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Introduction and motivation
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Risk management
• Risk management = Crucial in various sectors, specific to each sector

• Risk factor = any variable that could result in a loss or damage
→ can be represented by random variables that quantify the magnitude of

potential losses

• Examples
• Climatology

→ Meteorological and marine hazards can cause significant damages
→ e.g., drought, floods, landslides
→ Risk factor = any physical quantity (wave heights, wind gusts, precipitation)

• Finance
→ Market movements can result to substantial losses
→ Risk factor = typically, market parameters, interest rates or exchange rates

• Tail risk: Events with very severe magnitudes and that occurred with very low
probability

Aim
For a given target risk factor Xj, accurately quantify its risk through the estimation
of tail risk metrics (TRM).
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Tail risk metrics

• X = (X1, . . . ,Xd) ∈Rd vector of risk factors, with Xj of density fj

• We consider 3 TRMs defined as
• Expected Shortfall [Artzner et al., 1999] at level α ∈ (0,1)

ESα(Xj) = E[
Xj | Xj > VaRα(Xj)

]= 1

1−α
∫ ∞

VaRα(Xj)
xjf (xj)dxj

where VaRα(Xj) := inf{xj ∈R :P
(
Xj ≤ xj

)≥ 1−α}.
• Multivariate marginal ES of Xj at level α

MMESα(Xj;X ) = E
[

Xj | X−j ≥ vα−j

]
=

∫
R

xjfXj |X−j≥vα−j
(xj)dxj,

with vα = VaRα(X ) ∈Rd

• Dependent conditional tail expectation of Xj at level α

DCTEα(Xj;X ) = E[
Xj | X ≥ vα

]= ∫ ∞

vαj

xjfXj |X≥vα (xj)dxj,
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Tail risk management

Aim
For a given target risk factor Xj, accurately quantify its risk through the estimation
of tail risk metrics (TRM).

• The TRMs are computed at extreme levels

• X may exhibit dependence
⇒ Leverage from this dependence to quantify the risk of Xj given

X−j =
(
X1, . . . ,Xj−1,Xj+1, . . . ,Xd

)
⇒ Multivariate Extreme Value Theory (EVT)

• Parametric approaches based on EVT [McNeil et al., 2015]
• Model selection among the several parametrizations proposed by [Rootzén et al.,

2018a] is necessary, challenging and time-consuming
• Dependence modeling [Nelsen, 2006] of extremes through copula implies

uniform dependence across considered risk factors
• In extreme regions, the number of available tail observations becomes limited

making any estimation a challenging task
• Parametric framework can be restrictive
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Non-parametric simulation algorithms

Our approach
Extension of the two non-parametric simulation algorithms for multivariate
extremes, developed by Legrand et al. [2023] in the dimension 2 case to larger
dimensions

• Joint simulation of multivariate extremes
→ estimation of TRMs

• Conditional simulation of multivariate extremes
→ estimation of quantities involving some conditional tail distribution

Both algorithms are based on the multivariate Generalized Pareto distribution
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Elements of extreme value theory
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Goals of Extreme Value Theory

Goals of Extreme Value Theory
1. Estimate the probability of occurrence of an event more severe/extreme than

previously observed

2. Estimate an extreme quantile

⇒ Inference outside the sample support
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Univariate Peaks-over-Threshold method
• Y1,Y2, . . . a series of i.i.d. random variables

• Fix a (high) threshold u

• Extreme event = Yi exceeds u
→ Given that Yi > u, an excess is defined by Zi = Yi −u

0

2

4

0 25 50 75 100

9/22



Univariate Peaks-over-Threshold method
• Y1,Y2, . . . a series of i.i.d. random variables

• Fix a (high) threshold u

• Extreme event = Yi exceeds u
→ Given that Yi > u, an excess is defined by Zi = Yi −u

• Excess distribution

Fu(z) = P[Y1 −u > z | Y1 > u] = F(u+z)

F(u)
, z > 0.

