variable, it is challenging to interpret its influence or relate it to current  
public data.

We obtain a similar conclusion (Figure 3.9, bottom) using the average severity as the 
response variable: territory does not significantly affect claim severity except for categories 
74 and 91. This is an unexpected conclusion in both cases as we would assume the insurer’s 
territories were designed based on some observed differences. However, we assume that 
differences may in fact exist, but the limited data and the large number of territories ensure 
that they are not statistically significant.

3.1.2.6. Correlation

Finally, we present correlation matrices for frequency (Appendix C, Figure C.3, left) and 
severity (Fog C, Figure C.3, right). They show the level of dependence between each of 
the sensitive variables. For instance, it can be observed that the insured’s age  
is correlated with the credit score and marital status.

3.1.3. Contract Duration

Special attention should be given to the variable representing the duration of the contract. 
In traditional ratemaking models based on count distributions, such as the Poisson  
distribution, it usually is assumed that the duration of the contract is an offset variable 
rather than a covariate for which a parameter needs to be estimated. For example, when  
using an offset variable, if an insured individual is covered for only half of the year, the insurer 
will offer them a premium that is half the size of what it would be for full-year coverage. 
Some papers question this approach and introduce contract duration as a covariate 
(Boucher and Denuit 2007; Duval, Boucher, and Pigeon 2022, 2023a, 2023b), suggesting 
that an insured individual covered for half the year should have a premium that is either 
larger or smaller than half of that for a full year.

To stimulate further thought, the numerical analysis in Figure 3.10 visualizes the average 
number of claims observed based on groupings of the duration of the contract. Although 
we observe an increase in the number of claims based on the contract duration, we also 
note that the relationship is not perfectly linear compared to the dashed line. But to remain 
consistent with traditional pricing approaches, we will keep contract duration as a measure 
of exposure to risk for now. However, with the telematics information available, the distance 
driven is also available as an alternative for consideration for representing exposure to risk 
in automobile insurance.

As duration is often not considered in the modeling of severity, we don’t use it for the 
severity analysis.
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3.2. Telematics Covariates

3.2.1. Vehicle Usage Level

Many scientific articles (see Appendix A) have shown that what appears to be the most 
relevant telematics information for pricing is not the quality of driving but rather the level  
of vehicle usage. In this first part of the telematics variables analysis, we therefore focus on 
vehicle-usage-level variables.

3.2.1.1. Annual Miles Driven

In addition to the declared distance, we also have access to the actual distance traveled 
by the insured through the telematics device installed in the vehicle. It is increasingly  
recognized that the distance driven in a car can constitute a more precise measure of 
risk exposure than simply the duration of the insurance contract. Indeed, the frequency 
and distance of trips are crucial factors in the likelihood of an accident occurring. For 
example, one might assume that a driver who regularly covers long distances is statistically 
more likely to be involved in an accident than a driver who uses their vehicle sporadically, 
even if both have the same duration of insurance contract.

Figure 3.11 (top) illustrates claim frequency as a function of distance driven. Although the 
graph appears to show a proportional relationship between distance driven and the number  
of claims, it also indicates a stabilization in claim frequency for drivers who have driven 
extensively (between 10,000 and 20,000 miles). That relationship for heavy drivers has 
been observed in other scientific papers.

Figure 3.11 (bottom) illustrates claim severity as a function of distance driven. We see what 
appears to be a small negative relationship between these two variables.
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3.2.1.2. Contract Duration Revisited

A sort of competition between contract duration and distance driven (measured) appears 
to emerge as the adequate measure of risk exposure. Whereas distance driven should 
be more predictive, contract duration exhibits a more consistent relationship with claim 
frequency, resembling what risk exposure should entail. We thus propose creating a new 
covariate for our analysis: the average number of miles traveled per day. This new variable 
will solely correspond to the duration of the contract.

The new variable can represent a form of driving activity intensity. By replacing the total 
miles traveled with the average daily miles, we can revert to the duration of the contract  
as the classical measure of risk exposure. Figure 3.12 illustrates the relationship between 
average miles driven per day and claim frequency (top) and claim severity (bottom).
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3.2.1.3. Days per Week

Another intensity measure that may come close to the usage percentage is the average 
number of days the vehicle is used per week. Figure 3.13 (top) shows the relationship 
between claim frequency and this variable. An increase in claim frequency is observed as 
the number of days used increases. We note, however, that insured individuals who use  
their car an average of seven days per week appear to deviate from the general trend.  
We observe no trend with respect to severity in Figure 3.13 (bottom).

3.2.1.4. Correlation

Once again, we take note of the dependency between the covariates (Figures C.4 and C.5  
in Appendix C). It is interesting to note, for example, that the mean number of days used  
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is linked to the insured’s age. One possible explanation is that drivers in their “middle years” 
are more likely to drive consistently five days a week for work, whereas younger and older 
drivers may drive fewer days a week.

3.2.2. Type of Vehicle Usage

Instead of using the telematics device solely to measure levels of vehicle usage, we can 
also investigate whether certain types of vehicle usage are indicators of a higher risk  
of claims. In this section, we analyze certain telematics information that we classify as 
types of usage. This analysis is significantly less interesting when the response variable 
is severity; we present only the results for frequency to avoid unnecessarily burdening 
the paper.
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3.2.2.1. Days

One pertinent inquiry is to investigate whether vehicle usage on certain days of the week 
predicts a higher claim frequency. Seven covariates are available in the database, each 
indicating the percentage of vehicle usage on a particular day of the week. It is worth noting 
that the sum of the seven percentages for each contract equals 100%. Thus, high vehicle 
usage on a Saturday corresponds to a high percentage of usage for that day, necessarily 
implying that the other days will have smaller percentages.

