Assessing Extreme Risk using Stochastic Simulation joint with Juliette Legrand (Université de Bretagne Occidentale) and Nisrine Madhar (Université Paris Cité & Natixis)

Maud Thomas

ISFA, Université Lyon 1

Introduction and motivation

Risk management

- Risk management = Crucial in various sectors, specific to each sector
- **Risk factor** = any variable that could result in a loss or damage

 \rightarrow can be represented by random variables that quantify the magnitude of potential losses

- Examples
 - Climatology
 - \rightarrow Meteorological and marine hazards can cause significant damages
 - \rightarrow e.g., drought, floods, landslides
 - \rightarrow Risk factor = any physical quantity (wave heights, wind gusts, precipitation)
 - Finance
 - \rightarrow Market movements can result to substantial losses
 - \rightarrow Risk factor = typically, market parameters, interest rates or exchange rates
- **Tail risk**: Events with very severe magnitudes and that occurred with very low probability

Aim

For a given target risk factor X_j , accurately quantify its risk through the estimation of tail risk metrics (TRM).

Tail risk metrics

- $\mathbf{X} = (X_1, \dots, X_d) \in \mathbb{R}^d$ vector of risk factors, with X_j of density f_j
- We consider 3 TRMs defined as
 - **Expected Shortfall** [Artzner et al., 1999] at level $\alpha \in (0, 1)$

$$\mathsf{ES}_{\alpha}(X_j) = \mathbb{E}\left[X_j \mid X_j > \mathsf{VaR}_{\alpha}(X_j)\right] = \frac{1}{1 - \alpha} \int_{\mathsf{VaR}_{\alpha}(X_j)}^{\infty} x_j f(x_j) \mathrm{d}x_j$$

where $\operatorname{VaR}_{\alpha}(X_j) := \inf\{x_j \in \mathbb{R} : \mathbb{P}(X_j \le x_j) \ge 1 - \alpha\}.$

• Multivariate marginal ES of X_i at level α

$$\mathrm{MMES}_{\alpha}(X_{j}; \boldsymbol{X}) = \mathbb{E}\left[X_{j} \mid \boldsymbol{X}_{-j} \geq \boldsymbol{\nu}_{-j}^{\alpha}\right] = \int_{\mathbb{R}} x_{j} f_{X_{j} \mid \boldsymbol{X}_{-j} \geq \boldsymbol{\nu}_{-j}^{\alpha}(x_{j}) \mathrm{d}x_{j},$$

with $\boldsymbol{v}^{\alpha} = \operatorname{VaR}_{\alpha}(\boldsymbol{X}) \in \mathbb{R}^{d}$

• Dependent conditional tail expectation of X_i at level α

$$DCTE_{\alpha}(X_{j}; \boldsymbol{X}) = \mathbb{E}\left[X_{j} \mid \boldsymbol{X} \geq \boldsymbol{v}^{\alpha}\right] = \int_{v_{j}^{\alpha}}^{\infty} x_{j} f_{X_{j} \mid \boldsymbol{X} \geq \boldsymbol{v}^{\alpha}}(x_{j}) dx_{j},$$

Tail risk management

Aim

For a given target risk factor X_j , accurately quantify its risk through the estimation of tail risk metrics (TRM).

- The TRMs are computed at extreme levels
- X may exhibit dependence
 - \Rightarrow Leverage from this dependence to quantify the risk of X_j given

$$\boldsymbol{X}_{-j} = \left(X_1, \dots, X_{j-1}, X_{j+1}, \dots, X_d\right)$$

- \Rightarrow Multivariate Extreme Value Theory (EVT)
- Parametric approaches based on EVT [McNeil et al., 2015]
 - Model selection among the several parametrizations proposed by [Rootzén et al., 2018a] is necessary, challenging and time-consuming
 - Dependence modeling [Nelsen, 2006] of extremes through copula implies uniform dependence across considered risk factors
 - In extreme regions, the number of available tail observations becomes limited making any estimation a challenging task
 - Parametric framework can be restrictive

