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Predictive modeling has a number of operational applications in the insurance industry, 
and actuaries have access to a generous tool kit of modeling techniques to best address 
the various use cases. Among those modeling techniques, generalized linear models 
(GLMs) are a common choice for frequency, severity, and pure premium loss modeling.

The unpenalized GLM approach comes with one well-documented shortcoming: 
while minimum bias and univariate techniques can incorporate credibility in the 
calculation of indicated rating relativities, there has been no statistically straightforward, 
consistent way of incorporating actuarial credibility into a GLM. The Casualty Actuarial 
and Statistical (C) Task Force described this shortcoming as follows: “GLMs effectively 
assume that the underlying datasets are 100% credible, no matter their size. If some 
segments have little data, the resulting uncertainty would not be reflected in the GLM 
parameter estimates themselves (although it might be reflected in the standard errors, 
confidence intervals, etc.)” (2020, 4).

GLM output can warn a user of instability in a parameter estimate through a wide 
standard error, but it does not adjust the coefficient to take the large volatility into 
account. Instead, the practitioner may perform ad hoc adjustments to consider the lack 
of credibility or volatility in a specific segment. Post-modeling adjustments performed 
in this necessarily univariate manner may result in a suboptimal final rating plan.

Fortunately, this issue can be addressed by applying an enhanced version of a GLM: 
penalized regression. Penalized regression has similarities with credibility procedures 
as documented in Miller (2015) and Casotto, Banterle, and Beraud-Sudreau (2020). 
In this monograph we review GLMs and then introduce penalized regression and its 
connections to credibility. We describe the motivation for the technique as well as why 
lasso is our preferred penalization for actuarial analysis. Furthermore, we show how lasso 
penalization can be used as lasso credibility through a new use of the offset. We are not 
creating a new form of modeling from scratch, but rather combining existing tools to 
create an actuarially sound credibility procedure.

Using penalized regression for credibility has significant implications in actuarial 
analysis. With lasso credibility, the amount of data needed for predictive modeling is 
reduced. This means actuaries can use smaller data sets that might be insufficient for a 
stable GLM. Also, when we use lasso penalization as lasso credibility, the usage must now 
align with the guidelines of Actuarial Standard of Practice No. 25, Credibility Procedures 
(hereafter referred to as ASOP 25). We explain how the guidance in ASOP 25 applies 
to penalized regression as a credibility procedure.

Introduction
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This perspective shift to credibility should affect the way actuaries interpret and eval-
uate lasso credibility modeling results. For example, consider the question of whether 
one should include a specific factor, or variable, in a model. Modelers using a GLM may 
rely on a p-value analysis, which can provide a measure of whether the data is compatible 
with the absence of such a factor (the null hypothesis) (Wasserstein and Lazar 2016).

We show that whereas p-values answer the question of significance—Is this signifi-
cantly different than zero (or a more extreme value)?—lasso penalized regression answers 
a question of credibility—How much credibility, if any, should we give to this coefficient? 
Lasso credibility answers a similar question—How much credibility, if any, should we 
give to this coefficient’s deviation from our complement? By using lasso penalization or lasso 
credibility, an actuary can simultaneously evaluate the significance and magnitude of a 
coefficient, while an unpenalized GLM’s p-values will evaluate only significance. Users 
of lasso credibility will need to let go of the idea of p-values and embrace a credibility 
interpretation of coefficients to correctly apply and evaluate the methodology. Further-
more, as we will see, the tuning of the penalty parameter (which acts as a credibility 
parameter) is both simpler and more robust than the examination of p-values.

The main body of the paper is written to provide a reader with the intuition 
behind penalized regression as a credibility procedure and practical guidance on how 
to implement lasso credibility. We provide a minimum necessary background for these 
approaches, reserving statistical proofs and rigorous defense of the concepts for a series 
of appendices. We hope that this structure allows the communication of these ideas to 
a broad audience without a lack of precision or loss of statistical rigor.

We supplement the guidance with a case study comparing lasso credibility, penalized 
regression, and traditional GLM models on data sets of varying size. The case study 
shows that lasso credibility can outperform both GLM and penalized regression when 
the model is informed by an adequate complement of credibility. This section has 
accompanying code on the CAS GitHub,1 and we highly encourage readers to pull the 
code and run it alongside the case study. Additionally, we provide optional exercises to 
familiarize yourself with the behavior of lasso credibility in alternate scenarios.

1 https://github.com/casact/mg-credibility
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Generalized linear models (GLMs) are a means of modeling the relationship between 
a variable whose outcome we wish to predict and one or more explanatory variables.

—Goldburd et al. (2016),  
Generalized Linear Models for Insurance Rating

In this chapter, we review the basics of GLMs to provide the minimum background 
necessary to introduce penalized regression and lasso credibility. First, we explore the 
linearity of GLMs. That foundation will help us demonstrate how to incorporate a 
complement of credibility into the GLM framework. Then, we describe the link func-
tion and give an example of how link functions allow a modeler to easily use a GLM’s 
output as a multiplicative rating table. We revisit this example later in the paper to 
show how to implement the output of a lasso credibility model as an adjustment to an 
existing set of rating tables. Finally, we discuss the full credibility assumption of GLMs 
and how it allows for the use of p-values to evaluate coefficients. This prepares us for a 
discussion on how penalized regression does not assume full credibility, and therefore 
p-values are not appropriate in penalized regression and should be replaced by another 
type of model evaluation.

1.1. Definitions and Terminology
We begin with a short introduction to GLMs. For a comprehensive introduction, 

we refer the reader to Goldburd et al. (2016).
A GLM consists of three elements:2

1. A target variable Y, a random variable following a probability distribution from 
the exponential family, which is in turn defined by a selected variance function and 
dispersion parameter.

2. A linear predictor η = Xβ, where X is the design matrix and β is the coefficient 
vector.

3. A monotonic link function g such that E(Y ) = µ = g −1(η).

These elements have established connections to common insurance concepts.
Y represents the random variable that models the risk and yi represents the actual 

observed risk for row i. Depending on the nature of the risk, one makes different statistical 

1. A Review of GLMs

2 The GLM definition is taken from Casualty Actuarial and Statistical (C) Task Force (2020) with some minor changes.
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assumptions. For example, the actuary may model accident frequency via the Poisson 
probability distribution and accident severity via a gamma distribution.

The matrix X is such that its rows Xi contain the information about each record 
and any covariate relevant for predicting the considered risk. Typically, Xi represents 
a unit of risk specified by the modeler for each row i. For example, one exposure may 
represent a year of observation or a single policy. The columns of the matrix provide  
a numerical representation of the available information on the risk covariates. The values 
of the coefficients β define how the covariates are linearly combined to estimate the 
risk. Using Xi and β, we can represent the linear combination of the covariates as 
ηi = Xiβ.

Finally, µi represents the expected risk estimate for each row i. The linear combina-
tion of the features Xiβ are related to the expected risk via the link function µi = g −1(Xiβ). 
In this notation, the intercept β0 is implicit. The specific choice of the link function 
depends on the target probability distribution chosen during modeling. For example, 
for Poisson and gamma distributions, the preferred link function is the logarithm, which 
gives a multiplicative model.

The process of building (or fitting) a GLM requires the specification of the target 
variable Y and its statistical assumptions together with the covariates X. The output of the 
fitting procedure is a set of coefficients β that maximizes the likelihood of observing Y 
with expected mean µi and the assumed target distribution given the data X. This process 
of fitting coefficients based on the observed likelihood is at the core of why “GLMs 
effectively assume that the underlying datasets are 100% credible, no matter their size.” 
We now explore these elements a bit more deeply.

1.2. The Linear Predictor
GLMs are called generalized linear models because the relationship between the 

predictor variables X and the expected risk µi is determined by the linear predictor η. 
The formula for this relationship is

 h = b 0 +b 1X 1 . . .b n Xn = b 0+ Xb. (1.1)

For a change in each individual characteristic Xi (holding all other X constant), 
there is a linear change in the value of η. For instance, for each integer increase in X1, 
the linear predictor η increases by the value of β1. This is not to say that the prediction is  
always linear with respect to the underlying risk characteristic. For example, when using 
the predictor “age of vehicle squared,” the relationship will be linear with respect to 
“age of vehicle squared,” and therefore quadratic with respect to the risk characteristic 
“age of vehicle.” It is quite common to include multiple polynomial terms (linear, 
squared, cubed) in a model for a single risk characteristic. The creation of these variable 
transformations, often referred to as feature engineering, is an essential part of fitting  
a GLM. The creation and inclusion of polynomial terms is an example of feature engi-
neering for a continuous variable. To encode categorical variables, one can introduce 
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dummy variables that take the values of either 1 or 0 to represent the presence or absence 
of a certain predictor value. This is referred to as one-hot encoding in the machine learning 
literature.

1.3. Distributions and Link Functions
The link function is the relationship between the linear predictor η in Equation 1.1 

and the predicted value µ. If we use no link function, then we are using η to directly 
predict µ. By using the log link function, we can predict the log of µ instead:

ln n` j = b 0 +b 1X 1 . . .b n Xn,

or equivalently

n = exp b 0 +b 1X 1 . . .b n Xn` j

= exp b 0` j# exp b 1X 1` j# . . .# exp b n Xn` j.

By using this link function, the modeled components are now combined multipli-
catively to create a predicted expected value. This is ideal for actuarial pricing, as many 
rating plans are a combination of multiplicative rating tables. Additionally, the link 
function allows for the use of different error distributions.

Since the linear predictor η can potentially take any value, the correct choice of the 
link function is key in GLM modeling. The inverse of the link function determines the 
expected mean µ—hence the link must be chosen such that η is mapped to the correct 
range of values. For example, for the gamma and Poisson distributions, the expected 
mean must be positive. Hence the log link is appropriate for those distributions as the 
inverse of the log link is the exponential function, which is always positive. To note 
another example, the mean of a binomial (logistic) variable must be between 0 and 1, 
and hence the logit is one of the appropriate link functions for the Bernoulli distribution, 
as its inverse, the logistic function, maps all values in the range from 0 to 1.

Table 1.1 shows some commonly used distributions and link functions for actuarial 
models. Other link functions may be used for some of these distributions, but the ones 
listed are the most common in actuarial applications (Goldburd et al. 2016).

Table 1.1.  Commonly Used Distributions in Actuarial Modeling

Model Type Distribution Link Inverse Link

Frequency Poisson, negative binomial Log Exp

Severity Gamma, inverse Gaussian Log Exp

Pure premium Tweedie Log Exp

Propensity, retention, conversion Bernoulli Logit Logistic
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1.4. The Offset
When building a model, we may want to consider the effect of risk characteristics 

without coming up with a prediction for them. Deductibles, for example, are best priced 
through a loss elimination ratio analysis rather than a GLM (Goldburd et al. 2016). 
Instead of modeling or ignoring these risk characteristics, they can be included as an 
offset in our GLM. The offset term is an additional item in our linear equation. Consider 
a GLM with a logarithmic link. The formula for the offset is given by

ln n` j = b 0 +b 1X 1 . . .b n Xn + offset.

Assuming we are offsetting a deductible characteristic, the offset would be a column 
in our data set representing the coefficient for the surcharge or discount at the record’s 
deductible level. A GLM will then directly include this coefficient in its prediction of 
µ when fitting the optimal values of β. Multiple risk characteristics—e.g., deductible 
factors, increased limit factors, territory relativities, etc.—can be included in a single 
offset term.

1.5. Table-Based Output: An Example
Let’s create a two-variable pricing model for home insurance as an example. We 

will use a Tweedie distribution and a log link to model pure premium directly. The first 
variable is the presence of a fire extinguisher, encoded as 1 without a fire extinguisher 
or 0 with a fire extinguisher. This 1 or 0 value would be represented by X1. The second 
variable will be age of home, encoded as the integers 0–10. The appropriate integer per 
record would be represented as X2:

nt = exp b 0` j# exp b 1X 1` j# exp b 2X 2` j.

Let’s assume that our model fit these convenient values:

b 0 = log e 100` j . 4.605

b 1 = log e 1.2` j . 0.182

b 2 = log e 1.01` j . 0.01

The predicted pure premium would then be calculated as follows:

Pure premium = exp b 0` j# exp b 1X 1` j# exp b 2X 2` j

= exp 4.6057` j# exp 0.182# X 1` j# exp 0.01# X 2` j

= 100#1.2 X 1 #1.01 X 2 .
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We can represent this model in the following rating tables:
Base rate: exp(4.6057) = 100.

Fire Extinguishers Factor

No exp(0.182 × 1) = 1.200

Yes exp(0.182 × 0) = 1.000

Age of Home Factor

0 exp(0.01 × 0) = 1.000

1 exp(0.01 × 1) = 1.010

2 exp(0.01 × 2) = 1.020

3 exp(0.01 × 3) = 1.030

4 exp(0.01 × 4) = 1.041

5 exp(0.01 × 5) = 1.051

6 exp(0.01 × 6) = 1.062

7 exp(0.01 × 7) = 1.072

8 exp(0.01 × 8) = 1.083

9 exp(0.01 × 9) = 1.094

10 exp(0.01 × 10) = 1.105

This easy translation from beta coefficients to rating tables is one of the many 
reasons that GLMs have been used in actuarial pricing for quite some time.

1.6. Likelihood Optimization: Full Credibility Assumption
The full credibility assumption of GLMs is related to the optimization process 

used when fitting the model’s β parameters. The procedure for computing the GLM 
parameters β is via the maximization of the log-likelihood (or equivalently, minimization 
of the negative of the log-likelihood) of observing yi under the assumption that they 
follow the chosen error distribution with mean being µi.

 

bt GLM = argmax
b

LogLikelihood y, X,b` j

= argmin
b

- LogLikelihood y, X,b` j. (1.2)

The maximization of likelihood alone will always treat the data as fully credible, and 
will not consider volatility in the estimates of βp or the significance of the improvement 
each βp might add to the overall model. In short, GLM estimates are unstable on 
segments with low exposures.
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Section A.1 provides a motivation and proof for this statement. The implications 
of this behavior can be shown using our two-variable example model.

Assume that the likelihood maximization process determines that a surcharge of 20% 
is the “most likely” estimate of the true surcharge. The implications of this result may 
vary wildly depending on the data. We examine three scenarios where a single-variable 
GLM would output such a surcharge as the “most likely” estimate.

Scenario 1: Credible and sound estimate

Category Exposures Average Loss

With fire extinguisher 1,000,000 100

Without fire extinguisher 1,000,000 120

In this scenario, a β representing a 20% surcharge will be output as the most likely 
value of the surcharge. The estimate assigns full credibility to both categories in the data. 
An actuary would likely be confident in implementing this surcharge.

Scenario 2: Midway estimate

Category Exposures Average Loss

With fire extinguisher 1,000,000 100

Without fire extinguisher 5,000 120

In this scenario, a β representing a 20% surcharge will be output as the most likely 
value of the surcharge. The estimate assigns full credibility to both categories in the data. 
An actuary may believe that there is some signal to the true surcharge but may not be 
fully confident in the point estimate.

Scenario 3: Noncredible estimate

Category Exposures Average Loss

With fire extinguisher 1,000,000 100

Without fire extinguisher 10 120

In the third scenario, a β representing a 20% surcharge will be output as the most 
likely value of the true surcharge. The estimate, again, assigns full credibility to both 
categories in the data. But whereas a 20% surcharge is the “most likely” result given our 
limited data, we would not be fully confident in the estimate.

In a univariate analysis, an actuary might use a credibility procedure to determine 
the appropriate surcharge. However, in a multivariate setting, the question remains 
open because unpenalized GLMs do not incorporate credibility.

Although the modeler has no control over the estimate of the model, it is still 
possible to decide whether a factor needs to be included at all in the model.
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That evaluation is binary due to the structure of a GLM: should we include this 
variable at full credibility, or should we exclude it entirely? The most common method 
of answering this question is the evaluation of p-values.

1.6.1. P-Values
In statistical hypothesis testing, p-values are a commonly used tool to accept or 

reject a null hypothesis against an alternative hypothesis. The aim of statistical hypoth-
esis testing is to decide whether the data provides sufficient evidence against the null 
hypothesis, in which case this hypothesis is rejected in favor of the alternative hypothesis. 
P-values control the error of rejecting the null hypothesis when the null hypothesis is 
true and the experiment is repeated an infinite number of times. In GLM modeling 
we can apply this principle and use p-values to decide whether a given coefficient is 
significant. The null hypothesis being tested is then that a given coefficient’s true value 
is zero or more extreme, i.e., the coefficient is not significant. Thus, the p-value of a  
coefficient represents the probability that a coefficient result at least as extreme as the 
estimate could have happened assuming that the null hypothesis (often assuming one 
parameter βj is 0 or more extreme) is true.

When a coefficient’s p-value is below 0.05, this means that there is less than a 5% 
chance that the observed results could have happened if the true value of the coefficient 
was zero and the experiment was repeated on different data an infinite number of times. 
In other words, the probability that the coefficient is due purely to randomness in the 
data is less than 5%.

A p-value of 0.05 is commonly used as a threshold for coefficient significance. When 
a coefficient’s p-value is equal to or greater than the selected threshold, the coefficient 
is deemed insignificant and we cannot reject the null hypothesis that the true coef-
ficient is zero. In this case, the coefficient is usually removed from a model. When a 
coefficient’s p-value is less than 0.05, we reject the null hypothesis that the coefficient 
is zero and the coefficient is considered significant. When a coefficient is significant, 
it is included in the model and given full credibility.

P-values and significance testing have several limitations:

1. Significance testing is a binary test that answers only the question “Is this coefficient 
likely not zero or more extreme?”

2. Although GLM output provides tools such as confidence intervals to evaluate 
coefficient stability, it does not provide statistical guidance on how to make corres-
ponding adjustments. For example, when using a p-value threshold of 0.05, how 
should an actuary treat a coefficient with a p-value of 0.047? How much should an 
actuary trust the coefficient of a variable accepted by the actuarial and regulatory 
community as a predictor of loss that has a reasonable value and a p-value of 0.06? 
Such decisions are purely judgmental.

3. The traditional 0.05 level of significance is arbitrary. Numerous authors say that 
it is not an appropriate threshold for many studies (Wasserstein and Lazar 2016). 
Other scholars suggest that significance testing should be removed altogether.
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4. Significance testing is iterative due to its post hoc application. The addition or 
removal of coefficients may affect the significance of other coefficients.