The seven graphs in Figure4 3.14 illustrate claim frequency as a function of vehicle usage  
for each day of the week. The results obtained for each day are similar and seem to indicate 
that uniform vehicle usage across all seven days (i.e., 1/7 = 14.2%) is the riskiest situation. 
In the case of severity, we do not observe the same indication. Thus, vehicle usage for each 
day appears to signify something, but the information provided by these covariates likely 
needs transformation.

3.2.2.2. Days (2)

In light of the results obtained from the analysis of vehicle usage for each day of the week,  
it is appropriate to create new variables that may better represent the risk. We thus create 
the following variables:

•  A variable identifying the maximum value of vehicle usage for each day.

•  A variable identifying the minimum value of vehicle usage for each day.

•  A variable measuring the difference between the maximum and minimum  
values that have just been calculated. This variable can thus identify insured  
individuals who use their vehicle more on specific days or, conversely,  
insured individuals who typically refrain from using their vehicle on certain  
days of the week.

Figure 3.15 illustrates the relationship of each of the three variables with claim frequency. 
Whereas the graph for maximum use does not seem to point to a significant result in 
explaining claim frequency, the two other graphs are more interesting: insured individuals 
who use their vehicle equally on all days of the week display a higher claim frequency than 
those who use their vehicle more on certain days.

3.2.2.3. Days (3)

Continuing with our days of vehicle usage analysis, we explore two additional variables:  
(a) a variable identifying the day of the week when the vehicle is most used and (b) a variable 
identifying the day of the week when the vehicle is least used.

4 We have removed the confidence interval (gray area) to make the graphs easier to read.
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Figure 3.14. Claim Frequency vs. Percentage of Use for Each Day

0.00

0.02

0.04

0.06

0.00 0.25 0.50 0.75 1.00
Usage percentage per day

C
la

im
 fr

eq
ue

nc
y Total exposures

10000

20000

30000

40000

(g) Sunday

0.00

0.02

0.04

0.06

0.00 0.25 0.50 0.75 1.00
Usage percentage per day

C
la

im
 fr

eq
ue

nc
y Total exposures

10000

20000

30000

40000

(e) Friday

0.00

0.02

0.04

0.06

0.00 0.25 0.50 0.75 1.00
Usage percentage per day

C
la

im
 fr

eq
ue

nc
y

Total exposures
10000

20000

30000

(f) Saturday



Casualty Actuarial Society Research Paper: Series on Race and Insurance Pricing       35

 Balancing Risk Assessment and Social Fairness: An Auto Telematics Case Study

Figure 3.16 attempts to verify whether claim frequency differs for those who use their 
vehicle more or less on specific days of the week. Friday is evidently the day when insured 
individuals tend to use their car more frequently. Conversely, Sunday is the day when the 
car appears to be used the least. For claim frequency, two days appear to be slightly more 
significant than the others:

•  Thursday: Insured individuals who use their vehicle most frequently on Thursdays 
have a higher claim frequency, while those who use their vehicle less on  
Thursdays have a lower claim frequency.

•  Sunday: Insured individuals who use their vehicle most frequently on Sundays have  
a lower claim frequency, whereas those who use their vehicle less on Sundays 
have a higher claim frequency.

3.2.2.4. Weekend

We performed a grouping of the vehicle usage variables for the days of the week  
directly in the database. We summed the usage percentages for the days from Monday  
to Friday in one variable and the usage for Saturday and Sunday in another variable. 
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Figure 3.15. Claim Frequency vs. Use for Each Day
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Knowing that the two covariates are complementary (since the sum of both equals 100%), 
we need to keep only one of them. Figure 3.17 shows the same behavior, but in opposite 
directions. The final result obtained is similar to what we observed for the individual days 
of the week, and it is unclear whether these covariates will remain important in the final 
analysis.

3.2.2.5. Trip Duration

The common explanation for claim probability highlights the use of highways. According 
to several studies, the risk of an accident per miles traveled is much lower on highways 
than in urban areas. Thus, the duration of each trip, or the percentage of trips exceeding  
a certain predetermined duration, could be relevant to analyze. Figure 3.18 shows the 
graphs of claim frequency as a function of the percentage of trips exceeding two, three, 
or four hours. Despite the intuition that such information could be relevant, the graphs  
do not seem to show a particularly strong link between the proportion of long trips and 
claim frequency.
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3.2.2.6. Rush Hours

Another common hypothesis links the frequency of automobile insurance claims to traffic 
congestion. Thus, the database makes available the proportion of trips made in times  
of traffic congestion, whether in the morning or evening. Figure 3.19 shows the graphs 
of frequency linked to these two variables. Similar to the trip duration theory, the statistical 
analysis does not validate the hypothesis, and it is not clear whether these variables are 
relevant for explaining the risk of accidents.

3.2.2.7. Correlation

Figure C.6 in Appendix C illustrates the dependency between each studied covariate. It is 
interesting to note the apparent link between vehicle usage and the age of the insured.