Non-parametric simulation algorithms

Our approach

Extension of the two non-parametric simulation algorithms for multivariate extremes, developed by Legrand et al. [2023] in the dimension 2 case to larger dimensions

- Joint simulation of multivariate extremes
 - \rightarrow estimation of TRMs
- Conditional simulation of multivariate extremes
 - \rightarrow estimation of quantities involving some conditional tail distribution

Both algorithms are based on the multivariate Generalized Pareto distribution

Non-parametric simulation algorithms

Our approach

Extension of the two non-parametric simulation algorithms for multivariate extremes, developed by Legrand et al. [2023] in the dimension 2 case to larger dimensions

- Joint simulation of multivariate extremes
 - \rightarrow estimation of TRMs
- Conditional simulation of multivariate extremes
 - \rightarrow estimation of quantities involving some conditional tail distribution

Both algorithms are based on the multivariate Generalized Pareto distribution

Elements of extreme value theory

Goals of Extreme Value Theory

Goals of Extreme Value Theory

- 1. Estimate the probability of occurrence of an event more severe/extreme than previously observed
- 2. Estimate an extreme quantile
- \Rightarrow Inference outside the sample support

Univariate Peaks-over-Threshold method

- Y_1, Y_2, \dots a series of i.i.d. random variables
- Fix a (high) threshold *u*
- Extreme event = Y_i exceeds u

 \rightarrow Given that $Y_i > u$, an excess is defined by $Z_i = Y_i - u$

Univariate Peaks-over-Threshold method

- *Y*₁, *Y*₂,... a series of i.i.d. random variables
- Fix a (high) threshold *u*
- Extreme event = Y_i exceeds u

 \rightarrow Given that $Y_i > u$, an excess is defined by $Z_i = Y_i - u$

Excess distribution

$$\overline{F}_u(z) = P[Y_1 - u > z \mid Y_1 > u] = \frac{\overline{F}(u+z)}{\overline{F}(u)}, \ z > 0.$$

Balkema et de Haan (1974), Pickands (1975)

Under certain conditions, the distribution of excesses F_u converges, as $u \to \infty$, to a generalized Pareto distribution (GPD) whose distribution function is

$$H_{\sigma,\gamma}(z) = \begin{cases} 1 - \left(1 + \frac{\gamma}{\sigma}z\right)^{-1/\gamma} & \text{if } \gamma \neq 0\\ 1 - \exp\left(-\frac{z}{\sigma}\right) & \text{if } \gamma = 0 \end{cases}$$

Families of possible distributions for excesses = parametric family
 → Generalized Pareto distributions (GPD)

Generalized Pareto distributions

Figure: GPD survival functions

3 domains of attraction

1. Fréchet domain ($\gamma > 0$): heavy-tailed distributions

$$1 - H_{\gamma}(z) \underset{+\infty}{\sim} \gamma^{-1/\gamma} z^{-1/\gamma}$$

Examples: Cauchy, Log-gamma, Student

2. Gumbel domain ($\gamma = 0$): thin tail distributions

$$1 - H_0(z) \underset{+\infty}{\sim} \exp(-z)$$

Examples: Gaussian, Gamma, Exponential

3. Weibull domain ($\gamma < 0$): finite tail distributions

$$1 - H_{\gamma}(z) = 0$$
 for $x \ge -1/\gamma$

Examples: Uniform, Beta

Multivariate Generalized Pareto Distributions

- $\mathbf{X} = (X_1, \dots, X_d)$ observations
- Choose (high) thresholds $\mathbf{u} = (u_1, \dots, u_d)$
- Extreme event = AT LEAST one of the X_j exceeds its threshold u_j