5. Nonbinary adjustments for questionable p-values must be made after modeling. 
These actuarial selections are frequently made on a univariate basis and are therefore 
often suboptimal and contrary to the multivariate nature of a GLM’s structure.

Additional misconceptions and limitations are detailed in Greenland et al. (2016). 
Despite these downsides, p-values are widely used to evaluate GLM coefficients because 
they are a convenient and simple metric with which to perform significance testing. 
However, as we will later see, p-value significance testing is inappropriate (and in some 
cases not even possible) when using penalized regression. Penalized regression’s ability 
to evaluate and adjust coefficients during the modeling process eliminates the need for 
post hoc significance testing.

1.6.2. Lack of Credibility in GLM Estimates
A consequence of the lack of credibility considerations during the fitting process 

is that a modeler must perform post hoc procedures on the coefficients of a model if 
one or more of the coefficients are unreasonable.

There are two kinds of post hoc analyses:

1. An analysis informing a subsequent model iteration
2. An analysis informing selections from final modeled coefficients

When the first post hoc analysis is incorporated back into the model, it must be a 
binary application. Either the coefficient should be included and receive full credibility  
or it should be excluded and receive no credibility—GLMs do not have another option. 
As described earlier, p-value significance testing is one appropriate methodology to arrive 
at this binary recommendation.

A common post hoc analysis that informs selections from final modeled coefficients 
is the credibility procedure. Unfortunately, such a credibility procedure must necessarily 
be done on a variable-by-variable basis as we are examining and adjusting one coefficient 
at a time. As we pointed out before, these adjustments may result in a suboptimal final 
model as they do not reflect the multivariate structure of the GLM.

To summarize, a coefficient can either (a) be assigned partial credibility during a  
post hoc univariate analysis or (b) receive full credibility or be removed during the 
multivariate fitting process. As we will see, penalization solves this dilemma by allowing 
a coefficient to be assigned partial credibility in a multivariate fitting procedure.
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Credibility, simply put, is the weighting together of different estimates to come up with 
a combined estimate.

—Foundations of Casualty Actuarial Science

In the context of ratemaking, credibility provides a framework with which to combine 
an estimate based on observed experience (observed losses, frequencies, or loss ratios), 
subject to volatility, with a more stable yet less individualized estimate—the complement 
of credibility. This combination aims to improve on both estimates to create better 
predictions of future values.

The estimates are blended together via the credibility factor, normally referred to as Z, 
a factor between 0 and 1 that will give more or less weight to the observed experienced 
or the complement of credibility:

Estimate = Z #Observed Experience + 1- Z` j#Complement of Credibility.

Two main types of credibility are found in the literature: classical and Bühlmann. 
Even if they differ in terms of the underlying hypothesis and formulation of the factor 
Z (see Table 2.1), they share the same basic credibility property: the credibility factor 
increases with the number of observations n (i.e., the exposure). In that sense, unlike 
simple GLMs, the credibility framework enables a user to incorporate information on 
the number of observations directly into the estimates.

2.1. Incorporation of Credibility into GLM Estimates
There are, of course, simplistic ways to adjust GLM estimates with these traditional 

credibility methodologies, but they all share the drawbacks highlighted in Klinker 
(2011): “Some actuaries have been known to apply an ad hoc credibility adjustment  
to coefficients output by a GLM. In some cases this even produces results similar to 
those arrived at by more statistically rigorous methods. If so, then what is so wrong 
with the ad hoc credibility adjustment of GLM output? . . . This gets back to the old 
issue that a sequence of steps, each optimal individually, may not be optimal in the 
aggregate” (1–2).

2. A Brief Review of Credibility
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Table 2.1.  Main Parameters of Classical and Bühlmann Credibility

Classical Credibility Bühlmann Credibility

 Z =min
Nfull

N
, 1

J

L

K
K

N

P

O
O (2.1)  Z =

n + k
n

 (2.2)

Additional parameters:

 Nfull = Nfull(K, P ) —  number observations to reach 
full credibility

 P —  probability that the 
observations are within 
estimated risk

 K —  tolerance to error, as % of risk

Additional parameters:

 k — ratio of σ2
PV /τ2

HM, with
 σ2
PV —  expected process variance 

(within class variance)
 τ2
HM —  variance of hypothetical means 

(between class variance)

Figure 2.1.  Evolution of the credibility factor Z  for a given estimate j 
as a function of the number of observations n. The Z for the classical 
credibility is computed using Equation 2.1 with N 5 15,000. Bühlmann 
credibility uses k = 1,600 in Equation 2.2.
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If the simplistic ways are insufficient, then how can we best incorporate credibility 
into model fitting? To obtain a statistically rigorous multivariate modeling technique 
that can incorporate credibility, at least three necessary properties must be satisfied:

1. The estimation of the parameters shall not rely on maximizing the log-likelihood 
(or variance) alone: any technique with this property will inevitably assign 100% 
credibility to the data.

2. Estimates will be shrunk toward the complement of credibility GLMsand the 
amount of shrinkage will depend on the number of observations.

3. To consider correlations, the “credibility weighting” of the coefficients must be a 
part of the fitting procedure, not a post-processing step on top of a GLM.

Penalized regression satisfies these three criteria when applied in a specific manner. 
Before we describe the application of penalized regression as credibility, we introduce 
penalized regression as a modeling technique and contrast it with a GLM.
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We introduce penalized regression first via the general penalization formula so that we can 
then focus on the three most popular penalization methods: lasso, ridge, and elastic 
net. After highlighting the differences with and similarities to unpenalized GLMs, we 
describe guidelines to use when selecting and analyzing the result of a penalized model. 
Finally, we explain the rationale behind using the lasso penalty for actuarial analysis 
owing to its unique ability to create a sparse and parsimonious model.

3.1. Types of Penalized Regression
In Section 1.6, we saw that GLM estimates always attribute 100% credibility to 

the data, regardless of the underlying exposure. The reason lies in maximizing the like-
lihood formula, which targets the goodness of the fit alone as described in Section A.1.

Penalized regression slightly modifies the likelihood formula by adding a penalty 
term to the GLM optimization, thereby adding a credibility component to the cost 
function that the unpenalized GLM was missing. Penalized regression jointly optimizes 
the trade-off between

• goodness of fit (likelihood) and
• prior assumptions on the shape of the coefficients (penalty).

When we design the penalty, we can design it to favor models with desirable proper-
ties, such as a low number of parameters. This effectively adds a credibility component 
to the cost function and regularizes the likelihood.

The following is the general formula for penalized regression:3

 

bt = argmin
b

- LogLikelihood y, X,b` j+ m Penalty b` j

= argmin
b

NLL y, X,b` j+ m Penalty b` j.  (3.1)

In the formula, λ ≥ 0 is a positive number, referred to as the penalty parameter. 
The penalty parameter λ plays the role of a dial that assigns more or less importance 

3. Penalized Regression

3 Different formulations of the penalized regression can be found in the literature and in open-source solvers. For 
example, often the negative log-likelihood (NLL) is normalized by the number of observations n. In all cases, the 

 formulas are equivalent after a reparameterization of the parameter (for example m "
n
m

).
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to the goodness of fit of the model in the training database or to the prior structure of 
the coefficients.

Penalized regression is a well-established technique in machine learning with a 
massive amount of accompanying research and literature. This section gives only a 
very basic introduction to the topic, and we refer readers to Hastie, Tibshirani, and 
Friedman (2009) and van Wieringen (2015) for a more in-depth (and mathematically 
dense) treatment of the subject. Wüthrich and Merz’s (2023) book and the final chapter 
of Goldburd et al. (2016) discuss penalized regression from an actuarial perspective.

There are three main, established types of penalties:

• The ridge penalty is given by the sum of squares (or l2 squared norm) of β, that is,

Ridge b` j =
2
1

b j
2

j= 1

p/ =
2
1
b 2

2 .

• The lasso penalty is given by the sum of the absolute values (or l1 norm) of β, that is,

Lasso b` j = b j
j=1

p

/ = b 1 .

• The elastic net penalty is a blend of both the ridge and the lasso penalties, linearly 
combined via a user-defined parameter 0 < α < 1:

Elastic Neta b` j = 2
1- a

jb j
2 + a j b j/ ./

Penalized regression techniques such as the lasso and the ridge are at their core very 
similar to GLMs in their mathematical specification (Goldburd et al. 2016) in that 
they preserve the same underlying structure:

• The estimated parameter is related to a linear combination of the explanatory 
variables by a link function (Section 1.2).

• Observations are assumed to follow a distribution around the estimated parameter 
(Section 1.3).

• The table-based output (Section 1.5) and the variable parametrizations are preserved.

The primary difference is given by the choice of the penalty (lasso or ridge) and the 
value of the penalty parameter λ. Those choices will determine the difference between 
the estimates of the parameters β of a penalized model and those of the unpenalized GLM.

3.1.1. Role of Penalty Parameter l
The parameter lambda λ ≥ 0 is of fundamental importance in the penalized regres-

sion framework.
When λ = 0, the penalty term is removed and the resulting model is an unpenalized 

GLM. In this case, the coefficients can be quite noisy as they fully react to the data. 
When λ is sufficiently large, the penalty term in Equation 3.1 gains increasingly more 
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importance. Since the aforementioned penalties are designed to regularize or shrink the 
coefficients toward zero, a large penalty term leads to a solution whose coefficients will 
be either zero or a negligibly small number depending on the type of penalization.

For a fixed parameter λ, as the β coefficients move away from zero, the value of the 
penalty term increases.

In these scenarios, the exact behavior of the coefficients is decided by the type of 
penalization, as we’ll detail in the next sections.

The penalty parameter is sensitive to the parameterization of the feature matrix X:  
for a given value of λ, the result will differ if the same quantity is, for example, expressed 
as miles or in kilometers. For this reason (among others), it is best practice to automati-
cally standardize the features4 before solving Equation 3.1.

Most statistical software supporting penalized regression, both proprietary and open 
source (glmnet in R or scikit-learn in Python), provide ways to automate the different 
steps in the computation: automatically standardize the coefficients, fit the penalized 
model, and return the unstandardized coefficients.

3.1.2. Ridge Regression
The formula for ridge regression adds the ridge penalty term to the GLM likelihood 

optimization:

bt Ridge = argmin
b

NLL y, X,b` j+ m
2
1

ib i
2/

J

L
KK

N

P
OO.

The formulation of the ridge penalty can be traced back to Hoerl (1962). The wide 
adoption of ridge regression is a consequence of its ability to provide stable estimates 
with highly correlated variables. GLMs are known to become unstable in the presence 
of highly correlated variables due to aliasing (see Section C.2). The ridge penalty term 
provides protection against the coefficients “blowing up” as they might in a GLM.

Figure 3.1 shows the differences in the GLM output coefficients between various 
ridge models with a varying λ.

We observe that the greater the penalty, the more the coefficient tends to be shrunk 
toward zero, compared with its unpenalized GLM counterpart (λ = 0). Furthermore, 
the amount of shrinkage depends on the underlying amount of exposure: the lower 
the exposure, the higher the magnitude of the shrinkage as the penalty changes. This 
property matches the behavior of Bühlmann’s credibility method. In Appendix A we 
prove that under some underlying hypotheses, ridge is a multivariate transposition of 
the Bühlmann credibility, where Bühlmann’s K has a one-to-one correspondence with 
ridge’s λ parameter.

We can get a more holistic representation of the relationship between the penalty 
and the models’ parameters by visualizing the coefficient path. Figure 3.2 shows the 

4 Standardization involves rescaling the features (or columns) of the data set X so that they have a mean of 0 and  
a standard deviation of 1.
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Figure 3.1.  Comparison of an unpenalized GLM and a GLM with various,  
increasing levels of ridge penalty. Simple GLM corresponds to the fit with l 5 0.

Figure 3.2.  Coefficient path plot of Figure 3.1, obtained by computing solution for 
a wide range of penalty parameters. Dotted lines represent the values of l penalty 
used to represent Figure 3.1. At very high values of the penalty (on the right), the 
coefficients are heavily shrunk and close to zero. Conversely, for very low values 
of the penalty, on the left, the coefficients are materially equal to the unpenalized 
GLM estimates.
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movement of standardized coefficients with varying λ for ridge regression. A high penalty 
term will shrink all coefficients to a negligibly small value but will not reduce them 
directly to zero. As the penalty term decreases, all standardized coefficients increase 
gradually.

3.1.3. Lasso
The formula for the lasso regression adds the lasso penalty term to the GLM likeli-

hood optimization:

bt Lasso = argmin
b

NLL y, X,b` j+ m j b j/b l.

Introduced by Tibshirani (1996), the lasso achieves sparsity—i.e., the ability to set 
coefficients that are nonsignificant exactly to zero—as part of the fitting procedure. This 
means that lasso can automate both variable and factor selection and estimation. 
The sparsity property of the lasso is at the root of its wide success in various applications.

Figure 3.3 compares an unpenalized GLM with lasso GLMs using increasing 
levels of λ. Similar to ridge, the lasso’s parameters tend to be shrunk toward zero. 
Further more, the lower the exposure, the higher the amount of shrinkage. The main 
difference is that for certain values of the parameter βLasso, the parameters βj are set to 
zero, causing the rating plan coefficient to shrink to 1.0 after the application of the log 
link (exp(0) = 1).

The lasso’s ability to set coefficients to zero and thereby perform variable selection 
is shown through the coefficient path (Figure 3.4).

Figure 3.3.  Comparison of an Unpenalized GLM and a GLM with Various,  
Increasing Levels of Lasso Penalty
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In lasso penalization, a sufficiently high penalty term will set all coefficients exactly 
to zero. As the penalty decreases, coefficients will overcome the penalty and are introduced 
into the model at different times.

The interested reader can investigate the ability of lasso to achieve sparsity:

• Section A.3 shows how sparsity arises from a Bayesian perspective (priors).
• Appendix D illustrates an optimization perspective. In particular, it explains with 

simple arguments why introducing the absolute value function |β|, which is non-
differentiable, leads to sparsity and variable selection.

Elastic Net
In the presence of strong collinearities among the variables X, the lasso and ridge 

may behave differently:

• Ridge will include all collinear variables and attribute a similar parameter βj to each 
one of them.

• Lasso will likely select one of the correlated variables and set the others to zero.

Depending on the use case, a modeler could benefit from including both the ridge 
and lasso penalties in the same model. The flexibility of the penalized framework allows 
one to combine both penalties. This approach is known as elastic net, whose penalty 
is a convex combination of both the lasso and ridge penalties:

bt Elastic Net,a = argmin
b

NLL y, X,b` j+ m
2

1-a
jb j

2 + a/ j b j/
J

L
KK

N

P
OO.

Figure 3.4.  Coefficient path plot of Figure 3.3, obtained by computing solutions 
for a wide range of penalty parameters. Dotted lines represent the values of l 
penalty used to represent Figure 3.1. Coefficients are completely removed from 
the model using lasso penalization with a sufficiently large penalty term.
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Figure 3.5.  Comparison of an Unpenalized GLM and One with Various Increasing  
Levels of Elastic Net Penalty

Figure 3.6.  Coefficient path plot of Figure 3.5, obtained by computing solutions 
for a wide range of penalty parameters. The elastic net coefficient path is a 
blend of both the lasso and ridge coefficient paths, allowing for both variable 
selection and shrinkage of the coefficients.

Figure 3.5 compares an unpenalized GLM with GLMs that incorporate various 
levels of elastic net penalty. Figure 3.6 shows the coefficient path for the elastic net, 
showcasing its ability to combine both the ridge regression and lasso behavior.

The elastic net requires the modeler to define an additional hyperparameter α on 
top of the parameter λ. In general, the choice of the parameter α depends on the nature 
of the data, and the methodology to compute this parameter is outside of the scope of 
the monograph.



Casualty Actuarial Society 21

Penalized Regression and Lasso Credibility

3.2. Lasso is Recommended for Actuarial Applications
A sparse statistical model is one having only a small number of nonzero parameters or 
weights. It represents a classic case of “less is more”: a sparse model can be much easier 
to estimate and interpret than a dense model. In this age of big data, the number of 
features measured on a person or object can be large, and might be larger than the 
number of observations. The sparsity assumption allows us to tackle such problems 
and extract useful and reproducible patterns from big datasets.

—Hastie, Tibshirani, and Wainwright (2015),  
Statistical Learning with Sparsity

As shown in Figure 3.4, for certain values of the parameter λ, some coefficients are 
shrunk exactly equal to zero. Since the solution of a lasso can set some of the coefficients 
exactly to zero, lasso is a natively sparse model.

On the other hand, the ridge penalty, as shown in Figure 3.2, does not have the 
ability to set coefficients directly to zero—hence it is not a natively sparse model. We 
won’t detail all the purely statistical benefits of sparsity here as literature already exists 
on the subject, such as Hastie, Tibshirani, and Wainwright (2015).

In addition to statistical benefits, sparsity is valued for its actuarial benefits:

• A sparse actuarial pricing model will be more stable over time than a dense model. 
Avoiding constant changes in pricing characteristics is valued by insurers, regulators, 
and customers.

• A sparse actuarial pricing model will be simpler than a dense model. Interpretability 
is valued by internal stakeholders as well as regulators and policyholders.

• A sparse modeling technique automatically sets a statistical materiality standard. This 
clarifies the boundary between actuarial and statistical judgment during modeling 
and during model review.

Additionally, lasso penalization exhibits a desirable responsiveness to significant 
coefficients. Factor curves can be concave in lasso penalization as shown in Figure 3.4, 
and this allows a lasso model to be more immediately responsive to signal than ridge 
or elastic net. Once a variable has passed the threshold of materiality, its coefficient 
may grow quickly. Ridge penalization instead reacts slowly as all coefficient paths grow 
slowly at first and only quickly increase as the penalty term gets quite low.

We therefore recommend the use of lasso penalization for most actuarial applications. 
As we will see later, lasso penalization is ideal for the application of penalized regression 
as a credibility procedure.