3.2.3. Driving Behavior

Beyond the intensity of vehicle usage, telematics devices also allow for the compilation  
of various statistics on driving behavior. These primarily include sudden braking, rapid  
acceleration, and high-speed turns (both left and right). In this final part of the analysis  
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Figure 3.18. Claim Frequency vs. Percentage of Vehicle Driven 2, 3 and 4 Hours



38       Casualty Actuarial Society Research Paper: Series on Race and Insurance Pricing

 Balancing Risk Assessment and Social Fairness: An Auto Telematics Case Study

of segmentation variables available in the database, we therefore work on analyzing and 
transforming these variables. Again, to make the paper manageable, we present only the 
results for frequency.

3.2.3.1. Brakes

The database affords us access to a series of variables counting the number of abrupt 
braking events—with decelerations of 6 miles per hour (mph), 8 mph, 9 mph, 11 mph, 12 mph, 
and 14 mph—per 1,000 miles traveled. As that description indicates, the number of abrupt 
braking events is normalized by the distance traveled and not by the number of insured 
days. Since we choose to use the number of insured days as a measure of exposure to risk, 
we must transform these variables.

We multiply the number of abrupt braking events per 1,000 miles traveled by each thousand 
miles traveled, and we obtain the total number of abrupt braking events. We then divide 
that by the number of insured days to create a new measure of driving quality: the number 
of daily abrupt braking events. We perform this exercise for the five measures of abrupt 
braking events. Just as for the average daily distance traveled, we end up with a new variable 
measuring an intensity, this time the average daily intensity of abrupt braking events.

Furthermore, we add some control to reduce the number of outliers. To do this, for each 
count of abrupt braking events, we limit the obtained value by the 99th percentile. The 
four graphs in Figure 3.20 illustrate the relationship between the number of daily abrupt 
braking events and claim frequency. Since there was very little data for 12 mph and 14 mph 
decelerations, we do not include those graphs. For all four scenarios, a clear relationship 
can be observed between an increase in the number of abrupt braking events and the 
average claim frequency.

3.2.3.2. Accelerations

Similar to our treatment of braking events, we need to convert accelerations, which are 
normalized by miles driven, into average daily accelerations. We again control the possible 

(a) AM Rush (b) PM Rush

0.02

0.03

0.04

0.05

0.06

0.07

0.0 0.1 0.2 0.3
Percentage of driving

C
la

im
 fr

eq
ue

nc
y Total exposures

2500

5000

7500

10000

0.000

0.025

0.050

0.0 0.1 0.2 0.3
Percentage of driving

C
la

im
 fr

eq
ue

nc
y Total exposures

2500

5000

7500

10000

Figure 3.19. Claim Frequency vs. Percentage of Vehicle Driven during Rush Hours



Casualty Actuarial Society Research Paper: Series on Race and Insurance Pricing       39

 Balancing Risk Assessment and Social Fairness: An Auto Telematics Case Study

values to not exceed the 99th percentile. The four graphs in Figure 3.21 illustrate the  
relationship between the average accelerations and claim frequency.

Once again, we observe a clear link between the increase in the number of accelerations 
and the number of claims.

The telematics device also measures how fast insureds drive when they turn left or right. 
We observe the same type of results for high-speed left and right turns as we see for  
decelerations and accelerations (results are not shown but are available if requested).

3.2.3.3. Correlation

We analyze the correlation between all variables measuring driving quality and present that 
in the tables in Figures C.7 and C.8 in Appendix C. Unsurprisingly, we observe that different 
accelerations and different braking events are strongly correlated. It’s even apparent that 
insured individuals with high accelerations likely also exhibit strong braking events. The 
dependency between accelerations, braking events, and sensitive variables is very weak. 
Thus, the driving quality as measured in the studied database may not be able to replace 
the predictive capacity of sensitive covariates. The intensity of turns to the left or right also 
does not seem to explain the sensitive variables.
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Figure 3.20. Claim Frequency vs. Average Number of Brakes
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4. Traditional Covariates
Using only traditional covariates, our objective in this section of the paper is to  
propose various statistical models for estimation and variable selection to predict  
the number of claims and the average severity. More specifically, we consider basic  
generalized linear models (GLMs), a larger GLM family including elastic net, and  
XGBoost models.

As we mention in Appendix B, to compare models and strike a balance between bias and 
variance while avoiding overfitting, an interesting approach is to assess the prediction 
quality of models when applied to new data.

The analyses in this section are done using the same data as in Section 3. However,  
as we concluded at the end of our overview of the data, one does need to transform 
certain variables. Those transformations are based on splines. We attempt to graphically 
approximate the results obtained using splines using a simple parametric equation 
(square, cube, square root, etc.). Again, details are available in the GitHub project folder 
(https://github.com/J-PBoucher/CAS_Project2024).
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Figure 3.21. Claim Frequency vs. Average Number of Accelerations

https://github.com/J-PBoucher/CAS_Project2024
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4.1. Basic Generalized Linear Models

4.1.1. Single Intercept

A baseline model corresponding to a GLM with an intercept and predicting for each contract 
only the observed mean multiplied by the exposure is used as a point of comparison. The 
model is then estimated on the entire training set and predicted on the test set, which was 
not used in parameter calibration. Tables 4.1 and Table 4.2 present results on the test set 
for frequency and severity (row “Base”). In these tables, a small score value indicates a 
better model.