Balkema et de Haan (1974), Pickands (1975)

Under certain conditions, the distribution of excesses Fu converges, as u →∞, to a
generalized Pareto distribution (GPD) whose distribution function is

Hσ,γ(z) =
{

1− (
1+ γ

σz
)−1/γ

if γ 6= 0

1−exp
(− z

σ

)
if γ= 0

• Families of possible distributions for excesses = parametric family
,→ Generalized Pareto distributions (GPD)
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Generalized Pareto distributions
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Figure: GPD survival functions
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3 domains of attraction

1. Fréchet domain (γ> 0): heavy-tailed distributions

1−Hγ(z) ∼+∞ γ−1/γz−1/γ

Examples: Cauchy, Log-gamma, Student

2. Gumbel domain (γ= 0): thin tail distributions

1−H0(z) ∼+∞ exp(−z)

Examples: Gaussian, Gamma, Exponential

3. Weibull domain (γ< 0): finite tail distributions

1−Hγ(z) = 0 for x ≥−1/γ

Examples: Uniform, Beta
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Multivariate Generalized Pareto Distributions

• X = (X1, . . . ,Xd) observations

• Choose (high) thresholds u = (u1, . . . ,ud)

• Extreme event = AT LEAST one of the Xj exceeds its threshold uj
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Multivariate Generalized Pareto Distributions

• X = (X1, . . . ,Xd) observations

• Choose (high) thresholds u = (u1, . . . ,ud)

• Extreme event = AT LEAST one of the Xj exceeds its threshold uj

• Theory: asymptotically (when u →∞), exceedances occur according to a
Poisson process and Z = X−u | X 6≤ u follows a multivariate Generalized Pareto
Distribution (MGPD) with a scale parameter σ and a shape parameter γ.

• Standard MGPD → σ= 1 and γ= 0
→ Exponential marginals

B NO parametric family of limits distributions

• Rootzén et al. [2018b], Kiriliouk et al. [2019] have proposed explicit density
formula for specific models

• Non parametric models are difficult to fit (lack of data)
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Multivariate generalized Pareto Vectors

• Let X be a d-dimensional random vector, the vector of excesses is defined as

(1) Z = X −u | X 6≤ u

where u ∈Rd is a vector of suitably chosen thresholds and 6≤ means that at
least one of the components of X −u is positive.

• Rootzén et al. [2018b] have shown that a standard MGP vector Z can be
decomposed as follows

Z = E +T −max(T ) ,

where
• E is a unit exponential variable ;
• T a d-dimensional random vector
• T and E are independent.
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Non-parametric joint MGP simulation in dimension 2
Legrand et al. [2023]

• From Rootzén et al. [2018b],{
Z1 = E +T1 −max(T1,T2)

Z2 = E +T2 −max(T1,T2)

• Noting ∆= Z1 −Z −2 = T1 −T2,{
Z1 = E +∆1∆<0

Z2 = E −∆1∆≥0

• Simulate values of ∆ and E independently

• Simulate E is trivial

• Difficulty : simulate ∆
⇒ Bootstrapping on ∆
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Algorithms cornerstone

• Needs to generalize the previous slide on dimension d

• From

(2) Z = E +T −max(T ) ,

define
∆j,k = Zj −Zk = Tj −Tk, for all j,k = 1, . . . ,d.

• Equation (2) can be rewritten as follows

(3) Zj = E +
d∑

k=1,k 6=j
∆j,k

d∏
`=1, 6̀=k

1∆`,k<0, for all j = 1, . . . ,d,

where 1· denotes the indicator function.
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Non-parametric joint MGP simulation