3.3. Selecting the Penalty Parameter
The preceding sections emphasized the penalized regression framework’s ability to  

incorporate credibility within a GLM through the introduction of both a penalty struc-
ture (ridge or lasso) and a penalty parameter λ. This penalty parameter clearly plays a 
critical role in determining the final estimates of the model, as we saw previously in 
Figure 3.1 and Figure 3.3.
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While this section focuses on describing the standard methodologies selecting the 
penalty parameter in a penalized regression, it is important to note that the final decision 
on the penalty parameter should not be based solely on data-driven considerations. 
Actuarial judgment is also crucial and may be reflected in the choice of a slightly higher 
penalty parameter. This way, the final estimates can give more weight to the complement 
of credibility or a prior assumption.

Since the incorporation of actuarial judgment in the estimates can be better described 
under a more practical use case, we refer to Chapter 6 as a supplement to the method-
ology outlined here.

A “correct” value of the penalty parameter λ cannot be found via an explicit, analytical 
formula. This differs from other parameters used in actuarial methods, and the reason 
can be traced to the multivariate nature of the penalized regression.5

The lack of standard formulas is not in itself a limitation, as it allows a practitioner 
to approach the selection of the penalty parameter from a different, and in a sense, 
more practical perspective.

One of the desired behaviors of a model estimate is to generalize well to unseen data, 
and hence it is appropriate to choose statistical quality of fit (as measured by deviance 
or Gini) as the criteria to select the most appropriate penalty parameter. The standard 
procedure for choosing the penalty parameter consists of computing the generalization 
performance of a range of penalty values, and then selecting the value that has the best 
generalized predictive power.

The generalization performance is usually approximated via cross-validation (Hastie, 
Tibshirani, and Friedman 2009), which is a general procedure that allows us to “simulate” 
the behavior of a model with previously unseen data.

Figure 3.7 illustrates the procedure by which to evaluate, select, and validate the 
choice of a penalty parameter. We start by dividing the data into two sets: the modeling 
set and the validation set. The modeling set is used to build the model, and the validation 
set is used to assess the final model’s performance.

We perform cross-validation on the training set, which involves dividing it into 
four (or any number of ) folds and using each fold in turn as the test set while the rest 
is used for training. For each trained cross-validation model, we calculate performance 
metrics such as deviance, Gini, and pseudo-R2 on the corresponding testing fold. These 
metrics are then combined to estimate the penalty parameter’s performance on unseen 
data. Most solvers incorporate cross-validation routines, returning the penalty parameter 
value with the best average metric across all folds.

5 This differs from standard credibility procedures, which do require the preliminary computation of some data-
driven quantity of interest—for example, the K parameter in Bühlmann credibility (Table 2.1). This quantity is 
estimated via standard formulas (Bühlmann and Gisler 2005), which in particular require the estimates of average 
and variances for each of the individual classes. This implies that the quality of the estimator of K decreases as the 
number of individual classes are considered. When considering a multivariate model, as in penalized regression, 
the amount of observations sharing the exact same characteristics increases so significantly that these explicit 
formulas cannot be applied.
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When selecting an optimal cross-validation penalty parameter, it is crucial to 
examine the overall results of the cross-validation process. Figure 3.8 demonstrates the 
evolution of cross-validation outcomes as the penalty parameter increases. Each red point 
signifies the mean error for a given penalty, while the error bars indicate the metric’s 
variation within each score. Notably, even though the optimal penalty parameter λopt is  
identified, penalties within a (log) distance between −1 and 1 exhibit comparably similar 
results when accounting for score variation.

Figure 3.7.  The Recommended Setup for 4-Fold Cross-Validation is a 
20%/20%/20%/20% Split for Training and Reserving the Remaining 20%  
as a True Holdout Set

Figure 3.8.  The model performance as measured by Gini increases as lambda 
increases up to a point, and then begins to decrease. Error bars represent  
the range of Gini calculated in cross-validation.
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Given these observations, the cross-validation procedure should not unilaterally 
dictate the penalty parameter selection. Instead, it provides a range of viable penalties 
that actuaries can scrutinize by analyzing the model’s coefficient values, among other 
factors such as overall reasonability of the model and other actuarial considerations. 
In this way, although the cross-validation process assists in informing the penalty 
parameter choice, the final value should always be assessed for actuarial appropriateness. 
One frequent application of actuarial judgment is to select a marginally higher penalty 
value, leading to estimates closer to the selected complement of credibility.

After selecting the final penalty parameter value and finalizing input variables, the 
modeler should validate the model on the holdout validation set, which has not been 
used during the cross-validation routine, as seen in the “Validation model” column of 
Figure 3.7. When comparing a proposed model to a current model, double lift charts 
built on the full k-fold training set will not be helpful as an overfit model will seem 
to outperform a properly fit model. A true holdout set allows candidate models to be 
compared fairly on data neither model has seen before.

3.4. Lasso and Variable Transformations
There are various ways to include a variable in a GLM model. The GLM mono-

graph by Goldburd et al. (2016) splits the nature of predictor variables into two groups: 
categorical and continuous.

We analyze the impact of the lasso penalty for each of these variable types and 
additionally provide a specific discussion of ordinal and control variables.

3.4.1. Categorical Variables
A categorical variable takes on one of two or more possible values, thereby assiging 

each risk to a “category.” Each of these values (levels) is modeled independently—i.e., 
it has a dedicated coefficient βj. In a GLM (penalized or unpenalized), a categorical  
variable is represented by collections of βj, each representing the impact of each category 
with respect to an arbitrary fixed level, called the “base level.” Including or excluding 
a specific coefficient βj determines whether such a level is deemed significant by the 
modeler.

In Figure 3.9, we repurpose Figure 3.3 to illustrate the impact of the penalty on 
categorical variables.

Depending on the strength of the penalty, the lasso sets some coefficients to zero, 
thus providing an adaptive grouping of those less significant levels with the base. For 
the other selected levels, the value of the coefficient provides a “credibility-weighted” 
deviation from the base level. It is worth noting that unlike in a GLM, the predictions 
from penalized regression will change if a different base level is selected. In a GLM, 
the predictions will be the same but the confidence intervals and p-values will be dif-
ferent. Readers are encouraged to see how much this choice matters in the case study 
(Chapter 7) by changing the selected base level for various categorical variables.



Casualty Actuarial Society 25

Penalized Regression and Lasso Credibility

3.4.2. Continuous Variables
A continuous variable is a numeric variable that represents a measurement on 

a continuous scale. In a GLM, continuous variables can be represented by one or 
multiple coefficients β according to the nature of the variables and the modeling 
decisions.

We start by evaluating the impact of the lasso penalty for a linear representation 
of a continuous variable: a single coefficient β is associated to a variable via the rela-
tionship βx. The β value represents the slope of the linear impact of the variable in the 
model. Since the lasso penalty either shrinks or sets to zero the coefficient, the impact 
of the penalty will correspond in a slope reduction or removal of the variable depend-
ing on the strength of the effect as seen in Figure 3.10.

Whereas categorical variables identify a change in level, continuous variables iden-
tify a change in slope. Continuous variables may be appropriate for lasso penalization, 
but we will see that continuous variables are quite difficult to use in lasso credibility 
(defined in Chapter 5).

To make matters more challenging, in practical applications, the linear representa-
tion may be overly simplistic due to the nonlinearities naturally arising in insurance 
data. Examples could be either age of home or age of driver. Those variables may be 
represented by multiple coefficients βj, each mapped to the parameter of some non-
linear curves. One such example is a third-degree polynomial encoding, where for a 
given variable x three coefficients β1, β2, β3 will represent respectively a linear, a parabolic, 
and a cubic function. Under such a representation (or feature engineering) the inter-
pretation of each individual coefficient is less intuitive: the modeler can determine the 

Figure 3.9.  Comparison of an Unpenalized GLM and a GLM with Various, Increasing 
Levels of Lasso Penalty
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appropriateness of the factor only by plotting the joint effect of the coefficient to the 
variable as illustrated in Figure 3.11.

Since the direct interpretation of each individual coefficient to the model is not 
clear, for such feature engineering sparsity is less necessary. Furthermore, polynomial 
feature transformations give rise to correlated predictors (x, x2, x3). One caution when 
using lasso for variable selection is that the presence of many highly correlated predic-
tors will produce suboptimal results due to the staggered entrance of such predictors 
(Hastie, Tibshirani, and Friedman 2009). Using lasso to determine the optimal com-
bination of feature transformation is not recommended.

The modeler wishing to extensively combine polynomial terms or implement other 
complex feature transformations such as linear or cubic splines may find it beneficial to 
include some ridge penalty via the elastic net penalized regression. On the other hand, 
the lasso penalty allows us to model nonlinearities in a much more efficient manner 
than unpenalized GLMs via the ordinal treatment.

3.4.3. Ordinal Variables
An ordinal treatment of a variable relies not on the numeric values of the vari-

able but instead on stepwise indicators. Under such a treatment, when a coefficient 
is zero, it results in the grouping of two consecutive levels. Such a representation is 
extremely powerful and allows the lasso penalty to automatically detect nonlinear 
effects.

The idea of blending an ordinal treatment with lasso penalized regression was 
originally proposed by Tibshirani et al. (2005) in their fused lasso paper. From that 
paper, several variations of the lasso penalty have been explored and discovered in various 
fields. In the actuarial field, this methodology is explored from two different perspectives. 

Figure 3.10.  Lasso Fit for Various Penalty Values l for a Continuous Variable
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In the accurate GLM (AGLM) method of Fujita et al. (2020), variables are transformed 
and encoded through step or binary transformations. In the derivative lasso of Casotto 
and Holmes (2023), the difference between these consecutive numeric levels is penalized 
directly. The results in both cases coincide.

Figure 3.12 represents the resulting effects of varying levels of lasso penalty for 
ordinal variables.

Ordinal variables also help in the selection of an actuarially sound penalty term. 
We can start with the statistically optimal penalty term and then increase it slightly until  
any unintuitive behaviors are penalized out of the model. In Figure 3.12, suspicious 

Figure 3.11.  Lasso fit for various penalty values l for a third-degree polynomial 
fit b1x 1 b2x2 1 b3x3 on a continuous variable. The top of the illustration represents 
the cumulated effect of the polynomial curve with different degrees of penalization, 
which results in an overall shrinkage of the curve. The bottom of the illustration 
provides the plot of the change of the individual polynomial function bix i to the 
varying degrees of penalty.
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reversals present in the small penalty scenario are subsequently canceled in the medium- 
and large-penalty scenarios. The medium penalty can be considered both statistically 
and actuarially appropriate.

3.4.4. Control Variables
Control variables like “year” and “state” are often used in loss models to account 

for (control for) the signal from such variables so that they do not flow into other risk 
characteristics. In GLMs, such variables are often left in the model regardless of signifi-
cance. In lasso regression, it may happen that some levels of these control variables will 
be removed from the model by penalization.

Whether or not to apply a penalty term to such special factors is a modeling and 
actuarial decision, and both options can be motivated by different arguments. In most 
cases, allowing control variables to be fitted and penalized with other variables is 
appropriate. By fitting them at the same time, the model has the opportunity to allocate 
signal appropriately between control variables and potentially correlated predictor 
variables. Additionally, if a control variable is removed from a model through penal-
ization, it is unlikely that the limited signal will have a material effect on correlated 
predictors due to the same penalization.

If a modeler wants to ensure that a control variable soaks up all the signal that it  
possibly can (at the risk of taking signal away from predictor variables), it may be appro-
priate to apply a stepwise modeling approach. A modeler could first fit the control 
variables and optionally a few key predictors with a low or absent penalty term. Then, 
they can offset the coefficients for those control variables when fitting their desired 
model with an appropriate penalty term. Using the stepwise approach, the modeler is 
deciding to give less of a penalty to their control variables.

Figure 3.12. Lasso Fit for Various Penalty Values l for an Ordinal Variable
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3.5. Lasso for Variable Selection
One can also use lasso penalization for variable selection because of its ability to set 

coefficients directly to zero while maintaining a material coefficient for other variables. 
A modeler can start with a lambda that is sufficiently high to remove all variables from 
the model. Then, the modeler can gradually decrease the penalty until variables begin 
to enter the model. In our earlier example (Figure 3.4), this method may be appropriate 
for variable selection. This approach is not possible with ridge, as the descent of all 
coefficients is much more uniform, and coefficients are never set directly to zero.

One caution when using lasso for variable selection is that the presence of many 
highly correlated predictors will produce suboptimal results due to the staggered 
entrance of these highly correlated predictors. Such a highly correlated collection may 
arise when including a wide variety of transformations of the same variable in a model 
(e.g., x → x2, x3, log(x), . . .) as seen in Section 3.4.3. Using lasso to determine the  
optimal combination of feature transformation is not recommended. Instead, some 
amount of variable pruning is necessary, and we recommend actuarially selecting between 
highly correlated predictor variables before using lasso for variable selection.
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4.1. Introducing the Bias–Variance Trade-Off
We have explained what penalized regression is, but we have yet to demonstrate 

how it improves upon an unpenalized GLM. The core of this argument is intuitively 
supported by our cross-validation lambda grid search (Figure 3.8). At the leftmost point, 
the performance of a GLM is displayed. As we increase the penalty, the performance 
increases up to a maximum, and then decreases. This is not by chance, nor is it a cherry-
picked example from the data. Both in practice and theory, this happens consistently: 
a model with (the right amount of ) penalization will outperform a standard GLM. 
This fact is determined by what is known as the bias–variance trade-off.

The bias–variance trade-off is a very generic and general concept in machine 
learning. Bias here must not be confused with “biased” model in the context of pro-
tected classes as described in Mosley and Wenman (2022). It may be helpful to also 
remember that mean squared error (MSE) decomposes directly to bias and variance: 
MSE = Bias2 + Variance. When the bias–variance trade-off is improved, the MSE 
decreases.

We introduce the concept of the bias–variance trade-off from the perspective of 
a GLM, and demonstrate how variable selection is often performed to maximize this 
trade-off. The trade-off may be viewed analogously as underfitting versus overfitting:

• A model with high bias is often described as underfit.
• A model with high variance is often described as overfit.

We then show how penalized regression reduces variance through coefficient 
shrinkage rather than manual coefficient removal. Finally, we draw connections between 
the bias–variance trade-off and both penalized regression and credibility. These con-
nections will help lay the groundwork for the treatment of penalized regression as an 
actuarially sound credibility procedure.

4.2. Defining the Bias–Variance Trade-Off
Statistical theory shows that the error of any model on unseen data is the sum of 

two kinds of errors: the bias and the variance as described in Figure 4.1.

• Bias represents the error between the model we are building and the “real” model. 
Assuming we have access to infinite data, the bias will measure how the structure 
of the model we are building will replicate the “real” underlying model.

4. The Bias–Variance Trade-Off
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• Variance represents the error of building the model on the specific data set that we 
used to fit the model versus other, richer data sets. This component becomes more 
important the smaller the data set and the “noisier” the effect. Unfortunately, small 
noisy data is quite common when dealing with insurance data.

Minimizing the generalization error is desirable when building models, and ideally 
one will look to minimize both the bias and variance error components simultaneously. 
Unfortunately, the bias–variance trade-off highlights a harsh truth: minimizing one  
of either model bias or variance will irremediably increase the other. Finding the model 
with the minimal error requires finding the optimal bias–variance trade-off.

Figure 4.1.  In a hypothetical scenario where we have 
access to an almost infinite amount of data, we would 
favor a very complex model such as the one on the right 
with plenty of variables (low bias). However, in a realistic 
scenario with limited data points, such a model will 
poorly generalize due to the instability of the parameters 
(high variance). Conversely, if we were to choose a too 
simplistic model, we could obtain a very stable model 
having low variance but very high bias. In practice we 
would always favor a right trade-off between bias  
and variance.
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4.3. Bias–Variance Trade-Off: A GLM Perspective
As a reminder, variance represents the error of building the model on a specific 

data set used to fit the model versus other, richer data sets. Imagine you are building 
a two-variable model on your own imperfect modeling data set. If you magically had 
twice the amount of data, the modeled coefficients would be more accurate and the 
predictions would have less error. Double it again, and this improvement continues. 
The error being reduced due to modeling on a richer data set is error introduced by 
variance.

Unfortunately, we cannot magically double our data. Some modeled coefficients 
may be unreliable, and a typical solution is to remove those coefficients from the 
model. You may decide to remove one variable and now you are left with a one-
variable model. No matter how much data is added to this one-variable GLM, the 
coefficient for our removed variable is fixed at 0 and its error will never increase or  
decrease. The error between 0 and the coefficient’s true value is the error introduced 
by bias.

Did we make the right decision? That depends. If we leave the variable in our model, 
how much error in our predicted estimates is introduced by variance? If we remove the 
variable, how much error is introduced by the bias of setting this coefficient directly to 
zero? Before describing how the trade-off can be maximized through penalization, let’s 
explore an example of the trade-off in an unpenalized GLM.

Let’s think back to our homeowners example GLM in Section 1.6. In the second 
scenario, the fire extinguisher variable certainly has an impact on the target we are 
modeling. However, the amount of underlying exposures is so limited that the resulting 
GLM estimate will have a high variance.

In Table 4.1, model 1 is our original model and model 2 is a new model fitted 
without the fire extinguisher indicator.

Table 4.1.  Sample GLM Results for Models Fit  with  
and without the Fire Extinguisher Variable

Model Output Model 1 Model 2

exp(Intercept) 100 105

exp(βno fire extinguisher) 1.2 NA

exp(βage of home) 1.01 1.01

Average overall prediction 110 110

NA = not applicable.

 
Risk Description

Model 1 
Prediction

Model 2  
Prediction

No extinguisher, home age 0 120 105

With extinguisher, home age 0 100 105
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By removing the fire extinguisher variable, we have certainly reduced the variance 
of our model. Remember that the variance represents the error of building the model 
on the specific data set we used to fit the model versus a different or more robust data 
set. When we remove this variable, the factor for not having a fire extinguisher will 
be the same on any data set that we use: 1.0. Certainly we will not see an increased 
or decreased error from the fire extinguisher variable on a different data set. Now, the 
question is whether the removal of this variable and corresponding reduction in vari-
ance introduces too much bias into our model. Are we potentially moving too far away 
from the “real” model by removing this variable?

If we include too many variables in our model, it will have a high variance and be 
overfit. To take an extreme example, imagine that only a single policy does not have a 
fire extinguisher. The extreme resulting relativity would be quite overfit to the training 
data and would perform poorly on the holdout data. It is intuitive that adding more 
and more information on policies without fire extinguishers would decrease the error 
of this model.