4.1.2. Categorical Covariates

A first regression approach is attempted using only the traditional categorical variables, 
namely (1) sex, (2) marital status, (3) vehicle use, and (4) region. Even though we should also 
consider territory since it consists of more than 50 different factors, we do not integrate it 
into the model immediately. As we saw in the overview of variables in Section 3, the insured’s 
sex did not appear to be a significant variable. This GLM approach confirms that observation. 
Therefore, that variable is excluded from the model. In Tables 4.1 and 4.2, we can see the 
impact of adding traditional variables on the prediction quality for frequency and severity—
row “GLM (trad.).” We see that adding traditional variables does not substantially enhance 
prediction on the test data set.

Table 4.2. Prediction Scores (Severity)

Model Log. MSE

Base 9.29504 21.82679

GLM (trad.) 9.27546 21.77177

LASSO (opt.) 9.23357 20.23523

LASSO (pars.) 9.23729 20.21870

XGBoost 9.19011 20.06725

Table 4.1. Prediction Scores (Frequency)

 
Model

 
Log.

Mean Squared 
Error (MSE)

 
Quad.

 
Spherical

Dawid- 
Sebastiani

Base 0.1767 0.0455 −0.9215 −0.9598 −2.1988

GLM (trad.) 0.1759 0.0454 −0.9216 −0.9598 −2.2285

LASSO (opt.) 0.1717 0.0449 −0.9223 −0.9600 −2.3406

LASSO (pars.) 0.1733 0.0451 −0.9220 −0.9600 −2.2860

XGBoost 0.1456 0.0365 −0.9315 −0.9637 −2.7278
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4.2. GLM-Net

As we saw in the previous section, a series of traditional continuous segmentation  
variables is also available: (1) credit score, (2) age of the insured, (3) age of the vehicle,  
and (4) number of claim-free years. Furthermore, as we explain later, the territory will also 
be treated as a continuous variable.

Directly using a continuous variable in a GLM is usually ineffective as it assumes a linear 
relationship. To avoid overfitting the data, an approach using splines, using the generalized 
additive model (GAM) theory, is interesting. Such an approach allows the modeler to  
visualize the general form of the covariate to explain the number of claims. A parametric 
form can then be proposed to achieve the best possible correspondence with the spline 
obtained by the GAM. Subsequently, instead of attempting to fit a basic GLM model with  
all variables, we will work with a GLM-net model that allows for variable selection.

The spline analysis indicates that the following parametric form appears appropriate for 
capturing the relationship between the number of claims and continuous covariates:

s Credit.Score` j . Credit.Score +Credit.Score2

s Insured.age` j . Insured.age + log Insured.age` j+ Insured.age2

s Car.age` j . Car.age +Car.age2

s Years.noclaims` j . Years.noclaims +Years.noclaims2 +Years.noclaims3 .

For the severity, the following parametric form appears appropriate for capturing the rela-
tionship:

s Credit.Score` j . Credit.Score +Credit.Score2

s Insured.age` j . Insured.age + Insured.age2

s Car.age` j . Car.age +Car.age2 +Car.age3

s Years.noclaims` j . Years.noclaims +Years.noclaims2 +Years.noclaims3 .

As we saw in the previous section, the insured’s territory code corresponds to a categorical 
variable with a large cardinality. In such a situation, creating a binary variable for each  
possible territory is not appropriate. Instead, we propose using target encoding based  
on the territory’s rank.

This means that we first calculate the observed frequency for each territory. Then,  
we rank the frequencies for the fifty-three territories in the database. Next, the rank 
divided by 53 corresponds to the numerical value of the territory. This form is called rank 
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encoding. We believe that such a transformation is justified, considering that ranking  
territories according to risk is an approach insurance companies may take.

With the encoded form of the territory, as we did with the other continuous variables,  
we propose a parametric form for the spline obtained (for both frequency and severity):

s terr.code` j . terr.code + terr.code2 + terr.code3 .

4.2.1. Optimal Value

The parameters of the GLM-net were calibrated using cross-validation to obtain the  
model’s hyperparameters. In particular, we obtain a value of α = 1, which corresponds  
to a lasso model. Using these values, we can calculate the prediction scores of the  
model based on all covariates. We present these results in Tables 4.1 and 4.2 in the row 
“LASSO (opt.).”

4.2.2. Parsimonious Model

Instead of using the optimal value of the penalty λ in the elastic net approach, it is often 
advised to use a penalty value located at one standard error (λ1se). This helps in obtaining  
a more parsimonious model. These prediction scores are displayed in Tables 4.1 and 4.2  
in the row “LASSO (pars.).”

4.2.3. Categorical Covariates

We can now check whether the choice of approach (optimal or parsimonious) modifies the 
impact of the covariates. For categorical variables, the relativity values obtained for both 
GLM-net approaches are displayed in Figures 4.1 and 4.2 for frequency and severity, 
respectively.

4.2.4. Continuous Covariates

As with the categorical variables, we show the relativities obtained for the continuous  
variables in Figures 4.3 and 4.4 for frequency and severity, respectively. We observe that  
the parsimonious approach tends to reduce the impact of segmentation variables on the 
premium.