Input: Observations (Z i)1≤i≤n = (
Zi,1, . . . ,Zi,d

)
1≤i≤n from a standard MGPD vector

1. Compute ∆1,k
i ← Zi,1 −Zi,k, for 1 ≤ i ≤ n and 1 ≤ k ≤ d

→ Obtain the vector
(
∆(1)

i

)
1≤i≤n

2. Generate E1, . . . ,Em
i.i.d.∼ Exp(1)

3. Generate a m-bootstrap sample
(
∆̃

(1)
`

)
`=1,...,m

from
(
∆(1)

i

)
1≤i≤n

4. ∆̃r,s
`

← ∆̃1,s
`

− ∆̃1,r
`

, for 1 ≤ `≤ m and all 1 ≤ r,s ≤ d

5. Z̃`,j ← E`+
∑d

s=1,s 6=j ∆̃
j,s
`

∏d
r=1,r 6=s 1∆̃r,s

`
<0 for all 1 ≤ `≤ m and 1 ≤ j ≤ d

Output: A standard MGP simulated sample
(
Z̃ m

)
1≤`≤m = (

Z̃`,1, . . . , Z̃`,d
)

1≤`≤m
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Non-parametric joint MGP simulation
Bivariate representations of the original sample a MGP vector Z ∈R3 (black) and

the simulated sample Z̃ (red) through QQ plots and scatter plots.
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Simulation framework

• Let X = (X1,X2,X3) be a random vector with marginals distributed as a Student
t-distribution with degrees of freedom ν1 = 2, ν2 = 3, ν3 = 2.5.

• An underlying assumption of our simulation framework is that the
components of X are asymptotically dependent

• To ensure that this hypothesis is satisfied, we consider the Gumbel copula
[Nelsen, 2006] to obtain dependent extremes in the upper tail

C (y) := exp

(
−

(
3∑

i=1

[− log(yi)
]θ)1/θ)

,

where θ ≥ 1 is the copula parameter. The larger θ, the stronger the asymptotic
dependence structure between the components of X .

• The numerical experiments are performed on simulated data sets D ∈R1500×3,
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TRMs estimation through joint simulation algorithm
Estimations of TRMs on 50 original samples (grey), 50 simulated samples (red)

and 50 extended samples (yellow)
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TRMs estimation through joint simulation algorithm
Estimations of TRMs on 50 original samples (grey), 50 simulated samples (red)

and 50 extended samples (yellow)
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TRMs estimation through joint simulation algorithm
Estimations of TRMs on 50 original samples (grey), 50 simulated samples (red)

and 50 extended samples (yellow)
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Conclusion

• A primary concerns when estimating risks at high levels is the data sparseness

• This issue was addressed by the development of two non-parametric
simulation approaches of multivariate extremes

Main contribution of the suggested non-parametric approaches

• Expands the number of observation above extreme level

• Ensures more reliable estimations

• Enables extrapolation beyond the range of observed data

• Conditional simulation of multivariate extremes
→ estimation of quantities involving some conditional tail distribution e.g.

E[Xj | X−j = x−j]
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Thank you for your attention!

21/22



Reference I

P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath. Coherent measures of risk.
Mathematical finance, 9(3):203–228, 1999.

A. Kiriliouk, H. Rootzén, J. Segers, and J. L. Wadsworth. Peaks over thresholds
modeling with multivariate generalized pareto distributions. Technometrics, 61
(1):123–135, 2019.

J. Legrand, P. Ailliot, P. Naveau, and N. Raillard. Joint stochastic simulation of
extreme coastal and offshore significant wave heights. 2023.

A. J. McNeil, R. Frey, and P. Embrechts. Quantitative risk management: concepts,
techniques and tools-revised edition. Princeton university press, 2015.

R. B. Nelsen. An introduction to copulas. Springer, 2006.

H. Rootzén, J. Segers, and J. L. Wadsworth. Multivariate peaks over thresholds
models. Extremes, 21(1):115–145, 2018a.

H. Rootzén, J. Segers, and J. L. Wadsworth. Multivariate generalized pareto
distributions: Parametrizations, representations, and properties. Journal of
Multivariate Analysis, 165:117–131, 2018b.

22/22


	Illustration on simulated data
	References