If we do not include enough variables in our model, it will be biased and underfit. 
Underfit models are excluding relevant information that could make for a more accu-
rate prediction. If we remove the fire extinguisher variable, we may be excluding rel-
evant information. The decision about whether to include a variable is made through 
an evaluation of the bias–variance trade-off.

4.4. Evaluating the Bias–Variance Trade-Off
We evaluate the bias–variance trade-off in a GLM after model fitting using various 

statistics. The traditional metrics are the Akaike information criterion (AIC) and the 
Bayesian information criterion (BIC):

AIC b` j = 2NLL b` j+ 2 # of degrees of freedom$ ..

BIC b` j = 2NLL b` j+ log nobs` j # of degrees of freedom$ ..

Both metrics are “penalized” measures of fit, as they are both the sum of two terms:

• The “likelihood” term, expressing the quality of fit within the training set
• The “degrees of freedom” term, which expresses the complexity of the model in 

terms of number of parameters

Both the AIC and the BIC are metrics that penalize the goodness of fit based on 
the number of coefficients in the model. There is a hurdle in the measure of fit that 
each coefficient must overcome to be included in the model.

If our fire extinguisher variable overcame this improvement and model 1 had a 
better AIC than model 2, model 1 would be superior and model 2 would be considered 
biased and underfit. If model 2 had a better AIC, this is a sign that the additional 
variable is not adding sufficient power and model 1 may have too much variance and 
be overfit.
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It is impossible to improve both bias and variance simultaneously. When 
building a traditional GLM, the tools available to the modeler to maximize the bias–
variance trade-off are the addition and removal of variables. A modeler must make use 
of post hoc penalized measures of fit like the AIC and the BIC to determine the bias–
variance trade-off of a variable in a GLM.

Conversely, it is possible to find the bias– variance trade-off that best general-
izes on unseen data. In fact, we demonstrated this optimization process earlier by the 
selection of a lambda penalty parameter through cross-validation. Rather than using 
a post hoc penalized goodness-of-fit statistic to evaluate the bias–variance trade-off of 
variable inclusion and exclusion, lasso penalized regression uses shrinkage to apply an 
optimal bias to coefficients during the fitting process. If the coefficient that maximizes 
this trade-off is zero, lasso penalization will remove the coefficient from the model 
completely. The use of penalization within the model fitting process removes the need 
for post hoc penalized metrics.

Section C.3 further develops how the generalization error can be measured. In 
particular, it shows how cross-validation can be seen as a better alternative to AIC and 
BIC, and further details the connections between AIC and BIC and penalized regression.

In more traditional actuarial analysis, this bias–variance trade-off is often addressed 
through credibility procedures.

4.5. Bias–Variance Trade-Off and Credibility
Let’s think conceptually about the bias –variance trade-off and credibility using the 

fire extinguisher variable from our earlier example model. In the example, our data was 
showing an indicated factor of 1.2. If our data is thin, we might combine this with a 
selected complement of credibility of 1.1 using classical or Bühlmann credibility:

Credibility-weighted factor = 1.2# Z +1.1# 1- Z` j.

By weighing these together, the resulting estimate between 1.2 and 1.1 will have 
less variance than 1.2 alone if we have selected a stable, reasonably uncorrelated 
complement.

However, we are now introducing a bias to our models. Our selected complement 
of credibility is not based on the data, and therefore imposes a potential source of error 
outside of the data. The Z used in credibility is calculated to maximize the bias–variance 
trade-off by reducing the variance of a partially credible estimate through the intro-
duction of an informed bias to the estimate.

The shrinkage introduced by penalized regression similarly introduces a bias to 
reduce the variance of estimated predictive values. The difference between this example 
and traditional penalized regression is that when using credibility, we are biasing our 
estimate toward a selected complement instead of a null coefficient. We now explore how 
penalized regression acts as a credibility procedure through this introduction of bias. 
This introduction lays the foundation for our later discussion on the implementation 
of lasso credibility.
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4.6. Penalized Regression and Credibility
Let’s again return to our fire extinguisher–only model. A GLM that has been fitted  

using only the fire extinguisher variable will produce a coefficient corresponding exactly 
to the pure premium relativity of the two categories in the data. Owing to the full cred-
ibility assumption of GLMs, the coefficient will correspond exactly to this relativity 
no matter how few exposures are in the “No” category. This is the unpenalized graph 
in Figure 4.2.

Now, we are going to apply a lasso penalty to our model. By introducing a suffi-
ciently large penalty term, our output coefficient for “No” will shrink all the way to 

Figure 4.2.  The experienced (purple) and the indicated relativity (yellow) are 
shown across different values of penalization l for the fire extinguisher variable. 
The experienced and indicated relativities completely overlap without penalization.
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zero and be removed from the model. This extreme application of bias is effectively 
assigning no credibility to the data. This is represented by the fully penalized graph in 
Figure 4.2.

When lambda is between these two extreme values, the coefficient will be some-
where between the GLM estimate and zero.

The bias that penalization introduces can be restated in the traditional credibility 
equation. We can represent every predicted value of βi using a credibility value of  
0 < Z < 1 by weighing a fully credible GLM estimate βGLM with the noncredible 
coefficient estimate of 0. Note that Z is arbitrary and cannot be directly calculated 
from the selected penalty parameter:

b i = bGLM # Z` j+ 0# 1- Z` j.

This similarity is not a coincidence. In Section A.2, we prove that Bühlmann cred-
ibility and ridge penalization are in fact equivalent in a special case. The mathematical 
relationship between penalization and credibility has been explored in Miller (2015) and 
Casotto, Banterle, and Beraud-Sudreau (2020), and we include a detailed explanation 
of the relationship between penalized regression and Bayesian statistics in Appendix A.  
Additionally, Appendix B contains a robust defense of penalized regression as an actu-
arial credibility procedure through the lens of ASOP 25. Rather than simply being 
“credibility-like,” we suggest that penalized regression, when used properly, can be applied 
as an actuarially sound credibility procedure in the form of lasso credibility.

4.7. Conclusion: Benefits of Lasso Penalization
Penalized regression applies a penalty term to the size of coefficients during the 

maximization of likelihood. The penalty value λ adjusts coefficients for their credibility 
and volatility. Selecting the penalization factor allows one to find the optimal gener-
alization error of the bias–variance trade-off. Therefore, it is not necessary to perform 
post hoc significance testing to ensure that all coefficients are valid. To the extent that a 
variable is not beneficial to the fitting process, it is given partial credibility and shrunk 
toward zero during the fitting process. Lasso penalization will fully remove noncredible 
coefficients from the model during the fitting process.

This evaluation of coefficients during the fitting process directly addresses the issues 
with p-value significance testing discussed in Section 1.6.1.

Lasso penalization

• answers the question “Is this coefficient credibly not zero, and how much can we 
trust this coefficient?” as opposed to just “Is this coefficient likely not zero or more 
extreme?”;

• provides a sound estimate of how much a coefficient or effect can be trusted—
rather than a post hoc univariate adjustment for p-values close to 0.05, penalized 
regression automatically shrinks such coefficients by optimizing the bias–variance 
trade-off in a multivariate analysis (estimates are developed jointly considering 
correlations, and not on a one-by-one basis, as in GLM or p-values);
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• does not use an arbitrary threshold of significance (e.g., 5%) but instead removes 
coefficients that do not overcome the penalty parameter (this penalty parameter is 
tuned and adjusted for each model individually based on sound procedures);

• does not require the post hoc removal of variables and refitting, as it will automati-
cally remove noncredible variables during the fitting process; and

• does not require the post hoc adjustment of variables based on significance testing, 
as those variables are adjusted on a multivariate basis during the fitting process 
based on their credibility.

Penalized regression takes the null hypothesis in p-value significance testing and 
instead uses a version of this hypothesis as the complement in a credibility procedure. 
Whereas variable evaluation in GLMs is a binary, often univariate, post hoc process, 
variable evaluation in penalized regression is a continuous, multivariate process that 
occurs during model fitting.

Now that we have introduced penalized regression as a credibility procedure using 
a significance test’s null hypothesis as a complement, we are ready to change this com-
plement to something more actuarially appropriate through lasso credibility.
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We have identified penalized regression as a credibility procedure where the complement 
of credibility is a null coefficient β = 0. This complement of credibility coincides with 
the null hypothesis in p-value testing. The next logical step is to enhance this procedure 
by using a more appropriate complement of credibility than β = 0 for all β.

Implementing such a credibility procedure has three requirements: an offset repre-
senting the complement of credibility, an ordinal or categorical treatment of all variables, 
and the use of penalized regression as the credibility procedure. This methodology is 
best applied through lasso penalization instead of ridge or elastic net, and we will refer 
to it as lasso credibility.

5.1. The Offset: Applying a Complement in Lasso Credibility
In actuarial modeling, the offset has traditionally been reserved for the application 

of weights as well as deductibles, limits, or other rating relativities that are best selected 
outside of a GLM. The reader can find a comprehensive overview of the applications 
of offsetting in Yan et al. (2009). When applied to GLMs and traditional penalized 
regression, an offset is normally included without a corresponding predictor variable.

The mathematical definition of an offset is a fixed column of coefficients that 
contributes to the linear component Xβ of a GLM or penalized regression:

h = g n` j = b 0+ Xb+ offset.

Consider the example in Section 4.5, where we wanted to incorporate a complement 
of credibility of 1.1 to the fire extinguisher variable.

Lasso credibility implements such a complement of credibility via a new applica-
tion of the offset. In lasso credibility (as opposed to GLMs or traditional penalized 
regression) it is necessary to include both an offset as well as the predictor variable 
for the same rating characteristic.

The model’s prediction can be stated as

 log n` j = log Prediction` j = b 0 + offset +b 1X 1 +b 2X 2

 

= b 0 +b 1 offsetX 1 +b 2 offsetX 2 +b 1X 1 +b 2X 2

= b 0 + b 1 offset+b 1` jX 1 + b 2 offset+b 1` jX 2 .  (5.1)

5. Lasso Credibility
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We see that the coefficients of the model can be decomposed into two components:

• The fixed component βj,offset fully determined by the modeler’s assumption
• The variable component βj, determined by the data and the methodology (GLM 

or penalized GLM).

Fitting this model as a GLM with or without an offset will yield the exact same 
predictions because of the GLM’s assumption of full credibility (see Section A.1). If 
the offset is not included, the GLM will output the best βj to maximize the likelihood 
in the optimization process. We call this βj,glm. If an offset is included, the GLM will 
output a βj such that

b j,offset+b j = b j,glm

and the likelihood is again maximized. The accompanying code for Chapter 7’s case 
study contains an example of a GLM with and without offsets producing the exact same 
predictions.

5.2. Ordinal Variables
Ordinal variables, like categorical variables, represent magnitude; continuous vari-

ables, on the other hand, represent slope. By representing every variable in the model as 
ordinal or categorical, all of the resulting coefficients represent a magnitude of change. 
That magnitude is consistent with traditional credibility approaches, and therefore 
actuarial judgment and the considerations of ASOP 25 are easy to apply. Additionally, 
by using an ordinal treatment of variables, lasso credibility can also automatically iden-
tify deviations from the selected complement of credibility without additional feature 
engineering.

By treating a continuous variable as a stepwise ordinal variable (one step for every 
driver age, for example), a lasso credibility model has the ability to identify the magni-
tude of a credible difference from the complement at any step. It is by chaining these 
ordinal steps together that lasso credibility can fit complex and unknown deviations 
from a complement of credibility. Those steps without a credible difference are auto-
matically removed when using lasso penalization, while steps with a credible difference 
are included. It is recommended that ordinal steps be sufficiently granular to not 
inappropriately pregroup levels of a given characteristic.

5.3. Lasso Credibility as a Credibility-Weighted GLM
We now focus on how penalized regression can be leveraged to find solutions that 

are trade-offs between the complement of credibility (here βoffset) and the observed data 
(in this case βglm).

Suppose that we are building a lasso regression model, with penalty level λ, with the 
following prediction structure:

Prediction = exp b 0+ b 1,offset+b 1` jx1+ b 2,offset+b 2` jx2+b l.. . .
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When λ = 0 (hence no penalization is used), the offset and modeled coefficients 
will sum to the unpenalized GLM coefficient as the coefficient will be given full 
credibility:

Unpenalized coefficient = b j,offset+b j

= b j,glm

When λ is sufficiently high (λ >> 0), all variable components βj will be removed 
from the model and our indicated coefficient will be βj,offset:

Fully penalized coefficient = b j,offset+b j

= b j,offset+ 0

= b j,offset

As demonstrated in Section 3.1.3, the coefficient of a penalized regression model 
moves from a GLM coefficient to zero as the penalty term moves from zero to a suffi-
ciently high number. In lasso credibility, we cannot separate the modeled coefficient 
from its accompanying offset. The graph in Figure 5.1 shows the paths of the combined 
offset and modeled coefficients in lasso credibility. Rather than shrinking to zero, our 
coefficient estimates collapse to our offset complement of credibility.

Therefore, for a general value of λ:6

b j,offset # b j,offset+b j,lasso # b j,glm if b j,offset # b j,glm

b j,offset $ b j,offset+b j,lasso $ b j,glm if b j,offset $ b j,glm

It follows that lasso credibility behaves as we would expect from a credibility proce-
dure and there exists a Z such that

Coefficient j = b j,offset+b ja k = Z # b j,glma k+ 1- Z` j# b j,offseta k

In this section, we have provided the intuition behind and practical effect of the 
relationship between penalized regression and credibility. In Appendix A we formalize 
this intuition and prove that penalized regression is a sound mathematical credibility 
procedure. Both Bühlmann credibility and penalized regression can be seen as examples 
of Bayesian estimation. Under a Bayesian interpretation, the connection between the 
two methodologies is evident. For the scope of this introduction, the reader can take 

6 The inequality is presented for illustrative purposes, and although it will hold in many situations, there are cases 
where it will not. In general, it will not hold when the coefficient will change sign through the coefficient path, 
which happens under high correlation. A comprehensive description of how the coefficient may change sign with 
varying λ can be found in Efron et al. (2004).
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for granted that penalized regression is a sound framework for applying credibility in 
a multivariate setting.

5.4. Terminology and ASOP 25
The terms in bold below are defined generally in ASOP 25’s Section 2, “Definitions”—

the definitions we provide in this list are meant to clarify how we apply the terms in the 
monograph going forward:

• Risk characteristics: the characteristics of the risk represented by our predictor 
variables

• Risk classification system: relativities assigned to predictor variables by the model
• Subject experience: experienced relativities in the modeling data set
• Relevant experience: the selected offset relativities or a 1.0 relativity
• Credibility procedure: lasso credibility (penalized regression)

Appendix B contains a more extensive description of penalized regression as a cred-
ibility procedure through the lens of ASOP 25. Possible complements of credibility 
will fulfill the requirements of ASOP 25’s Section 3.3, “Selection of Relevant Experi-
ence.” Additional guidance can be found in Boor (1996). Here are some examples of 
complements of credibility when using lasso credibility for a pure premium loss model:

• A 1.0 relativity (lasso credibility’s default assumption)
• A prior loss model’s relativities
• A countrywide loss model that includes the data being modeled as a small subset
• An existing rating plan
• Competitor relativities
• Industry relativities

Figure 5.1.  When Coefficients Collapse to Zero, the True Effect of the Variable 
Collapses to the Offset
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If all variables use the default assumption, we would refer to the model as lasso 
penalized regression instead of lasso credibility. We can use this 1.0 assumption in lasso 
credibility by including no complement where there is no prior knowledge of a vari-
able’s effect on risk and including an appropriate complement for other variables where 
such knowledge exists.

5.5.  Selecting and Evaluating a Penalty Parameter  
in Lasso Credibility

In lasso credibility, one can select a penalty parameter using the methodology 
described in Section 3.3. An actuary can reframe this process as testing the level of 
credibility that generalizes the best test statistic across the data set for all β. As before, 
cross-validation will select a single λ value, and the variation in optimal values of λ 
between model folds allows a modeler to make a credibility selection that deviates from 
this point estimate. This expert judgment applied when selecting a penalty parameter 
in lasso credibility is supported both through cross-validation statistical support as well 
as the considerations in ASOP 25’s Section 3.4.

Here are some examples of an appropriate judgmental increase of the penalty 
parameter :

• If the complement of credibility consists of the current factors, the increase of the 
penalty parameter can be used as a methodology to select between current and 
indicated to mitigate policyholder impacts.

• If the model factors are showing instability, the penalty can be increased to provide 
additional stability. This is most common on small data sets or when using techniques 
like derivative lasso (Casotto and Holmes 2023) and AGLM (Fujita et al. 2020) 
that use penalization to create ordinal variable factor curves.

• If modeling data is adjusted for trend or incurred but not reported (IBNR) claims, 
or if case reserves are based on generic estimates, the volatility of the data may be 
understated. In this case, an increase of the penalty parameter may be appropriate 
to avoid overestimating the credibility of the modeling data.

• The increase is warranted if the modeler believes the selection produces a more 
actuarially appropriate model given all information available.

While cross-validation produces a statistical range of appropriate penalty terms both 
higher and lower than the best estimate, it is generally actuarial best practice to select 
only values of lambda higher than the point estimate. Such a higher estimate will be 
more conservative and is similar to selecting “between current and indicated” when using 
traditional actuarial methodologies. It is uncommon but supportable to decrease the 
penalty parameter using actuarial judgment. This may be appropriate in the following 
situations:

• When pricing a line of business where the complement is known to have some 
deficiencies
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• When there is a known change of significant magnitude from the selected comple-
ment of credibility

• If the relevant experience is from an older or more out of date source and the 
actuary wants to give greater weight to the more recent subject experience

For additional considerations in adjusting the penalty parameter, refer to ASOP 25’s 
Section 3.4, “Professional Judgment.”