4.3. XGBoost

XGBoost is another approach. However, through cross-validation, the modeler must finely 
tune the model’s hyperparameters, such as the learning rate, the maximum depth of a tree, 
the minimum sum of instance weight needed in a child, and the subsample ratio of the 
training instances. We use a grid search approach coupled with Bayesian optimization  
for the data set used in the project. Then, we compute the model’s prediction scores and 
present results in Tables 4.1 and 4.2 in the row “XGBoost.” The scores obtained show  
a significant improvement compared with the other tested approaches.
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Figure 4.1. Interpretation of the Categorical Variables from the GLM-Net Model (Frequency)
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Figure 4.1. Interpretation of the Categorical Variables from the GLM-Net Model (Frequency) 
(Continued)

Note: This type of chart illustrates the predictive power of a covariate (here the credit score) without (red line) 
and with (blue line) adding telematics variables. A horizontal line indicates that the covariate no longer has 
predictive power and therefore is no longer useful in the model.
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(a) Sex of the insured

(b) Marital status of the insured

Figure 4.2. Interpretation of the Categorical Variables from the GLM-Net Model (Severity)
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(c) Car use

(d) Region

Figure 4.2. Interpretation of the Categorical Variables from the GLM-Net Model (Severity) 
(Continued)

Note: This type of chart illustrates the predictive power of a covariate (here the credit score) without (red line) 
and with (blue line) adding telematics variables. A horizontal line indicates that the covariate no longer has 
predictive power and therefore is no longer useful in the model.



(a) Credit score

(b) Age of the insured

(c) Age of the car

Figure 4.3. Interpretation of Continuous Variables from the GLM-Net Model (Frequency)
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(d) Years without claim

(e) Territory code

Figure 4.3. Interpretation of Continuous Variables from the GLM-Net Model (Frequency)  
(Continued)



(a) Credit score

b) Age of the insured

(c) Age of the car

Figure 4.4. Interpretation of Continuous Variables from the GLM-Net Model (Severity)
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(e) Territory code

(d) Years without claim

Figure 4.4. Interpretation of Continuous Variables from the GLM-Net Model (Severity)  
(Continued)
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The XGBoost model has some attractive advantages in practice: (1) fewer assumptions 
are needed than for the GLM; (2) it can easily handle interactions between variables;  
and (3) it has a massive number of parameters, which generally increases the predictive 
potential. On the other hand, (1) an XGBoost model is much more challenging to interpret; 
(2) training and fine-tuning are more complex to perform; and (3) the model needs to be 
fully empirically tested.

4.3.1. Variable Importance

A challenge associated with the XGBoost approach is comprehending the full impact of 
each segmentation variable. Figure 4.5 depicts the most crucial variables in the XGBoost 
model for frequency (left) and severity (right). We observe that credit score, territory, 
age of the insured, and years without claim are the most significant covariates in both 
XGBoost models.

5. Validation
5.1. Validation on the Original Data Set

We conducted our analysis on a synthetic database constructed from an actual database 
from a Canadian insurer. The use of synthetic databases in actuarial science is slowly 
developing (see, for example, Gabrielli and Wüthrich [2018] and Avanzi et al. [2021]),  
but the history is still short. Thus, we consider that we should validate the conclusions  
on an actual database. Indeed, we want to prevent the mechanics that led to these  
artificial databases from creating distortions between variables. For example, one could 
imagine that a database created using a particular technique favors models using that 
same technique.

Overall, for both frequency and severity, we observe similar links between the average 
response variable by group and each of the explanatory variables, taken individually. This 
result is not surprising and confirms that the database creation process was correctly 

Figure 4.5. Variable Importance for Frequency (Left) and Severity (Right)
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constructed. The correlation between the variables Credit.score and Insured.age is also 
observed in the original database.

The results of the first model containing only the categorical covariates are similar to  
those obtained with the synthetic database. In particular, we note the weak impact  
(but which does not seem zero) of the Marital variable on both frequency and severity.

Overall, adding continuous variables leads to the same conclusions as those drawn  
from the synthetic data. Nevertheless, we raise a yellow flag: while the XGBoost model  
performs significantly better than the other models for the simulated data, that is not the 
case on the actual data (see tables below). Indeed, there is a slight improvement, but the 
cost–benefit ratio works against the XGBoost model for actual data. Having not thoroughly 
analyzed the method for creating the synthetic database, we cannot offer a clear  
explanation for this phenomenon.

Most conclusions obtained regarding the impact of telematics on the usefulness of  
sensitive variables remain valid on the original database with the following caveat:  
the effect is sometimes less significant on the actual data.

5.2. Claim Frequency

Table 5.1 illustrates the various scores achieved for each database, allowing us to delve 
deeper into the comparison between synthetic data and real data. As before, a small score 
value indicates a better model. The XGBoost model appears to outperform the other models 
for both databases; however, as previously mentioned, it exhibits even better performance 
with synthetic data.

Table 5.1. Prediction Scores (Frequency)

Log. MSE

Model Synthetic Data Original Data Synthetic Data Original Data

Base 0.17674 0.16794 0.04545 0.04206

GLM (trad.) 0.17359 0.16564 0.04514 0.04186

LASSO (optimal) 0.15536 0.15152 0.04239 0.03992

LASSO (pars.) 0.15704 0.15187 0.04261 0.04014

LASSO* (optimal) 0.15373 0.15072 0.04209 0.03973

LASSO* (pars.) 0.15481 0.15152 0.04226 0.03992

XGBoost 0.12142 0.14995 0.03110 0.03935

XGBoost* 0.12373 0.14893 0.03250 0.03909
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5.2.1. Residuals and Sensitive Variables

We can also revisit some of the graphs developed earlier in the paper to better compare  
the results obtained with the two databases. One of the most critical graphs is the analysis 
of model residuals concerning sensitive covariates.