Multivariate Generalized Pareto Distributions

- $\mathbf{X} = (X_1, \dots, X_d)$ observations
- Choose (high) thresholds $\mathbf{u} = (u_1, \dots, u_d)$
- Extreme event = AT LEAST one of the X_j exceeds its threshold u_j
- Theory: asymptotically (when $u \to \infty$), exceedances occur according to a Poisson process and $\mathbf{Z} = \mathbf{X} \mathbf{u} \mid X \neq u$ follows a multivariate Generalized Pareto Distribution (MGPD) with a scale parameter $\boldsymbol{\sigma}$ and a shape parameter $\boldsymbol{\gamma}$.
- Standard MGPD $\rightarrow \sigma = 1$ and $\gamma = 0$

 \rightarrow Exponential marginals

NO parametric family of limits distributions

- Rootzén et al. [2018b], Kiriliouk et al. [2019] have proposed explicit density formula for specific models
- Non parametric models are difficult to fit (lack of data)

Multivariate generalized Pareto Vectors

• Let X be a d-dimensional random vector, the vector of excesses is defined as

$$(1) Z = X - u \mid X \not\leq u$$

where $u \in \mathbb{R}^d$ is a vector of suitably chosen thresholds and $\not\leq$ means that at least one of the components of X - u is positive.

• Rootzén et al. [2018b] have shown that a standard MGP vector *Z* can be decomposed as follows

$$\boldsymbol{Z} = \boldsymbol{E} + \boldsymbol{T} - \max\left(\boldsymbol{T}\right),$$

where

- *E* is a unit exponential variable ;
- *T* a *d*-dimensional random vector
- *T* and *E* are independent.

Non-parametric joint MGP simulation in dimension 2 Legrand et al. [2023]

• From Rootzén et al. [2018b],

$$\begin{cases} Z_1 = E + T_1 - \max(T_1, T_2) \\ Z_2 = E + T_2 - \max(T_1, T_2) \end{cases}$$

• Noting
$$\Delta = Z_1 - Z - 2 = T_1 - T_2$$
,

$$\begin{cases} Z_1 &= E + \Delta \mathbf{1}_{\Delta < 0} \\ Z_2 &= E - \Delta \mathbf{1}_{\Delta \ge 0} \end{cases}$$

- Simulate values of Δ and *E* independently
- Simulate E is trivial
- Difficulty : simulate Δ
 - \Rightarrow Bootstrapping on Δ

Algorithms cornerstone

- Needs to generalize the previous slide on dimension *d*
- From

(2)
$$Z = E + T - \max(T),$$

define

$$\Delta^{j,k} = Z_j - Z_k = T_j - T_k, \text{ for all } j, k = 1, \dots, d.$$

• Equation (2) can be rewritten as follows

(3)
$$Z_{j} = E + \sum_{k=1, k \neq j}^{d} \Delta^{j,k} \prod_{\ell=1, \ell \neq k}^{d} \mathbf{1}_{\Delta^{\ell,k} < 0}, \text{ for all } j = 1, \dots, d_{k}$$

where 1. denotes the indicator function.

Non-parametric joint MGP simulation

Input: Observations $(\mathbf{Z}_i)_{1 \le i \le n} = (Z_{i,1}, \dots, Z_{i,d})_{1 \le i \le n}$ from a standard MGPD vector

1. Compute
$$\Delta_i^{1,k} \leftarrow Z_{i,1} - Z_{i,k}$$
, for $1 \le i \le n$ and $1 \le k \le d$
 \rightarrow Obtain the vector $\left(\Delta_i^{(1)}\right)_{1 \le i \le n}$

2. Generate
$$E_1, \ldots, E_m \stackrel{\text{i.i.d.}}{\sim} \text{Exp}(1)$$

3. Generate a *m*-bootstrap sample $\left(\widetilde{\Delta}_{\ell}^{(1)}\right)_{\ell=1,\dots,m}$ from $\left(\Delta_{i}^{(1)}\right)_{1\leq i\leq n}$

4.
$$\widetilde{\Delta}_{\ell}^{r,s} \leftarrow \widetilde{\Delta}_{\ell}^{1,s} - \widetilde{\Delta}_{\ell}^{1,r}$$
, for $1 \le \ell \le m$ and all $1 \le r, s \le d$