5.6. Calculating Indicated Rates in Lasso Credibility
Let’s return again to our two-variable homeowners model. In this example, we are 

refitting the two-variable homeowners model using an old model’s factor table output 
as a complement of credibility. We will rearrange the equation for our model predictions 
as we did in Equation 5.1:

Prediction = exp b 0+ log offset factors` j+b 1X 1+b 2X 2b l

= exp b 0+b 1 offsetX 1+b 2 offsetX 2+b 1X 1+b 2X 2` j

= exp b 0+ b 1 offset+b 1` jX 1+ b 2 offset+b 2` jX 2b l

As a reminder, these are the coefficients from our prior model that we are using as 
a complement of credibility:

b 1 offset = 0.182

b 2 offset = 0.01

For now, we will ignore the recommendation that ordinal variables be used in 
place of continuous variables in lasso credibility. Let’s say our new model fits with these 
convenient coefficients:

b 0 = 4.6057

b 1 = -0.087

b 2 = 0.01

While β1 and β2 are the coefficients output from the model, the indicated coeffi-
cients will be (β1 offset + β1) and (β2 offset + β2). The corresponding factor for not having a 
fire extinguisher would then be exp((β1 offset + β1)X1). If the coefficient β1 was penalized 
out of the model, the model is giving full credibility to the complement and the indi-
cated coefficient would be β1 offset. In this case, the indicated relativity would be identical 
to our prior model.



44 Casualty Actuarial Society

Penalized Regression and Lasso Credibility

Our new indicated rating tables would be calculated as follows:

Base rate: exp(4.6057) = 100.

Fire Extinguishers Factor

No exp((0.182 − 0.087) × 1) = 1.100

Yes exp((0.182 − 0.087) × 0) = 1.000

Age of Home Factor

0 exp((0.01 + 0.01) × 0) = 1.000

1 exp((0.01 + 0.01) × 1) = 1.020

2 exp((0.01 + 0.01) × 2) = 1.040

3 exp((0.01 + 0.01) × 3) = 1.061

4 exp((0.01 + 0.01) × 4) = 1.082

5 exp((0.01 + 0.01) × 5) = 1.104

6 exp((0.01 + 0.01) × 6) = 1.126

7 exp((0.01 + 0.01) × 7) = 1.149

8 exp((0.01 + 0.01) × 8) = 1.172

9 exp((0.01 + 0.01) × 9) = 1.195

10 exp((0.01 + 0.01) × 10) = 1.219

This example’s calculations are simple because our current and prior models had an 
identical parameterization. In practice, the prior model’s parameterization may not be 
known or the complement may be based on post-modeling selected rates. Lasso cred-
ibility does not require the knowledge of prior parameterization as the decomposition 
of the linear equation generalizes in all cases when using ordinal variables.

When the link is logarithmic, each coefficient βj has an equivalent factor repre-
sentation as exp(βj). In this case, it is more intuitive to think about the indicated 
relativities in terms of factors than coefficients. For each item in a rating table, we 
will calculate the new indicated relativity by multiplying the offset relativity by the 
corresponding factor exp(βjXj) from the model. By Equation 5.1:

Prediction = exp b 0 + offset +b 1X 1 +b 2X 2` j

= intercept# offset factor# fire extinguisher factor

# home age factor

= intercept# extinguisher offset# home age offset

# fire extinguisher factor# home age factor
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where

Indicated fire extinguisher factor = extinguisher offset# extinguisher

indicated factor;

and

Indicated home age factor = home age offset# home age indicated factor.

This generalization has important implications for variable transformations and 
the building of a lasso credibility model. In penalized regression or a GLM, we are 
modeling the relationship of variables to a target. However, in lasso credibility, we are 
instead modeling the credible differences between a complement of credibility and a 
target. This difference is part of why in the next chapter we recommend applying an 
ordinal treatment to any variable previously considered continuous.

5.7. Lasso Credibility Conclusions
Lasso credibility is a powerful technique that can be used to enhance penalized 

regression by using the offset to implement a complement of credibility. As we will see in 
Chapter 7’s case study, this enhancement allows lasso credibility to be used on data sets 
that are too small to build either a GLM or lasso penalized regression model. Where a 
GLM would be unstable and lasso penalized regression would shrink too many variables 
to zero, lasso credibility can reflect credible signal where available and shrink volatile 
experience instead toward an appropriate complement relativity.

The statistical components of this methodology—lasso penalized regression, ordinal  
variables, and the offset—are not new. What we have introduced in this section is simply 
a shift in perspective to make full use of the credibility-based nature of penalized regres-
sion. As actuaries explore additional data science methodologies, we expect that similar 
perspective shifts will allow other known tools to be used in innovative and actuarially 
sound ways.
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The modeler must review lasso penalized regression and lasso credibility models in a 
different manner than they would a GLM. Lasso models provide no p-values, and 
the evaluation of variables shifts from significance to credibility. Additionally, lasso 
credibility models require review of the complement of credibility as the complement 
can greatly influence the indicated coefficients or receive full credibility. New visual-
izations such as relativity plots and a switch from continuous to ordinal variables will 
greatly aid model building and model review.

6.1. Review of the Lambda Penalty Parameter
GLM validation relies heavily on the evaluation of p-values and standard errors, 

but lasso penalization does not provide such statistics. Methods that exist to create 
approximate p-values have not been largely successful (Casella et al. 2010) and are not 
recommended for model review as they can be misleading. Fortunately, as we described 
earlier, lasso penalization removes the need for post hoc significance testing through 
the application of partial credibility during the fitting process. Therefore, review of lasso 
credibility models should move from post hoc significance analysis to an evaluation of 
the lambda penalty term used to assign credibility.

• GLM review focuses on significance: Are we sure that a coefficient should be 
included?

• Lasso review focuses on credibility: How much can we trust the subject experience, 
if at all?

Table 6.1 compares treatment of variables in a GLM and treatment in lasso.
A properly selected penalty term automatically accounts for all considerations reviewed 

by p-value significance analysis through the application of credibility. The following 
questions are sufficient when reviewing the selected penalty term for appropriateness:

• Was the lambda parameter selected via cross-validation or another robust methodology?
• If there was an adjustment to the lambda penalty parameter, was the adjustment 

favoring a more robust model? Why was this adjustment made?
• Is the behavior of variables intuitive with the selected lambda penalty parameter?

6.  Lasso Penalized Regression and  
Lasso Credibility Model Diagnostics
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The lasso penalty term provides a data-driven, uniform, and efficient method of 
addressing partial credibility. Lasso penalization eliminates the need for post hoc signifi-
cance testing, hence significantly reducing the effort for model reviews. In the validation 
of lasso credibility models, a review of the complement of credibility is necessary.

6.2. Review of the Complement of Credibility
The review of a complement of credibility can be initially guided by the consider-

ations in ASOP 25 and existing actuarial literature. We will not spend time on these 
traditional review criteria (i.e., similarities and differences between the subject and 
relevant experience, etc.) but will instead discuss considerations unique to lasso cred-
ibility and where a reviewer may want to focus their review depending on what is most 
material to their scope.

Lasso credibility is a multivariate procedure, and therefore we should consider 
correlations between risk characteristics that are being offset. Penalized regression 
natively assigns signal among correlated predictors, but using an offset can hinder the 
model’s ability to detect shifts in signal between them. A reviewer should also pay special 
attention to correlated risk characteristics if their complements come from multiple 
sources. This combination of complements may provide an overestimated or under-
estimated prior assumption.

In addition to reviewing a complement of credibility by itself, modeling results 
will provide information on the appropriateness of the complement of credibility. 
To compare the complement of credibility to model output, we recommend the use 
of relativity plots. These plots will help to identify segments where a reviewer may 
want to spend additional time evaluating both the complement of credibility and the 
modeled results.

Table 6.1.  A Comparison of Variable Behavior in GLM and Lasso Credibility  
by Statistical Importance

Variable Importance GLM Lasso Credibility

Low Subjective decision rule, i.e., 
remove when p-value > 0.05.

Automatically set to 0.0.

High Full credibility is assigned to 
the observed relativity.

Credibility is assigned more 
to the observed than the 
complement of credibility.

Medium Full credibility is assigned to 
the observed relativity during 
model fitting.

Credibility is assigned more to 
the complement of credibility 
than the observed experience.

Manual adjustments may be 
appropriate for p-values near 
to 0.05.
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6.3. Relativity Plots
Traditional univariate charts are insufficient for lasso credibility model review. The 

indicated relativities from a lasso credibility model are deviations from a complement 
of credibility, and therefore it is essential to combine those relativities with the offset 
to see the true indicated coefficient. We recommend the use of relativity plots, which 
may contain the following items:

• The complement relativity (offset relativity)
• The indicated relativity (offset combined with modeled relativity)
• The observed relativity (optional)
• Exposures

See Figure 7.17 for an example of a relativity plot.
If one uses several transformations for a single variable, one needs to combine all 

such transformations to create the final indicated relativity. This combined relativity 
allows a reviewer to see how and where the model has indicated credible differences 
from the complement. By overlaying the observed values, we can see how reactive the  
model is to the experience in the data. Although lasso credibility is likelihood based 
rather than exposure based, benefit to likelihood correlates highly with amount of 
exposure. Including exposure bars allows a reviewer to see a representation of the amount 
of experience supporting a deviation from the complement of credibility. The combina-
tion of these four above elements makes relativity plots a helpful tool for lasso credibility 
model review.

6.3.1. Using Relativity Plots to Guide Model Review
The review of relativity plots focuses on the following question: Are the deviations 

from the complement of credibility stable and intuitive across all variables?
The question is not trivial as what is considered “stable” and “intuitive” varies 

between and within models. We first discuss how such definitions differ when the 
complement is receiving full, partial, or no credibility. Then we provide guidance on how 
to review stability and intuitiveness differently in categorical, ordinal, and continuous 
variables.

6.3.2. Full Credibility in the Complement
A reviewer could start by examining coefficients where the complement has received 

full credibility. Here are two scenarios where lasso credibility will assign full credibility 
to the complement:

1. When there is sufficient exposure to model but the experience is too similar to the 
complement of credibility to deviate

2. When there is insufficient data in a segment to pass the threshold of lasso credibility

The first scenario is ideal because the segment is credible and our model has penalized 
the modeled coefficient to zero. We can be confident that the estimate is reasonable 
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given the high credibility, and it is not recommended for a reviewer to spend significant 
time scrutinizing this coefficient.

In the second scenario, the complement is likely to receive full credibility—even 
if it is unreasonable. Even though this segment may not be a material portion of the 
book today, an inappropriate complement could expose an insurer to adverse selection, 
prohibit growth, or place an unreasonable burden on policyholders. Large deviations 
between observed and predicted (offset) are expected for these smaller segments and 
should not be used to justify that the complement is unreasonable, and similarly, small 
deviations should not be used to justify that the complement is reasonable. Instead,  
a reviewer should rely purely on traditional considerations when reviewing the comple-
ment when little data is available.

6.3.3. Partial Credibility in the Complement
A more common situation is that the complement will receive partial credibility. 

The predicted relativity will be somewhere between the observed relativity and comple-
ment relativity. Two common scenarios are as follows:

1. Where a specific segment has a medium amount of data that passes the threshold 
of significance but not enough to deviate significantly.

2. Where the entire data set is smaller than necessary to achieve full credibility.

Small differences between the complement and indicated relativities are most 
often an ideal result in a lasso credibility model. In a GLM, small coefficients are often 
scrutinized for low significance as it may be hard to reject the null hypothesis that the 
true coefficient is zero. Small coefficients should be far more accepted in lasso credibility 
as they have overcome the lasso credibility standard and reflect the assignment of partial 
credibility between the complement and experienced relativities. When deviations are 
proportional to the data in a segment and reasonable given the complement experienced 
relativities, the assigned credibility is likely appropriate.

We recommend an observer focus more of their time on segments with medium 
or small amounts of data that have large differences between the complement and 
indicated relativities. Large differences across many coefficients could indicate that 
the penalty term is too small and needs to be increased. Large differences in single 
categories or unexpected areas of an ordinal variable could suggest the presence of  
an outlier in the data that may need adjustment. When reviewing large deviations, 
remember that the same likelihood-based credibility standard is applied to all vari-
ables equally. It is possible that a large deviation is supportable based on the data—
especially if that deviation is actuarially intuitive and other coefficients are behaving 
appropriately.

When the entire data set is smaller than necessary to achieve full credibility, a review of 
coefficient stability and intuitiveness is extremely important. If many coefficients have 
actuarially unintuitive deviations, that is a sign that the selected penalty term may be 
too small. Be careful not to reject unintuitive deviations outright as sometimes the real 
world does not behave as expected.
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It is also helpful to think of this situation as relativities being pulled toward a 
complement or pulled toward the data’s experience. We want this pull to be balanced 
toward the truth, and not over- or underreactive. A penalty term that is too small will 
potentially overshoot the true relativities while a penalty term that is too large will not 
sufficiently move toward the true relativities. Small data sets create the trickiest situa-
tion to review because both the complement of credibility and selected penalty term 
will have a large impact on model output. Lasso credibility is still worth it, however, and 
we show that it provides the highest benefit over other methodologies when modeling 
on smaller data sets in the case study (Section 7.6.2).

6.3.4. Limited or No Credibility in the Complement
Sometimes, our complement is receiving limited or no credibility because the 

segment has a large amount of data. For example, a large data set with a binary charac-
teristic split 50/50 in data will see limited effect from all but the worst of complements. 
Large deviations from the complement should still be investigated, but a change of 
complement of credibility is unlikely to be material to the model output. If a segment 
is receiving full credibility with limited experience, it may be a sign that the penalty 
parameter is too low. If a segment is receiving full credibility with large experience, 
a reviewer can be confident in the estimates being produced without extensive review.

6.4. Review by Variable Type
When building a lasso credibility model, the modeler is seeking to identify the 

credible difference between the complement and the signal in the data. This is problem-
atic, as often the location of that difference is unknown at the beginning of the modeling 
process! For categorical variables, we will see that a modeler has the freedom to use 
more granular categorical variables in lasso credibility than in a GLM or penalized 
regression. Continuous variables do not receive a similar benefit and are best substituted 
with an ordinal treatment of variables in lasso credibility.

6.4.1. Categorical Variables
Categorical variables are the most intuitive to review in lasso credibility.
In a GLM, categorical levels that are insignificant may be grouped with each other 

or with the base level to obtain a stable coefficient. In lasso credibility, we recommend 
avoiding the grouping of categories and instead maintaining categories that are at least 
as granular as the selected complement of credibility. When a level is insignificant,  
it will be collapsed to the complement. This assignment of full credibility to the com-
plement removes the need to group a noncredible category with another category.

Each of the categorical levels can be evaluated using similar criteria to classical or  
Bühlmann credibility with the difference that any change to the penalty term will result 
in changes across all variables. The most important item to review in categorical relativity 
plots is whether the deviation is directionally appropriate and whether the magnitude 
of the change is properly responsive.
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6.4.2. Continuous Variables
Continuous variables are difficult to conceptualize in lasso credibility as it is the 

slope that is penalized and not a categorical magnitude. Additionally, variable trans-
formations no longer reflect the shape of the overall curve, but rather the shape of 
the difference from the curve of the complement of credibility. As we said earlier, the 
shape of that deviation is usually unknown and is in fact part of what a lasso credibility 
model is meant to discover.

Because of this, great care is needed when using continuous variables in lasso 
credibility. The example in Chapter 7 uses continuous variable transformations that 
are known to reflect the true distribution of the data, but that will never be the case 
in practice. Continuous variables are used later only so that our GLM and lasso 
credibility models both start with the same information and can be more easily 
compared. In practice, we highly discourage the use of continuous variables in lasso 
credibility.

Review should focus first on the ability of the continuous transformation to accu-
rately capture potential differences from the complement. For example, if a linear vari-
able alone is included, the only difference the model will identify is a change in overall 
slope and not a hinge or change in slope after a certain value.

Second, review can focus on the potential extrapolation of continuous variables to 
levels where there is minimal credibility. One should investigate whether an indicated 
change continues to grow in magnitude in the tails of a continuous variable—especially 
if the experience in the data does not strongly support such a change. This could be a 
sign of unintuitive extrapolation, and the variable will need to be adjusted.

Again, we use continuous variables in our case study in Chapter 7 only because 
the true form of the deviation from the complement of credibility is known. Similarly, 
we would recommend the use of continuous variables in lasso credibility only if one 
knows that a change in slope will properly capture the deviation from a complement of 
credibility. We cannot provide an example of this situation in a real application.

6.4.3. Ordinal Variables
On the other hand, ordinal variables are easy to review in lasso credibility and can 

be quite useful in determining an appropriate penalty term. If an ordinal variable 
contains reversals (up for age 20, down for 21, up for 22, etc.), the selected penalty 
term is likely too low. A common method of selecting a credibility standard is to start 
with the indicated penalty term and gradually increase that term until all unintuitive 
reversals are removed from the indicated relativities. In most situations, this results in 
both an actuarially and statistically sound model.

The tails of ordinal variables also have the benefit of not extrapolating beyond what 
is indicated by the data as an uncapped continuous variable will extrapolate. At the 
same time, ordinal variables may not extrapolate where a modeler believes it is justified. 
Ordinal variables force a modeler to choose and justify an extrapolation as opposed 
to allowing a selected variable transformation to provide “support” for a relativity 
beyond what may be statistically justified. For this reason, judgmental adjustments and 
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extrapolation at the tails of ordinal variables may be appropriate when using both 
lasso credibility and traditional lasso penalization.

6.4.4. Control Variables
Whether or not to apply a complement for control variables is a judgmental decision, 

and both options can be motivated by different arguments.
It is reasonable to include a best estimate complement of credibility for control 

variables when using lasso credibility. For example, each state’s prior overall rate rela-
tivity could be used as an offset in a loss model. With this complement, coefficients 
for individual state categories will correct for any significant difference between the 
estimate and experienced relativity. Determining this complement is difficult for a 
factor such as “year,” which can include effects from trend, development, and changes 
in legal environment.

It is also reasonable not to include offsets for control variables. As with traditional 
penalized regression, if the model views the effect of a control variable as insignificant,  
that insignificant signal is unlikely to have a material effect on other variables. Although  
a modeler should continue to use control variables in lasso credibility, it is up to them 
to decide whether using a corresponding complement of credibility is material and 
necessary.

6.5. Model Validation Conclusions
By moving away from the full credibility assumption of GLMs, lasso credibility 

model validation changes from a review of significance to a review of credibility. The 
change is motivated first by the benefits of penalized regression through the bias–
variance trade-off and second by the ability to introduce bias toward a selected com-
plement of credibility. The change in focus greatly simplifies model review.