As a reminder, we use a model’s prediction as an offset variable and assess whether the 
sensitive covariates still appear to capture a trend. If the resulting curve is horizontal and 
close to 1 for all possible values of a sensitive covariate, it indicates that telematics variables 
seem to have captured that covariate’s predictive capacity.

Figures 5.1 through 5.10 compare the residual curves for real and synthetic data. The main 
difference lies in credit score: we observe that reducing its impact through the addition of 
telematics information is more significant with synthetic data than with real data.

Figure 5.1. Credit Score—Synthetic Data Set

Figure 5.2. Credit Score—Original Data Set
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Figure 5.3. Age—Synthetic Data Set

Figure 5.4. Age—Original Data Set
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Figure 5.5. Sex—Synthetic Data Set

Figure 5.6. Sex—Original Data Set



Casualty Actuarial Society Research Paper: Series on Race and Insurance Pricing       57

 Balancing Risk Assessment and Social Fairness: An Auto Telematics Case Study

Figure 5.7. Marital—Synthetic Data Set

Figure 5.8. Marital—Original Data Set



58       Casualty Actuarial Society Research Paper: Series on Race and Insurance Pricing

 Balancing Risk Assessment and Social Fairness: An Auto Telematics Case Study

Figure 5.9. Territory—Synthetic Data Set

Figure 5.10. Territory—Original Data Set
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5.3. Claim Severity

We can also compare the different models for severity. Table 5.2 shows the prediction 
scores obtained for the various models across both databases. The conclusion aligns with 
the frequency analysis: the XGBoost model produces the best prediction scores, but the 
improvement in predictive quality is more significant with synthetic data than with original 
data. For instance, concerning real data, we observe that the scores obtained for the lasso 
model (optimal) are pretty close to those achieved by XGBoost. In contrast, the difference 
between those two models is much more pronounced with synthetic data.

5.3.1. Residuals and Sensitive Variables

Figures 5.11 through 5.20, similarly to the frequency analysis, present trend analysis graphs 
of residuals based on sensitive covariates. The results are similar except for the credit 
score, which remains more significant in severity modeling for real data.

Table 5.2. Prediction Scores (Severity)

Log. MSE

Model Synthetic Data Original Data Synthetic Data Original Data

Base 9.29504 9.51319 21.82679 62.21956

GLM (trad.) 9.23655 9.46042 21.16556 61.55924

LASSO (optimal) 9.22435 9.46367 19.83764 58.13092

LASSO (pars.) 9.24845 9.50317 20.32402 60.99186

LASSO* (optimal) 9.20054 9.42978 19.31021 56.38442

LASSO* (pars.) 9.20843 9.44597 19.59126 57.90176

XGBoost 9.03389 9.41885 15.72516 56.39918

XGBoost* 9.01906 9.24845 15.40489 55.87990
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Figure 5.11. Credit score—Synthetic Dataset

Figure 5.12. Credit score—Original Dataset
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Figure 5.13. Age—Synthetic Dataset

Figure 5.14. Age—Original Dataset
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Figure 5.15. Sex—Synthetic Dataset

Figure 5.16. Sex—Original Data Set
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Figure 5.17. Marital—Synthetic Data Set

Figure 5.18. Marital—Original Data Set
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Figure 5.19. Territory—Synthetic Data Set

Figure 5.20. Territory—Original Data Set
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6. Conclusion
In this paper, we explore the use of telematics and usage-based insurance technologies  
to reduce the dependence on sensitive information for determining insurance pricing. 
Our analysis finds that telematics variables, such as miles driven, hard braking, hard  
acceleration, and days of the week driven, significantly reduce the need to include age, 
sex, and marital status in the claims frequency and severity models. Whereas the need 
for geographic territory and credit score appeared to have been significantly reduced in  
the model built on synthetic data, the reduction was significantly muted when the approach 
was validated with the real-world data set.

Although we could not eliminate all of the sensitive variables from the model, this analysis 
shows there is still value in insurers testing the addition of telematics in their models to 
potentially reduce reliance on sensitive information that could result in actual or perceived 
bias. It is a well-established fact that machine learning-based (“black box”) approaches have 
demonstrated higher predictive power compared to regression-based methods. The results 
of this study affirmed that conclusion. Regression-like models are favored for their balance 
of simplicity and accuracy. Conversely, gradient-boosting models offer significantly greater 
accuracy, albeit at the cost of transparency and explainability. The analyses are based on a 
synthetic database generated from real-world data from a major Canadian insurer, and thus 
all the results obtained can be easily reproduced. The main results obtained are validated 
on the original insurer data to confirm that the data reproduction process did not introduce 
significant bias.

Although the paper proposes a methodology that is based on synthetic data, it is essential 
to note that individual insurers may arrive at different conclusions when using actual data 
or different rating variables. In a future project, we intend to improve the synthetic data set 
further and introduce more advanced training methods to reduce the risk of potential bias.