5. $\widetilde{Z}_{\ell,j} \leftarrow E_{\ell} + \sum_{s=1,s\neq j}^{d} \widetilde{\Delta}_{\ell}^{j,s} \prod_{r=1,r\neq s}^{d} \mathbf{1}_{\widetilde{\Delta}_{\ell}^{r,s} < 0}$ for all $1 \le \ell \le m$ and $1 \le j \le d$

Output: A standard MGP simulated sample $(\widetilde{Z}_m)_{1 \le \ell \le m} = (\widetilde{Z}_{\ell,1}, \dots, \widetilde{Z}_{\ell,d})_{1 \le \ell \le m}$

Non-parametric joint MGP simulation

Bivariate representations of the original sample a MGP vector $Z \in \mathbb{R}^3$ (black) and the simulated sample \tilde{Z} (red) through QQ plots and scatter plots.

17/22

Simulation framework

- Let $X = (X_1, X_2, X_3)$ be a random vector with marginals distributed as a Student *t*-distribution with degrees of freedom $v_1 = 2$, $v_2 = 3$, $v_3 = 2.5$.
- An underlying assumption of our simulation framework is that the components of *X* are asymptotically dependent
- To ensure that this hypothesis is satisfied, we consider the Gumbel copula [Nelsen, 2006] to obtain dependent extremes in the upper tail

$$\mathscr{C}(\mathbf{y}) := \exp\left(-\left(\sum_{i=1}^{3} \left[-\log(y_i)\right]^{\theta}\right)^{1/\theta}\right),$$

where $\theta \ge 1$ is the copula parameter. The larger θ , the stronger the asymptotic dependence structure between the components of *X*.

• The numerical experiments are performed on simulated data sets $\mathscr{D} \in \mathbb{R}^{1500 \times 3}$,

TRMs estimation through joint simulation algorithm

Estimations of TRMs on 50 original samples (grey), 50 simulated samples (red) and 50 extended samples (yellow)

TRMs estimation through joint simulation algorithm

Estimations of TRMs on 50 original samples (grey), 50 simulated samples (red) and 50 extended samples (yellow)

TRMs estimation through joint simulation algorithm

Estimations of TRMs on 50 original samples (grey), 50 simulated samples (red) and 50 extended samples (yellow)

Conclusion

- A primary concerns when estimating risks at high levels is the data sparseness
- This issue was addressed by the development of two non-parametric simulation approaches of multivariate extremes

Main contribution of the suggested non-parametric approaches

- Expands the number of observation above extreme level
- Ensures more reliable estimations
- Enables extrapolation beyond the range of observed data

Conditional simulation of multivariate extremes

→ estimation of quantities involving some conditional tail distribution e.g. $\mathbb{E}[X_j \mid X_{-j} = x_{-j}]$

Thank you for your attention!

Reference I

- P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath. Coherent measures of risk. *Mathematical finance*, 9(3):203–228, 1999.
- A. Kiriliouk, H. Rootzén, J. Segers, and J. L. Wadsworth. Peaks over thresholds modeling with multivariate generalized pareto distributions. *Technometrics*, 61 (1):123–135, 2019.
- J. Legrand, P. Ailliot, P. Naveau, and N. Raillard. Joint stochastic simulation of extreme coastal and offshore significant wave heights. 2023.
- A. J. McNeil, R. Frey, and P. Embrechts. *Quantitative risk management: concepts, techniques and tools-revised edition.* Princeton university press, 2015.
- R. B. Nelsen. An introduction to copulas. Springer, 2006.
- H. Rootzén, J. Segers, and J. L. Wadsworth. Multivariate peaks over thresholds models. *Extremes*, 21(1):115–145, 2018a.
- H. Rootzén, J. Segers, and J. L. Wadsworth. Multivariate generalized pareto distributions: Parametrizations, representations, and properties. *Journal of Multivariate Analysis*, 165:117–131, 2018b.