The statistical and actuarial review of a lasso credibility model is quite straight-
forward. If the complement is appropriate and all variables are treated as categorical 
or sufficiently granular ordinal variables, the only item left to review is the penalty 
parameter. If the parameter was initially selected in a statistically sound manner (cross-
validation) and adjusted in an actuarially sound manner (adjusted higher to produce 
actuarially sound relativities as reviewed in relativity plots), we suggest that the model 
is a proper statistical application of lasso credibility. Review can focus mostly on post-
modeling selections and any application of further actuarial judgment.

Given the simplicity of the ideal application of lasso credibility, it is difficult to 
build a deficient model without some clear red flags in the test statistics or relativity 
plots. Questionable behavior of a lasso credibility model should be further evaluated 
through a combination of penalized regression and traditional credibility expertise.

The next chapter consists of a case study that provides examples of both good and 
poor lasso credibility models. We hope that these examples can help readers become 
more comfortable with the processes of building and evaluating lasso credibility 
models.
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From the previous chapters, we hope the reader has gained a basic understanding of the 
application of lasso penalized regression as an actuarial credibility procedure. In this 
chapter we offer a practical application to demonstrate how modeling methods may 
evolve with lasso credibility. To do so, we replicate a pricing model refresh project 
that is common in the United States. The case study will walk through a model refresh 
process using generalized linear modeling and lasso credibility in parallel. We identify 
the differences between the approaches and point out key concepts of lasso credibility 
along the way.

The case study is not intended to prove that lasso credibility is better than other 
methodologies in all cases. As the data is simulated, one could select a seed to create  
favorable or unfavorable model comparisons. Instead, we intend the case study to 
demonstrate how lasso credibility truly acts as a multivariate credibility procedure with  
the benefits of both traditional credibility procedures and multivariate penalized regres-
sion. Deviations from this methodology are expected based on an insurer’s unique situa-
tion, and guidance for such deviations should come from both materials on penalized 
regression and ASOP 25 credibility procedures.

Our hope is that through this monograph, the accompanying case study, and 
ASOP 25, the reader can gain the necessary understanding and skills to apply lasso 
credibility effectively in practice.

Accompanying code is provided on the CAS GitHub,7 together with additional 
exercises for the reader. One need not do the exercises to understand the basic concepts 
of lasso credibility, but we highly encourage readers to investigate items that they feel 
could be relevant to their existing practices. Actuaries working on their coding skills 
may find such items to be practical exercises for self-improvement, and we encourage 
code contribution via pull requests to enhance the accompanying code.

7.1. Countrywide Modeling and State Refits
A model refresh involves creating one or more models to develop new rating rela-

tivities for an insurer’s rating plan. It is common practice for U.S. insurers to first fit a 
model to a large data set, including all relevant data available for the line. For example, 
an insurer might build a model using all claims data from the last five years’ experience 

7. Case Study

7 https://github.com/casact/mg-credibility
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for a given line of business, across all states. Such a model is referred to as a country-
wide model.

The countrywide model may be quite robust if a large amount of data is available. 
The individual states, however, have unique regulations and varying behavior of risk 
characteristics. Because of those differences, an insurer may want to adjust the robust 
countrywide model for each state based on its available data. The process could result 
in the creation of 51 different rating relativities—one for each state and Washington, 
D.C. For simplicity, we use three main categories to represent the states:

• Small state. Such a state offers the modeler insufficient data with which to build  
a stable GLM, and therefore the modeler has no choice but to adopt the country-
wide model.

• Medium state. A state in this category has potentially sufficient data for individual 
modeling but the modeler usually adopts the countrywide model with post-
modeling adjustments for specific state characteristics. Building a model for  
a medium state may be relatively more time-consuming due to data variability, 
and the decision between a new model or adjusting the countrywide model is often 
based on a cost–benefit analysis. Post hoc univariate adjustment of a model, as 
mentioned earlier, is often suboptimal versus multivariate approaches.

• Large state. Such a state has sufficient credibility for the modeler to rely on the 
state’s own experience to build a GLM if desired.

The full credibility nature of a GLM does not allow a modeler to easily blend 
countrywide and state-specific experience. Instead, the modeler must choose between 
adopting the countrywide model, refitting a GLM from scratch, or performing manual 
ad hoc adjustments. On the other hand, lasso credibility allows a modeler to blend 
the state’s experience with a complement of credibility provided by the countrywide 
model during the modeling process. One can expect the credibility assigned to the 
state-specific experience to vary with the state’s size, being higher for larger states and 
lower for smaller ones.

7.2. Case Study Summary
The case study starts by building a countrywide model from scratch as we assume 

that there is no complement of credibility that this insurer trusts more than its own 
data for this model. In our example, the countrywide data set is quite credible and the 
differences between lasso penalization and GLM are minimal.

Differences begin to appear when looking at the large state level, where we will fit 
a GLM, a lasso penalization model, and a lasso credibility model. The lasso penalization 
model will still perform similarly to the GLM on this data set. However, we will see 
that lasso credibility, with the countrywide model as a complement of credibility, can 
outperform both models due to the extra information included in the complement.

Lasso credibility can also be the best-performing model on the medium state 
subset. In this example, we will detail and discuss the role of a judgmental increase of 
the penalty parameter when building a lasso credibility model.
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The small state by our definition is one that cannot be fit reliably with a GLM, 
making it impossible to compare lasso credibility models to GLMs. Instead, the country-
wide model is used as a comparison. We detail two possible behaviors of the small-
state use case. First, we consider a small-state data set that has material differences 
from the base modeling data set. We show that not only is it possible to build a lasso 
credibility model on this small data set, but the lasso credibility model outperforms 
the countrywide model. Then, we consider a second small-state data set that has an 
identical underlying distribution to the base modeling data set. In this case, the lasso 
credibility model collapses to the countrywide model. The lasso credibility model is 
able to correctly identify that the selected complement is a good representation of this 
data subset.

We focus on the countrywide modeling and state refit use case because it covers 
the entire range of credibility—nearly full, partial, and little/no credibility. This range 
of credibility is also applicable to a broader set of scenarios. For instance, data could 
be divided by time periods or other definitions rather than by state. Similarly, the 
complement of credibility could be the current filed and implemented model instead 
of a new countrywide model. We invite the reader to use the guidance of ASOP 25 to 
identify additional applications of lasso credibility in their own practice.

7.2.1. Data Description
The data generated for the case study is a synthetic commercial auto data set 

containing 3,500,000 total records. We show the risk characteristics of each record in 
Table 7.1. Those characteristics are assigned using a distribution that mimics a probable 
real-life distribution on a univariate level, but with no correlation between character-
istics. For each value of a risk characteristic, a true risk relativity is assigned. True 
risk relativities are consistent within state-level subsets but may be different between 
states, as visualized in Section 7.2.2. Additionally, the true base rate varies within each 
state-level subset.

A true pure premium is generated for each risk by multiplying the true base rate by 
the true risk relativities assigned to each characteristic. We then simulate an experienced 
pure premium using a Tweedie distribution.8

Figure 7.1 illustrates the division of the data across five subsets, corresponding to 
states of various sizes:

• Base modeling data: 2,500,000 records
–  The largest part of the modeling data set is referred to as the base modeling 

data set. In practice, this segment would be made up of a combination of other 
large, medium, and small state subsets. For simplicity, we simulate this all  
at once.

–  This data set is included so that the countrywide model is highly stable and can be 
used as a complement of credibility for the smaller models. We will demonstrate 

8 The Tweedie random samples were simulated with a p-parameter of 1.6 and a $% of 800. These parameters were 
chosen so that the resulting frequency is approximately 4%.
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that for this large data set, GLM and lasso penalized regression have very similar 
results. We do not model this data set on its own, but instead combined with 
all other data.

• Large state subset: 500,000 records
–  This subset represents the insurer’s largest state in the U.S. market.
–  We model this data set using a GLM, lasso penalization, and lasso credibility. 

We will see that lasso credibility can be an improvement where data is large 
enough to build a stable GLM.

• Medium state subset: 300,000 records
–  This subset represents one of the insurer’s growing states.
–  We build only a GLM and a lasso credibility model on this data set. We will see that 

lasso credibility provides more benefit on this data set than on the large state data.
• Small state 1: 100,000 records

–  This small-state data represents a subset containing minimal data.
–  This subset has different risk relativities than the base modeling data set.
–  We use this subset to show that, even with small data, lasso credibility is able to 

identify meaningful changes.
• Small state 2: 100,000 records

–  This second small state also represents a subset containing minimal data.
–  This data has the same underlying risk relativities as the base modeling data set.
–  We use this to show that a good complement creates a sparse lasso credibility model.

7.2.2. Predictor Variables
The generated data set contains seven risk characteristics, summarized in Table 7.1.
Each of our predictor variables is included to highlight a different scenario when 

comparing generalized linear modeling and lasso credibility. All charts reflect the 
exposure distribution and true risk relativity for each of the subsets of the data.

K = thousand; M = million.

Figure 7.1.  Visual representation of the various subsets in the simulated data. Risk 
characteristics are consistent within each subset but may (slightly) vary across states.
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Driver Age
As we will see, lasso credibility does not prevent a model from identifying the 

steep increase for young drivers, and it can bring stability to the low-data tail beyond 
age 76 (Figure 7.2).

Table 7.1.  List of Risk Characteristics in the Synthetic Database

Name Type Values

Driver age Numerical [18–100]

Vehicle age Numerical [0–19]

Industry code Categorical [Education, . . . , Fireworks]

Vehicle weight Categorical [Extra-Light, Light, Medium, Heavy]

Multipolicy discount Categorical [Yes, No]

x-Treme turn signal Categorical [Yes, No]

Figure 7.2.  Driver age demonstrates that not all transformations within a 
continuous variable receive the same amount of credibility. This may seem trivial, 
but it is highly important to demonstrate that we cannot accurately rely on or even 
meaningfully calculate a credibility score (Z ) when describing a lasso credibility 
model’s behavior.
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Vehicle Age
Figure 7.3 shows the risk relativities for the age of an insured’s vehicle.

Figure 7.3.  Across all data, this variable’s true risk decreases from 0 to 10, then 
decreases at a less steep rate beyond 10. We will see that coefficients are highly 
stable from vehicles ages 0 to 10 and then become increasingly harder to model  
for older vehicles.

Multipolicy Discount
This indicator represents whether the insured has another policy with the insurer 

(Figure 7.4).

Figure 7.4.  The “Yes” category always has a lower true risk relativity. We will see 
that multipolicy discount is relatively well predicted across all data sets because 
both levels have significant data and material signal.
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x-Treme Turn Signal
This a fictitious new safety feature is in the early stages of adoption and greatly reduces 

accidents (Figure 7.5).

Figure 7.5.  x-Treme turn signal has a very low relativity that varies between  
data sets. We will use this example to show that lasso credibility can react— 
without overreacting—to strong signal in small segments.
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Vehicle Weight
This is a categorical variable with four categories: extra-light, light, medium, and 

heavy (Figure 7.6). While we are modeling vehicle weight as a categorical variable, 
we want to point out that vehicle weight could also be modeled as an ordinal variable. 
Unlike continuous variables, ordinal variables can reflect a link between adjacent 
categories without enforcing a numeric distance between these categories.

Figure 7.6.  Risk increases as a vehicle becomes lighter, and may plateau with 
identical relativities for extra-light and light vehicles. Extra-light vehicle weight is very 
hard to predict due to its low exposure, but in most data sets it has a higher relativity 
than light vehicles. We will see that our complement of credibility allows us to model 
low credibility categories without grouping them together.
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Industry Code
The industry code category is separated into 10 categories that are not easily 

consolidated (Figure 7.7).

Figure 7.7.  Industry code provides a side-by-side example of categorical variables of 
various discounts, surcharges, and data sizes. The fireworks industry code is known  
to require a high surcharge but has extremely small data. We suggest that since none 
of these categories is easily grouped with another it would be best to predict a unique 
relativity for all categories.

7.2.3. Methodological Notes
The Use of Simulated Data

Working with synthetic/simulated data comes with its own advantages and dis-
advantages. We acknowledge that simulated data amounts to a strong simplification 
versus using an open, realistic data set, as, for example, in Wüthrich and Merz (2023) 
or Casotto and Holmes (2023). We still decided to work with simulated data because 
of the following benefits:

1. We know the true underlying relativities for risk characteristics, and therefore have 
knowledge of what is signal and what is noise. As a result, we can create charts 
comparing our model output to the true risk relativities instead of potentially noisy 
validation data.

2. We know that our risk characteristics are uncorrelated. Correlation will not affect 
the stability of either our GLM or lasso credibility models.

3. We know the variable transformations that can capture the true risk relativities. Such 
transformations would allow a model to fit perfectly to the true risk relativities 
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given sufficient data. This greatly simplifies the feature engineering process as we will 
use these known transformations for all models. We acknowledge that additional 
feature engineering would improve all models, but we think that the simplifying 
assumption is the best way to explain lasso credibility for instructional purposes.

4. The case study can correctly highlight situations where lasso credibility is performing 
well versus situations where it is performing poorly, and why the model exhibits 
this performance.

5. The underlying data can be resimulated for additional investigations.

Model Types
The generalized linear, lasso penalization, and lasso credibility models are built as 

follows (if not otherwise indicated):

• The GLM is built using the same feature engineering as the one used to generate 
the data.

• Lasso penalization uses the same feature engineering as the GLM. The penalty 
parameter λ is selected using cross-validation. The coefficients are standardized prior 
to the fit.

• Lasso credibility models are built identically to lasso penalization, but with the 
addition of a complement of credibility through the offset. The HDtweedie package 
used in the code does not directly support offsets, so the offsets are included by 
manually adjusting the response and weight columns through the methodology 
outlined in Shi (2010).

7.2.4. Prediction and Relativity Plots
We do not examine traditional test statistics like Gini or Tweedie deviance but 

instead focus on a direct comparison to the true relativities. This choice is made because 
the goal of the case study is to understand the behavior of lasso credibility, and that 
behavior is best represented as a visual representation of the estimated, simulated, and 
true relativities to provide insights on a variable-by-variable basis. By understanding 
the behavior of lasso credibility, a modeler can better understand why a model’s test 
statistics will improve or degrade in various situations.

To efficiently compare true and modeled relativities and predictions, a relativity 
plot and a prediction plot are provided for all modeled variables.

The relativity plot contains the predicted GLM relativity, the lasso penalized 
regression relativity, and the true relativity. All relativities have been rebalanced to the 
base level for categorical variables, to age 38 for driver age, and to age 10 for vehicle 
age. Such relativity plots provide us with better validation metrics than comparing 
on holdout data because we can compare directly to the true relativities. The model 
with relativities closest to the true relativity is the better model at predicting on 
unseen data.

The prediction plot contains the true pure premium, the experienced (simulated) 
pure premium, the GLM prediction of pure premium, and the lasso prediction of 
pure premium. The prediction plot is not rebalanced for the full modeling data plots 
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but is rebalanced for the large, medium, and small state models. Rebalancing is done 
by multiplying the predictions by a constant such that the average prediction is equal 
to the average observed value. The difference between the experienced (simulated) 
pure premium and the true pure premium is determined by the random simulation of 
Tweedie distribution. Comparing these two quantities gives us a sense of how much 
noise is in the data. For example, if the true and experienced pure premiums are very 
close, the data is not noisy. If the true and experienced pure premiums are far apart, the 
mean of the simulated data is not similar to the true mean, and therefore our simulation 
has introduced noise.

These charts can be busy with overlapping items, so we recommend pulling the 
code and generating the charts in R so that you can click on items in the chart’s legend 
to toggle their visibility on or off.

Double lift charts are provided to compare models. Records are ordered by the 
ratio of the models being compared and then bucketed into 10 deciles. Then, the ratios 
of the predictions to the true pure premium are plotted. The model that is closest to the 
horizontal line (a 1.0 ratio) is considered the best model.

7.3. Countrywide Model Results
Our countrywide models are built on the full 3,500,000-row data set. The GLM is 

quite stable, and our penalized regression model is only slightly penalizing coefficients. 
As expected, applying a credibility procedure to a large data set does not result in a large 
amount of weight being put on the complement of credibility.

7.3.1. Large Data Approaches Full Credibility
The coefficient chart (Table 7.2) contains GLM coefficients and lasso coefficients. 

All lasso coefficients are shrunk very slightly toward zero. When categories are sufficiently 
populated with stable experience, the shrinkage from penalized regression will have 
limited effect on the modeled coefficients. In large data, even smaller categories may 
approach full credibility.

The health care and fireworks industry codes are the most interesting results. Our 
GLM’s p-values assign high significance to these categories, and they are treated as 
nearly fully credible in penalized regression. Relativity plots show that both models 
are overpredicting the relativity for these segments. Prediction plots show why: our 
simulated losses were particularly high in these categories. Neither GLMs nor penalized 
regression can identify when actual experience is unlucky (or lucky) and different from 
the true underlying risk.

7.3.2. Additional Exercises—Full Data
We recommend the following exercises to explore variable transformations and 

their effect on the shrinkage of continuous variables.

• Move the hinge point of vehicle age to see how the significance and shrinkage of 
the new variable transformations change from the current transformations.
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• Test different polynomial terms for driver age and vehicle age—do these terms behave 
similarly in GLM and lasso models?

• Replace the hinge terms with an ordinal encoding as referenced in Section 3.4.3. 
Include all of these variables in your lasso model. How do the predictions change? 
For example:
– driver_age_over_18: 0 for age 18, 1 for all ages over 19
– driver_age_over_19: 0 for ages 19 and below, 1 for all ages 20 and above
– driver_age_over_20: 0 for ages 20 and below, 1 for all ages 21 and above
– etc.

7.3.3.  Full Data Conclusion—Lasso Penalization,  
but Not Lasso Credibility

Both models are fitting similarly to the data overall, and we see in Figure 7.8 and 7.9 
that output coefficients are immaterially different. As expected, both models are perform-
ing similarly on the validate data in Figure 7.10 and Figure 7.11.