66       Casualty Actuarial Society Research Paper: Series on Race and Insurance Pricing

 Balancing Risk Assessment and Social Fairness: An Auto Telematics Case Study

Appendix A. Overview of the Scientific Literature
Table A.1. Overview of the Sscientific Literature on Telematics Models

Paper Tools Main Conclusion
Ayuso, Guillen, and 
Nielsen (2019)

Count data regression 
models

Not only the distance traveled by  
the driver but also driver habits 
significantly influence the expected 
number of accidents and, hence,  
the cost of insurance coverage.

Ayuso, Guillen, and 
Pérez-Marín (2016a)

Survival models No gender discrimination is necessary 
if telematics provides enough  
information on driving habits.

Boucher, Côte, and 
Guillen (2017)

Generalized additive 
model (GAM) for cross- 
sectional data

Neither distance nor duration is  
proportional to claim frequency but 
that frequency tends rather to stabilize 
once a certain distance or duration 
has been reached.

Boucher, Pérez-Marín, 
and Santolino (2013)

Generalization of  
the offset Poisson 
regression model

The association between the number 
of kilometers and claim frequency is 
not properly captured by a linear  
relationship.

Boucher and Turcotte 
(2020)

GAM for location, scale, 
and shape

The relationship between frequency 
and distance driven is approximately 
linear and the apparent nonlinearity  
is due to residual heterogeneity  
incorrectly captured by GAMs.

Duval, Boucher, and 
Pigeon (2022)

Logistic regression  
with lasso penalty

Telematics data becomes redundant 
after about three months or  
4,000 kilometers of observation from 
a claim classification perspective.

Duval, Boucher, and 
Pigeon (2023a)

Anomaly detection 
algorithm

A routine and a peculiarity anomaly 
score for each trip can improve  
classification.

Gao, Meng, and 
Wüthrich (2019)

K-means classification, 
principal components 
analysis, neural  
networks

They recommend the use of speed- 
acceleration heatmaps for car  
insurance pricing.

Gao, Wang, and 
Wüthrich (2022)

Boosting Poisson 
regression models

Both classical actuarial risk factors 
and telematics car driving data are 
necessary to receive the best  
predictive models.
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Gao and Wüthrich 
(2019)

Convolutional neural 
network

They present a method to appropriately 
allocate individual car driving trips to 
selected drivers.

Guillen et al. (2019) Zero-inflated Poisson 
model

A learning effect exists for large  
values of distance traveled; speed limit 
violations and driving in urban areas 
increase the expected nu mber of 
accident claims.

Guillen, Nielsen, and 
Pérez-Marín (2021)

Poisson regression 
models

Hard-braking and acceleration events 
as well as smartphone use while driving 
increase the cost of insurance.

Huang and Meng 
(2019)

Classification algorithm They propose a way to bin continuous 
telematics variables to create a finite 
number of risk classes and increase 
interpretability.

Lemaire, Park, and 
Wang (2016)

Probit and ordered  
probit regression  
models

Annual mileage is an extremely  
powerful predictor of the number of 
claims at-fault

Paefgen, Staake,  
and Fleisch (2014)

Multivariate logistic 
regression models

There is a nonlinear relationship 
between mileage and accident risk.

Paefgen, Staake,  
and Thiesse (2013)

Classification algorithm They introduce a novel way to aggregate 
telematics information into what they 
call an aggregate risk factor.

So, Boucher, and Val-
dez (2021)

Multiclass adaptive 
boosting algorithm

The proposed algorithm outperforms 
other learning models designed to  
handle class imbalances.

Verbelen, Antonio, 
and Claeskens (2018)

GAM and compositional 
predictors

Telematics variables increase the  
predictive power and render the use  
of gender as a discriminating rating  
variable redundant.

Wüthrich (2017) Techniques from  
pattern recognition  
and machine learning

Driving styles can be categorized and 
used for a regression analysis in car 
insurance pricing.

Table A.1. Overview of the Sscientific Literature on Telematics Models (Continued)

Paper Tools Main Conclusion
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Appendix B. Theoretical Concepts
Herein we present the general structure underlying our analysis and define the main 
goodness-of-fit measures we use in the paper. We use formal, mathematical definitions  
to be precise and to facilitate reproducibility.

B.1. Ratemaking Theory

For an insurance contract t, t = 1, . . . , T, we define the following components:

•  The random variable Nt represents the annual claims number.

•  For nt = n > 0, let Zt = (Zt,1, . . . , Zt,n) be the random vector of claims costs associated 
with this contract. We define this vector only for a positive observed claims  
number.

•  The premium is generally calculated considering specific observable characteristics 
of each contract. We denote these characteristics by Xt = (xt,0, . . . , xt,q ).

•  The random variable Yt represents total cost associated with contract t: Yt = Zt,k,
k= 1

Nt

/
 if Nt > 0, and 0 if Nt = 0.

An insured person exchanges his risk Yt against a constant π corresponding to an  
insurance premium. Generally, in actuarial science, we minimize the squared error  
minpE[(Yt − p)2|Xt] to obtain the premium: πt

(Y) = E[Yt|Xt]. We can consider two strategies  
to evaluate this value:

1.  The frequency–severity approach, where we multiply the frequency component  
premium and the severity component premium according to some assumptions, i.e.,

r t
Y` j

1 2 344 44
= E Nt X t9 C

r t
N` j

1 2 344 44
E Zt,k X t

R

T
SS

V

X
WW

r t
Z` j

1 2 344 44
.E Yt X t9 C

In the frequency–severity approach, for a contract t, we generally assume  
independence between the frequency and the severity components. Moreover,  
we assume that Zt,k|Xt are identically distributed.

2. The conditional approach, where we directly model the total loss distribution, i.e.,

r t
Y` j = E Yt X t9 C = yfyt X t

# y` jdy.

Although the conditional approach is possible, usually using a Tweedie family  
distribution, it complicates the interpretation of the results. For example, the effect  
of the same covariate on severity may hide the effect of a covariate on frequency. 
Thus, this analysis utilizes a frequency-severity approach.
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The Poisson distribution is the base model for the number of claims in property and 
casualty insurance; it has valuable and well-known statistical properties. The probability 
mass function is

Pr Nt = n X ta k = m i,t` jnexp -m i,t` j n!, n = 0, 1, 2, . . . ,

where λt is a function. Traditionally, we assume a log-linear relationship between the mean 
parameter and the policyholder’s and claim’s characteristics such as sex, age, and marital 
status, e.g., λt = exp(Xtb) and b is a column vector containing parameters. The Poisson 
distribution implies equidispersion, i.e., E[Nt|Xt] = Var[Nt|Xt], which is, usually, a too strong 
assumption in ratemaking. However, for our project, we restrict ourselves to the overdispersed 
Poisson, where Var[Nt|Xt] = ϕE[Nt|Xt] > E[Nt|Xt]. For our analysis of claim severity, we use 
the gamma distribution. The probability density function is

fZ z` j =
C a` jia
za- 1e-z i

, z > 0,X t

where α is the shape parameter and θ is the scale parameter. The expected value is αθ and  
the variance is αθ2. Usually, severity is less heterogeneous than frequency, and many available 
covariates have little impact on the prediction. Beyond the gamma distribution, the inverse 
Gaussian distribution is also a possibility to consider. However, with a cubic variance,  
the possibility of having statistically significant estimators is even lower.

B.2. Goodness of Fit

The idea of the prediction score is to obtain a numerical value to assess the quality of a 
model’s prediction on new data. By convention, we assume the objective is to minimize the 
prediction score. More specifically, to evaluate the model P, we calculate a penalty s(P, x)  
to determine the prediction error.

For a model P, we get the model’s prediction score, S(P), by taking the average (or the sum) 
penalty over x observations in a database (which has never been used to estimate any 
parameters or properties of the model P):

S P` j =
n
1

s P, xi` j.
i= 1

n

/

We can list some relevant penalties:

•  Logarithmic penalty: logs(P, x) = −log(Pr(N = x)), where Pr() is the probability mass 
function under model P, or logs(P, x) = −log(fZ (x)), where fZ () is the probability 
density function under model P

•  Quadratic penalty: quad P, x` j = -2Pr N = x` j+ Pr N = j` j2
j=0

3

/
J

L
KK

N

P
OO
2

, where Pr() is the  

probability mass function under model P
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•  Squared error penalty: sq.err(P, x) = (x − λP)2, where λP is the predicted value  
under model P

•  Spherical penalty: sph P, x` j = -
Pr N = j` j2

j=0
3/
Pr N = x` j

, where Pr() is the probability mass 

function under model P

•  Dawid-Sebastiani penalty: DSP P, x` j =
mP

x - mP
J

L

K
KK

N

P

O
OO

2

+ ln mP` j, where Pr() is the probability 

mass function and λP is the predicted value under model P

For more details on the properties of scores and the assessment of counting models, 
one can consult Czado, Gneiting, and Held (2009).



Casualty Actuarial Society Research Paper: Series on Race and Insurance Pricing       71

 Balancing Risk Assessment and Social Fairness: An Auto Telematics Case Study

Appendix C. Correlation Matrices
C.1. Traditional: Nonsensitive Covariates

(a) Other traditional covariates (b) With sensitive covariates

(a) Other traditional covariates (b) With sensitive covariates

Figure C.1. Correlation between Traditional Covariates (Frequency)

Figure C.2. Correlation between Traditional Covariates (Severity)

C.2. Traditional: Sensitive Information
Figure C.3. Correlation between Sensitive Covariates for Frequency (Left) and Severity (Right)
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C.3. Telematics: Vehicle Usage Level

(a) Telematics covariates (b) With sensitive covariates

(a) Telematics covariates (b) With sensitive covariates

Figure C.4. Correlation between Covariates (Frequency)

Figure C.5. Correlation between Covariates (Severity)
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C.4. Telematics: Type of Vehicle Usage

(a) Telematics covariates

(b) With sensitive covariates

Figure C.6. Correlation between Covariates
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C.5. Telematics: Driving Behavior

(a) Telematics covariates

(b) With sensitive covariates

Figure C.7. Correlation between Covariates (Frequency)
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(c) Telematics covariates

(d) With sensitive covariates

Figure C.7. Correlation between Covariates (Frequency) (Continued)
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(a) Telematics covariates

(b) With sensitive covariates

Figure C.8. Correlation between Covariates (Severity)
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(c) Telematics covariates

(d) With sensitive covariates

Figure C.8. Correlation between Covariates (Severity) (Continued)
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