Table 7.2.  Comparison of Coefficient Results between GLM and Lasso 
Penalization

Variable GLM Coefficient Lasso Coefficient

(Intercept) 8.12177 8.12918

driver_age_18_38_hinge −0.04886 −0.04886

driver_age_38_76_hinge −0.00213 −0.00209

driver_age_76_99_hinge 0.00685 0.00667

ind_construction 0.37839 0.37833

ind_farming −0.38933 −0.38591

ind_finance_and_insurance −0.70583 −0.70410

ind_fine_arts −0.09941 −0.09788

ind_fireworks 1.03998 1.02833

ind_food_services 0.18639 0.18654

ind_health_care 0.33816 0.33555

ind_real_estate −0.50757 −0.50066

ind_retail −0.19828 −0.19636

multi_yes −0.25957 −0.25890

vehicle_age_0_10_hinge −0.03199 −0.03192

vehicle_age_10_99_hinge −0.01697 −0.01675

weight_extra_light 0.18419 0.18067

weight_heavy −0.33246 −0.33117

weight_light 0.18095 0.18030

xTreme_yes −1.33088 −1.32796
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Figure 7.8.  Both the GLM and Lasso Models Produce Similarly Accurate 
Predictions on This Large Data Set

Figure 7.9.  Neither Model is Able to Identify Situations Where the Experienced  
Pure Premium is Slightly Different Than the Experienced Pure Premium in  
Health Care and Real Estate
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Because we know the true pure premium for each risk, we can create a lift chart 
using true values instead of simulated values. This lift chart is significantly less noisy 
and will be useful when evaluating model results on smaller data sets.

The penalized model output could be used to support rating factors identically to 
GLM output, but we would not refer to this use of lasso penalization as an applica-
tion of lasso credibility. Instead, the model is behaving appropriately as a traditional 

Figure 7.10.  Both Models are Doing a Similar Job of Predicting the Simulated 
Losses in Our Validate Data Set

Figure 7.11.  Both lasso and the GLM are doing an excellent job at identifying the 
true relativities overall in this large data set. This double lift chart is calculated  
on the validation set and the scale is extremely small.
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use of penalized regression. To call it lasso credibility, we would have to justify that the 
selected default complement of credibility for all variables (a 1.0 relativity) is an actu-
arially sound complement of credibility. For young drivers and the fireworks industry 
code in particular, this would be a poor complement.

7.4. “Large State” Modeling Results
We build three models on the large state data:

1. A standard GLM model
2. A lasso penalization model
3. A lasso credibility model, using the previously fitted countrywide model as com-

plement of credibility

We begin to see instabilities in the GLM, and those instabilities are automatically 
accounted for in our penalized regression model. The penalized regression model will 
outperform the GLM by shrinking coefficients when they are not sufficiently supported 
by the data.

7.4.1. Low Significance Correlates with High Shrinkage
Now that our data is smaller, some GLM coefficients have p-values above the  

5% threshold. This is the case for the tail of the driver age variable in Figure 7.12 
(driver_age_76_99_hinge) and the vehicle age variable in Figure 7.13 (vehicle_age_ 
10_99_hinge), as well as the health care indicator for the industry code (ind_health_
care). A modeler would have to remove these factors and try again with different variable 
transformations.

Figure 7.12.  The Hinge for Older Drivers is Shrunk Toward Zero Slope  
in the Lasso Model, Not Reacting as Much as in Our GLM
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Figure 7.13.  Both Models are Reacting Only Very Slightly to the Decrease  
in True Risk Relativity After Vehicle Age 10

Figure 7.14.  Extra-light vehicles are shrunk slightly toward 1.0. The GLM is 
overestimating the true relativity, whereas our lasso model is underestimating  
the true relativity.

Rather than rejecting all signal from a variable based on significance, penalized 
regression is able to reflect some of that experience by imposing a high shrinkage. 
Additionally, where p-values are closer to our 0.05 threshold, such as with extra-light 
vehicles in Figure 7.14, the model has automatically applied shrinkage to reflect that 
uncertainty. In GLMs, we would have to make this selection judgmentally after model 
fitting.
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7.4.2. Shrinkage Varies between Engineered Features
A corollary to low significance having high shrinkage is that shrinkage will 

vary for different transformations of continuous variables or for different levels of a 
cate gorical variable. The variable vehicle_age_10_99_hinge saw significantly more  
shrinkage than vehicle_age_0_9_hinge. This shrinkage is correlated with the expo-
sure distribution of the continuous variable, as there are fewer exposures after vehicle 
age 10. As we noted earlier, lasso credibility is a likelihood-based credibility pro-
cedure and likelihood correlates heavily with exposure distribution. Therefore, the 
exposure distribution can be used by a modeler to understand where and why coeffi-
cients may see shrinkage.

7.4.3. Credibility and Feature Engineering
It follows that uncapped continuous variables and polynomial terms will not reflect 

credibility in a way similar to our segmented hinge feature engineering, which changes  
factors for only a portion of a given feature. A polynomial term such as vehicle_age_
squared would have an effect across the entire distribution of vehicle ages and will 
use the “credibility” of the newer ages to extrapolate to the older ages. Intuitively, it is  
difficult to rationalize how the credibility of vehicle ages 0 to 9 can be used to support  
changes in ages 10 to 99. An ordinal treatment of variables as in derivative lasso or AGLM 
will apply shrinkage and credibility intuitively and appropriately. An ideal application of 
lasso credibility will use feature engineering that is easily understood through the lens 
of credibility.

7.4.4. Penalized Regression Benefits
Let’s compare the lasso penalization to two different versions of the GLM:  

one including all coefficients and another excluding those whose p-value is greater 
than 5%.

When we do not exclude insignificant variables, the GLM does slightly outperform 
the lasso model on a double lift chart (Figure 7.15). However, this GLM includes vari-
ables that have failed our significance test. Fortunately for the GLM, those unstable 
variables have experience similar to the true risk relativities. But without knowing the 
true relativities, how could we be sure that the insignificant variables are truly benefi-
cial? Unfortunately, the GLM does not have the ability to assign partial credibility, and 
therefore we must refit the model without those variables. Even if the modeler takes a 
risk and gives the variables the benefit of the doubt, it is worth noting that the y-axis 
of Figure 7.15 is quite condensed and the lasso model is not being outperformed by a 
large margin.

If we remove the insignificant variables from our GLM (Figure 7.16), the lasso 
penalized regression model performs significantly better in the tails of the double lift 
chart while performing within 1% of the true relativities for the middle deciles.
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With this comparison we aim to illustrate that some credibility is better than none. 
Where we know that full credibility is not supportable, a partial credibility solution is 
better than the binary choice of removing a variable. Lasso penalization recognized this 
partial credibility and applied significant shrinkage to coefficients that were not signifi-
cant in the GLM. That shrinkage resulted in a coefficient between our fully credible 
GLM coefficient and a 0.0 coefficient. A partial credibility treatment of coefficients is 
what allows the lasso model to outperform the GLM.

Figure 7.15.  The GLM that Includes Insignificant Variables is Outperforming  
Our Penalized Regression Model by More Than 2% in the Lowest Decile

Figure 7.16.  After Excluding Insignificant Coefficients, the GLM No Longer 
Outperforms the Lasso Penalized Regression Model
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7.5. “Large State”—Lasso Credibility Versus GLM
We use the relativities from our full model as a complement for this subset.9 By 

using our countrywide model as a complement of credibility, we are modeling credible 
differences from that model instead of creating an entirely new model from scratch. 
The inclusion of the extra information allows us to build a much more robust model than 
our GLM or lasso penalization model.

The large state data contains different true risk relativities than the base modeling 
data for the variables industry code (Figure 7.7), multipolicy discount (Figure 7.4), 
driver age (Figure 7.2), and vehicle age (Figure 7.3).

The shrinkage present in the lasso credibility model highlights the model’s ability 
to react to various levels of credibility in the data. Some coefficients see high shrinkage 
where the difference between the complement and modeled relativity is set to zero, and 
others see low shrinkage and high reactivity. To illustrate this, relativity plots will now 
include each variable’s complement of credibility. The penalized regression relativities 
are labeled as “lasso credibility” and are always between the complement relativity and 
the GLM relativity.

7.5.1.  Coefficients of Zero Show Confidence  
in the Complement of Credibility

The lasso credibility coefficients for farming and food services are completely 
removed by the model’s penalization. When a coefficient is at or very near zero in 
a GLM, the modeler can say that this characteristic is not predictive and should be 
removed from the model. On the other hand, lasso credibility concludes that there 
is “no credible difference” from our complement. Either the model has high confi-
dence in the complement, low confidence in the data, or a combination of the two 
where the bias–variance trade-off is optimized through the application of bias.

Looking at Table 7.3, we can see that the difference between the fully credible GLM 
estimate and the complement of credibility is quite small. In high-exposure segments, 

9 As always, an actuary should review the considerations in ASOP 25 when selecting a complement of credibility 
(see Section 5.4). The review should focus on this item in ASOP 25’s Section 3.3, “Selection of Relevant Experience”: 
“The actuary should consider the extent to which subject experience is included in relevant experience. If subject 
experience data is a material part of relevant experience, the use of that relevant experience may not be appropriate.” 
We assume that our large state subset did not have an undue influence on the full model’s predictions.

Table 7.3.  A Comparison of Farming and Food Service Industry 
Code Relativities between Models

Model Farming Relativity Food Service Relativity

Complement of credibility .680 1.205

Lasso credibility .680 1.205

True relativity .700 1.200

GLM .668 1.171
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the likelihood benefit of small differences may produce credible deviations. However, 
in these lower-exposure segments, the likelihood improvement of moving toward the 
GLM estimate does not outweigh the penalty incurred by a nonzero coefficient.

7.5.2. Partially Credible Categories Avoid Overreactions
Other categorical coefficients do deviate from the complement of credibility. The 

lasso coefficient for construction is quite small: only −0.0163. The credibility-weighted 
relativity is moving toward the true relativity in our relativity plot but does not quite get 
there. On the other hand, moving from our complement relativity to the GLM relativity 
would overshoot the true relativity. The stability provided by lasso credibility can prevent 
unnecessarily large policyholder impacts caused by assigning too much credibility to 
noisy data while still moving closer to the true relativity as seen in Table 7.4.

7.5.3. Credible Categories React Quickly
The complement for multipolicy discount is not accurate in our large state example, 

and yet our lasso credibility estimate is still quite close to the GLM estimate as seen in 
Table 7.5. We can draw two conclusions from this:

1. Large categories can approach full credibility in the same model where small cate-
gories receive small or no credibility. (Figure 7.17 and Figure 7.18)

2. The complement of credibility is less material in categories with large exposure and 
more material in categories with small exposure. (Figure 7.17 and Figure 7.18)

Table 7.4.  A Comparison of the Construction  
Industry Code Relativities Across our Different  
Models

Model Construction Relativity

Complement of credibility 1.460

Lasso credibility 1.436

True relativity 1.4

GLM 1.379

Table 7.5.  A Comparison of Factors 
for the Multipolicy Discount Variable

Model Relativity

Complement of credibility .772

Lasso credibility .704

True relativity .7

GLM .694
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Figure 7.17.  Categories with High Levels of Exposure are Closer to the GLM 
Estimates Than Categories with Low Exposure

Figure 7.18.  Categories with High Levels of Exposure are Closer to the GLM 
Estimates Than Categories with Low Exposure
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The observation may seem trivial, but it is included to stress that not all components 
of the complement will be equally influential on model results.

7.5.4.  Lasso Credibility Moves Toward Experienced Relativities
In Figure 7.19, shrinkage moves the driver_age_76_99_hinge coefficient toward indi-

cated without overreacting, and the final driver age factor curve produced by our lasso 
credibility model is extremely close to the true relativities. This coefficient is insignificant 
in the GLM, and this variable would likely be completely removed from the model. By 
reflecting the credibility of our data, lasso credibility has achieved a great result.

On the other hand, Figure 7.20 shows that the 80% shrinkage applied to the  
vehicle_age_10_99_hinge coefficient assigns some credibility to the simulated experi-
ence, and this experience is quite far from the true relativity. This variable’s insignificance 
in the GLM does not solve the problem, as removing the coefficient would result in an 
even more incorrect aggregate relativity.

Credibility procedures are effective in many cases, but it is still possible for particularly 
noisy data to draw indicated relativities away from the true relativities.

7.5.5.  Performance Comparison: Lasso Credibility  
Versus Lasso Versus GLM

We can see in the double lift charts (Figures 7.21 and 7.22) that lasso credibility 
outperforms our GLM and penalized regression models in our large state example.

However, this is not proof that lasso credibility will always outperform other model 
types. When data is thin, lasso credibility’s performance depends on a properly selected 
complement to pull the indicated relativities toward the true relativities. To illustrate 

Figure 7.19.  Lasso Credibility Prevents the Driver Age Relativity from Flattening  
Out Too Much for Older Driver Ages
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Figure 7.20.  Lasso Credibility Prevents the Vehicle Age Relativity from Becoming 
Too Flat for Higher Vehicle Ages

Figure 7.21.  The lasso credibility model clearly outperforms the GLM even when 
allowing lucky insignificant coefficients. After removing those coefficients, the 
lift is even more dramatic. This further supports our earlier opinion that some 
credibility is better than none.

this, examine the table below, which displays information on the indicated relativities 
of the health care and farming categories. The GLM produces an estimate closer to the 
true relativity for health care because the selected complements 1.399 and 1.0 are quite 
far from the true relativity of 1.2. The signal from the data was not strong enough to  
overcome the poor choice of complement. For the farming category relativity, the choice 
of complement is less material given the larger amount of exposure in this cate gory. 
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Both a good complement of .68 and a poor complement of 1.0 produce similar modeled 
coefficients close to the true relativity as seen in Table 7.6.

In general, lasso credibility will be of more actuarial benefit than a GLM when the 
complement of credibility is pulling the indicated relativities in the correct direction 
toward their true relativities. Additionally, lasso credibility should outperform lasso 
penalization when the selected complement of credibility is more appropriate than the 
default assumption of 1.0. A poor complement can cause lasso credibility to perform 
worse than both lasso penalization and GLM.

7.5.6. Large State Conclusion
When we subset our data to this level, high-exposure segments still show minimal 

deviation in indicated relativities between the GLM and lasso credibility models. 
However, for smaller categories and some continuous variables, the GLM is already 
unable to provide significant coefficients. A modeler could explore additional feature 
engineering or the removal of insignificant variables in favor of an offset. Such additional 
adjustments and feature engineering would also benefit the lasso credibility model.

Figure 7.22.  The Lasso Credibility Model Clearly Outperforms the Traditional Lasso 
Penalized Regression Model

Table 7.6.  A comparison of the Health Care and Farming Factors 
between Models

Category
True  

Relativity GLM
Lasso Credibility 

Complement

Lasso Credibility 
with Original 
Complement

“Lasso 
Credibility”  

1.0 Complement

Health care 1.2 1.165 1.399 1.288 1.101

Farming .7 .668 .680 .680 .718
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Lasso credibility is effective on data of this size, and we suggest that data of all sizes, 
even as large as our full modeling data set, can benefit from the application of lasso 
credibility. For every large data set, there is likely a not-fully-credible category. This 
not-fully-credible category can benefit from lasso credibility. From a theory perspective, 
this is motivated by the bias–variance trade-off (Chapter 4). For example, industry codes 
in the full modeling data set can be split into increasingly granular subsets until they 
begin to lose credibility and significance. Lasso credibility can help a modeler gain lift 
that would otherwise be unattainable for these segments.

Here are some recommended exercises with the large state subset:

• Rerun the lasso credibility model with different complements of varying quality. 
Observe how the complement has more effect in low-exposure categories and 
segments than high-exposure segments.

• Resimulate the large state subset with a different seed. How consistent are the results 
from lasso credibility? How consistent are the results from a GLM?

• Resimulate the large state subset with different underlying relativities. How quickly 
does lasso credibility react to these differences? Is a GLM able to model these new 
relativities with significant coefficients?

7.6. “Medium State”—Lasso Credibility Versus GLM
A quick examination of the relativity plot for industry code (Figure 7.23) will show 

that both the generalized linear and lasso credibility models are producing indicated 
relativities quite far from the true relativities, and quite nonsensical ones for the fireworks 
industry code. Additionally, many of the coefficients are insignificant in our GLM. Is this 
data set too small or volatile to model? The answer is no: an adjustment of the penalty 
term in lasso credibility enables us to build an acceptable model on this data set.

Figure 7.23.  Both Models are Producing Inaccurate Relativities for Real Estate,  
and the Indicated Relativity for Fireworks is Directionally Incorrect
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7.6.1. Evaluating the Assigned Credibility
The relativity plot for industry code in Figure 7.23 has a couple of results that make 

us question the assigned credibility. First, in smaller data sets, a good complement would 
usually be given full credibility for some categories when their coefficients are penalized to 
zero. Only the health care coefficient is penalized to zero in this example. This by itself 
is not a bad thing, but an actuary should review the credibility of deviations for reason-
ableness. Second, some of the coefficients are directionally different than the selected 
complement. Does it make sense that our real estate relativities are slightly surcharged 
in this subset as opposed to receiving a sizable discount? Maybe—industry knowledge 
would be necessary to determine whether this is a reasonable movement. Third, and most 
importantly, we see a truly unintuitive result in the fireworks category. This category of 
only 69 exposures is deviating from a complement of credibility of 2.796 to an indicated 
relativity of .167. This is surely a misallocation of credibility.

As discussed earlier in the monograph, one can choose from a range of statistically 
reasonable lambdas. This result is a reason to select a smaller lambda and give more 
credibility to our complement.

How can we be sure to recognize this misallocation of credibility in practice?  
A strength of lasso credibility is that the penalty is applied to all coefficients identically 
and therefore applies an equal credibility standard across all variables. If the credibility 
standard is incorrect for one variable, it is incorrect for all variables. In practice, this 
is easily addressed: a modeler should always start with the penalty that produces the 
most statistically sound model. If that produces unreasonable results for one or more 
variables, we recommend increasing that penalty term until the results are actuarially 
reasonable across all variables. An ordinal treatment of variables can make this evalua-
tion quite clear.

Would p-values have fixed this? Not really. Our GLM has an indicated coefficient 
of 0.01 for fireworks with a p-value of 0.0645. This is very close to significance, and if it 
weren’t so obvious that this result is wholly unintuitive, an actuary might use the result 
as support to judgmentally assign some discount to this industry code. Additionally, 
p-values would remove most of our continuous variable transformations and four of 
the other industry code coefficients. With enough work, a modeler might be able to 
create a reasonable model through robust variable transformations, but in its current 
state, the GLM would be unusable.

7.6.2. Some Credibility is Better Than None
We have talked about how some credibility is better than none for individual 

coefficients, and now we describe how some credibility is also better than none in the 
aggregate. The HDtweedie package allows us to view the range of tested lambdas, so 
we built models with increasingly high lambdas until the results appeared reasonable 
for all variables. This process assigns less credibility to our entire data set. Looking at 
the relativity plots and comparing to true relativities, we can see that this model is not 
perfect. Older drivers still have too much of a surcharge, real estate is erroneously devi-
ating from the complement of credibility, and the change to our xTreme turn signal 



Casualty Actuarial Society 79

Penalized Regression and Lasso Credibility

Figure 7.24.  Although still quite off, the lasso credibility model is a bit closer  
to the true relativity overall than the complement of credibility for the driver  
age variable.

Figure 7.25.  Lasso Credibility Partially Reacts to Signal in x-Treme Turn Signal 
Variable

variable is not fully recognized. Despite this, the lasso credibility model is better than 
our alternatives. (See Figures 7.24, 7.25, and 7.26).

The GLM fails to produce significant coefficients for half of the industry codes 
in our model, and similarly three of our five continuous variable transformations are 
insignificant. An actuary may be tempted to implement the countrywide model in this 
state instead of a state-specific model rather than perform significant work to turn this 
into a usable model.
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Figure 7.26.  The Increased Penalty Term Has Placed Much More Weight  
on the Complement of Credibility

Figure 7.27.  The Lasso Credibility Model Outperforms the Countrywide 
Complement of Credibility

On the other hand, the lasso credibility model is improved simply by the tuning 
of the penalty parameter. Looking at the lift chart (Figure 7.27), we can see that the 
lasso credibility model is outperforming our countrywide model on this data set. By 
adjusting the penalty parameter, we are able to move closer to the state’s true relativities 
without being overreactive. One of lasso credibility’s key benefits is its ability to build 
models on data that would normally be considered out of scope for predictive modeling. 
Finding credible differences in a state’s experience from a countrywide model is a key 
use case for lasso credibility.
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7.6.3. Medium State Conclusion
Our medium state data set is right on the edge of being able to produce a reasonable 

GLM, but lasso credibility models can still be built quickly. We can build better models 
on smaller data sets because lasso credibility can incorporate prior assumptions and 
assign partial credibility to coefficients as opposed to assigning full credibility to 
all significant coefficients.

7.7. “Small States”—Lasso Credibility Versus GLM
As a reminder, our first small-state subset has some different true relativities than 

the countrywide model, while our second small-state subset has true relativities that are 
identical to the countrywide model for all characteristics.

7.7.1. Lasso Credibility is Viable When GLM Fails
On this size of data, the GLM produces significant coefficients for only nine of the 

19 variables included in the model, and a modeling project would likely be abandoned 
quickly. The lasso credibility model is not perfect—but it manages to build a mode 
that is better than our selected complement of credibility at identifying the true risk 
relativities overall (Figure 7.28). Rather than adopting the countrywide model directly, 
an actuary can use lasso credibility to quickly build state-specific models on small data 
where a GLM is not viable (Figure 7.29).

We can also judgmentally select a higher penalty term to move less toward indicated. 
Selecting a higher penalty term still produces better relativities than our complement 
of credibility and will result in smaller policyholder impacts (Figure 7.30). This model 
still performs better than the countrywide complement.

Figure 7.28.  The Lasso Credibility Model Outperforms a GLM on This Small 
Subset of Data
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Figure 7.29.  The Lasso Credibility Model Outperforms the Countrywide 
Complement of Credibility on This Small Subset of Data

Figure 7.30.  An Increased Penalty Creates a More Accurate Model by Preventing 
Overreactions in the Tails of This Lift Chart



Casualty Actuarial Society 83

Penalized Regression and Lasso Credibility

7.7.2. A Good Complement Creates a Sparse Model
When we build a lasso credibility model on our second small data set (data with 

the same true risk relativities as our base data), the lambda indicated by cross-validation 
penalizes every single variable out of the model. Examining the relativity plots, we see 
that the complement of credibility is quite close to the true relativities for all variables. 
Without knowing the true relativities, an actuary would conclude that the data shows 
no credible differences from the complement.

This result is only possible by examining credibility instead of significance. Rather 
than a process of evaluating p-values for significant differentiation from a null level, 
we are instead looking for credible deviations from a prior assumption. When our 
complement is good, we can expect a model to output very few nonzero coefficients.

7.7.3. Small-State Conclusion
Lasso credibility models can be used to gain insights into data sets of increasingly 

small size. How can actuaries use this characteristic to apply lasso credibility in additional 
analysis?

For this, we turn to Actuarial Standard of Practice No. 56, Modeling. ASOP 56 
provides significant guidance on the general usage of models, and we focus on one 
phrase that comes up repeatedly: the “intended purpose” of an analysis. In every aspect 
of modeling, an actuary should keep in mind the intended purpose and end usage of 
an analysis. Rather than for the intended purpose of “fully justifying new rates,” an 
actuary can use lasso credibility for “identifying credible differences for further inves-
tigation.” When using lasso credibility for analysis, its scope greatly increases beyond 
that of traditional GLM building.

Before an insurer has enough data to build a model for implementation, the actuary  
can use lasso credibility to identify the most credible deviations from that insurer’s 
current rating plan. This multivariate analysis can save an insurer time when looking 
for profitability issues by quickly narrowing the scope of further analysis. An ordinal 
treatment of continuous variables is required in this approach, as the time required to 
identify the correct continuous variable transformations would likely make the analysis 
prohibitively long.

An actuary could also perform model monitoring by fitting a lasso credibility model 
on only the latest year of data. Whereas such a model would almost certainly not be 
appropriate for implementation, it would identify experience that is credibly out of 
pattern with the implemented relativities for further investigation.

7.8. Case Study Conclusion
We have shown how lasso credibility can outperform GLM and be used to build 

credible models where traditional GLM or penalized regression approaches would fail. 
This countrywide-to-state refit is expected to be one of the main use cases of lasso cred-
ibility, but we anticipate that actuaries will use the guidance of ASOP 56 to find many 
additional use cases for lasso credibility.
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The key to lasso credibility is the switch from significance to credibility. This switch 
is only achievable through penalized regression and a proper modeling setup. In our 
example, we used known variable transformations as a shortcut for proper model setup. 
In practice, an ordinal treatment of variables is necessary to create a stepwise application  
of credibility. Without prior knowledge of feature behavior, the penalization will remove 
the less credible ordinal steps and leave only the most credible deviations. It is this ordinal 
treatment of variables that allows us to remove this simplifying assumption and apply 
lasso credibility on any data set.

We encourage the reader to rerun the provided code with alterations to explore 
various scenarios to solidify their understanding and test the limits of the application 
of lasso credibility. Examples include these:

• Start with a better complement of credibility.
• Start with a worse complement of credibility.
• Experiment across multiple starting seeds.
• Experiment with alternate variable transformations.
• Apply an ordinal treatment to continuous variables and/or vehicle weight.
• Perform “model update” scenarios by resimulating the modeling data.
• Start with more volatile or less volatile distribution assumptions.
• Incorporate “random noise” in the true pure premium distribution.
• Incorporate a variable in the true pure premium distribution that is not in the model.
• Incorporate a variable in the model that is not in the true pure premium distribution.
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As we have seen, penalized regression can be applied as a credibility procedure and has 
strong mathematical links with widely accepted credibility procedures. Appendix A 
identifies a special case of equivalence between penalized regression and Bühlmann 
credibility, and it is important to note that equivalence is not necessary, as Appendix B 
defines penalized regression as a credibility procedure without relying on the link to other 
widely used procedures. Similarly, best practices applied to building lasso credibility 
models should be based on best practices of penalized regression in general—not taken 
from classical or Bühlmann credibility procedures directly. This change in perspective 
from lasso penalization to lasso credibility does not change the mathematical founda-
tion of penalized regression, but rather it constitutes a new actuarial application of the 
existing technique.

Model reviewers should not directly take model validation requirements from either 
GLM or Bühlmann credibility techniques. Lasso credibility should be reviewed as a 
stand-alone credibility technique with its own model review standards. Those standards 
are taken from a combination of penalized regression and credibility procedure expertise. 
Straightforward application of existing model validation procedures to lasso credibility 
will be suboptimal.

We recommend an ordinal treatment of continuous variables in lasso credibility 
because it allows the model to identify credible differences from the complement 
during model fitting. The technique was popularized in Iwasawa and Wang (2022) and 
expanded upon in Casotto and Holmes (2023). We encourage the reader to investigate 
these techniques; they provide support for moving to a modeling approach where feature 
engineering is objective and fully credibility based.

Lasso credibility deserves a place in every actuary’s analytical tool kit. By combining  
lasso penalization with a complement of credibility in the offset, one can use lasso credi-
bility to analyze data sets of increasingly small sizes. Similarly, increasingly small subsets 
of larger data sets can be analyzed for insights and additional segmentation opportunities. 
Such complements of credibility can come from many sources and can be applied to 
many different types of analysis. Penalized regression is not just for big data!

We hope that this monograph has provided the necessary background for the reader 
to begin using penalized regression and lasso credibility. Happy modeling, and all the 
best in your actuarial and personal endeavors.

8. Conclusion—Overall
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In this appendix, we explain why a GLM offers full credibility and how penalized regres-
sion mathematically aligns with Bühlmann credibility. After illustrating their differences, 
we delve into penalized regression’s relationships with Bayesian statistics.

A.1. Why GLMs Give 100% Credibility to the Data
The statement “GLMs grant 100% credibility to the data” is a recurring theme in 

this monograph. To support it, we show that for all canonical link GLMs, predicted 
averages invariably match observed segment averages. The proof ’s essence lies in the 
computation of the GLM’s parameter β, which maximizes the data’s negative log-
likelihood.

Setting the derivative (or gradient) to zero during likelihood maximization results 
in estimates where predicted averages coincide with observed segment averages, inde-
pendent of the underlying exposure.

To introduce some mathematical notation, we start by considering an actuarial 
use case that consists of building estimates of loss costs for companies in a workers’ 
compensation insurance rating plan. The modeler has access to a data set of historical 
loss experience, where each row represents the total loss observation for a specific com-
pany in a fixed 1-year period. Additionally, the class code describing the industry type 
is available for each company. There are several class codes and for most of them the 
number of observations is limited. An example of such a database is shown in Figure A.1.

The database contains n observations. The information on the companies is encoded 
in the matrix X, which provides the binary representation of the p class codes in the 
database. The coordinate xij of the matrix X will be 1 if company i belongs to class j, and 
0 otherwise. Xi will denote the row vector of matrix X of size p. In general, index i will be 
used to represent a line in the matrix/database, and i takes values from 1 to n. The index 
j will be used to represent columns of the matrix, and j takes values from 1 to p.

Y represents the vector of the observed losses, meaning that Yi will represent the 

observed loss for company i. The grand average is given by Yr=
n
1

i=1

n/ Yi . y represents 

the differences of the observed losses from the grand average Ȳ , that is, yi = Y – Ȳ  
(so y is centered on zero).

Appendix A.  Bayesian Interpretation  
of Credibility
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nj denotes the number of observations belonging to class j. The set J represents 
the set of rows i belonging to class j, that is, i such that xij = 1. This implies that the 
cardinality of J is nj. The constant ȳ j represents the observed average loss deviation by 

class code j, that is 
n j

1
i! J y i/ .

We recall from Section 1.1 that to fit a GLM we define the following items:

• The distribution is a normal distribution with constant variance σ2.
• The link is the identity (canonical link).
• The target is the vector y representing the differences of the observed losses Y from the 

grand average Ȳ.10

The GLM coefficients β are estimated by maximizing the log-likelihood, or, equiva-
lently, by minimizing the negative log-likelihood (NLL):

bt = argmax
b

Loglikelihood y, X,b` j

= argmin
b

NLL y, X,b` j,

which in the case of a Gaussian distribution with an identity link becomes

bt = argmin
b 2v 2

1
y i - Xib` j2

i= 1

n

/ .

Figure A.1.  The purple line represents the behavior of the observed average loss 
deviation y-j by class code j on synthetic data. The blue bars represent the total 
number of observations nj by class code j.

10 A problem is considered as numerically tractable if an optimization algorithm can provide its optimal solution in 
a reasonable time. This usually means that the problem is convex.
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Since σ is constant, it doesn’t affect the optimization problem, and we can ignore it. 
We can proceed to compute the gradient only of the summation, by differentiating with 
respect to each coefficient. This solution can then be found by setting the gradient to 
zero. The gradient can be simplified by application of the chain rule of the derivative:

∂b j

∂
y i - Xib` j2

i= 1

n

/
R

T

S
SS

V

X

W
WW= Xib- y i` jxij

i= 1

n

/

We can further simplify the formula since the summand is not null only for i ∈ J 
since xij = 0. Otherwise

Xib- y i` jxij
i=1

n

/ = Xib- y i` j
i! J

n

/

Since for all i ∈ J, Xiβ = βj; the njȳ j term is by the definition of the average  
ȳ j = ∑i∈J yi/nj the first addend njβj appears and we obtain

Xib- y i` j
i! J

n

/ = jb j - y i = jb j - n j yr
i! J
/n n j

Setting the gradient to zero implies that

0 = jb j - j yr ) b j = yr .n n j j

This proves that the coefficients βj maximizing the log-likelihood are exactly match-
ing the average ȳ j of each class.

Figure A.2.  The green line compares the GLM estimates b̂j with the data as 
represented in Figure A.1. The observed (purple line) coincides with the GLM 
estimates (green line).
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This simple proof highlights two important features of generalized linear modeling:

• When modeling a single class in a binary encoding, a GLM will output the average 
of the observations for such a class. This is true as well for all distributions when 
the canonical link is used, and it can be proven equivalently by changing Xiβ with 
µi = g –1(Xiβ) as in Ohlsson and Johansson (2010).

• The formula applies as well on multivariate settings. Whenever a discrete variable 
is added in a binary format, the coefficients will be estimated so that the average 
of the predictions Xiβ on every level j will match the average of the observations, 
regardless of the underlying exposure.

In this sense, any fitting procedure that computes estimates by maximizing the 
likelihood of the data (or minimizing the deviance) alone, effectively assumes that the 
underlying data sets are 100% credible, no matter their size.

A.2. Credibility: A Bayesian Interpretation
Maximizing likelihood doesn’t inherently blend credibility into both the model’s 

factors and estimates. To address that, we must reconsider how a model interprets and 
estimates data.

Using the maximum likelihood formula to compute GLMs is characteristic of the 
“frequentist” statistical approach. We propose complementing this with a “Bayesian” 
perspective. “The Bayesian and classical versions have a lot in common, but they have 
a philosophical difference in that in classical statistics parameters are constants, but for 
Bayesians they have distributions” (Venter n.d., x).

Before modeling with GLM, two assumptions are essential. First, a probabilistic 
description of the observed response must be established, defining the data-generating  
distribution. Second, a link function should be selected to depict the relationship between 
the linear predictor (comprising parameters and covariates) and the target.

Once those are set, the parameters are estimated by maximizing the likelihood 
over the data. Such a maximization will try to replicate the observed data as closely as 
possible, giving 100% credibility to the data.

From a statistical perspective, this happens because the frequentist approach to 
modeling assumes that there exists a fixed set of true coefficients: the observed values 
of the target are assumed to have been generated assuming these fixed coefficients and 
the hypothesis assumed above. Our best guess is thus the set of coefficients maximiz-
ing the probability of observing the actual values of the target, motivating a maximum 
likelihood approach.

In a Bayesian perspective, on top of the standard hypothesis done over the observa-
tions, a distributional assumption is made on the coefficients of the model themselves 
(called the prior distribution). This assumption describes our a priori knowledge of 
and uncertainty over the values of the coefficients (hence the name), which are now 
random variables, and allows for the inclusion of some additional structure on the 
coefficients’ estimates.
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Bühlmann credibility can be considered from both a Bayesian and a frequentist 
point of view (Tse 2009).

The Bayesian equivalence has been proved by Jewell (1974): for all data-generating 
distributions used in GLMs, one can find an appropriate prior distribution such that 
the resulting Bayesian estimation coincides with the estimator obtained via Bühlmann 
credibility.

Jewell’s result shows that for a given statistical hypothesis on the target, there exists 
a certain prior distribution for the coefficient β (called conjugate) that will return the 
Bühlmann estimator.

Jewell’s result allows us to put Bühlmann credibility into the much more generic 
framework of Bayesian statistics. Under the Bayesian perspective, the connection with 
penalized regression will be evident.

To see how that connection works in practice, it is helpful to apply Jewell’s result 
to the workers’ compensation use case. The goal is to show that a Bayesian model with 
proper priors returns the exact same estimates as the Bühlmann credibility formula.

As a reminder, the Bühlmann credibility estimator is given by

 
bt j = n + k

n j yr j,
j

where k =
x 2

v 2

 is the ratio between the within-class variance and the between-class 

variance (see Table 2.1).
The initial assumption in the workers’ compensation use case was that the loss 

deviations y are normally distributed around the estimations, that is, yi ∼ N(Xiβ, σ2). The 
conjugate of the normal distribution with known variance is the normal distribution 
itself. For this reason we’ll suppose that a priori β itself follows a normal distribu-
tion with constant variance τ2 and mean zero: β ∼ N(0, τ2).

The choice of the normal a priori on β ∼ N(0, τ2) can be motivated as well by 
pragmatic considerations: deviations of class code losses from the grand average should 
be centered around zero. Furthermore, large deviations from the grand average should be 

Table A.1.  Pairings of statistical assumptions 
with their corresponding conjugate distribution 
for commonly used GLMs. Gamma (a) refers to 
a gamma distribution with known parameter a.

Statistical Assumption Conjugate Distribution

y ~ Gaussian β ~ Gaussian

y ~ Poisson β ~ Gamma

y ~ Gamma(α) β ~ Gamma

y ~ Binomial β ~ Beta
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considered a priori as less likely than minor deviations. In this sense, the priors allow 
us to formalize commonsense intuitions in a robust mathematical framework.

To define a Bayesian estimator for this model, it is necessary to derive the so-called 
posterior distribution, which updates through the likelihood (through the data) our a priori 
belief about the unknown parameter (the β should not deviate too much from zero, 
the mean). This update (by Bayes’ theorem) takes the form of

p b y, Xa k =
K
1
# p y X,b` jb l# p b` j,posterior yt prior

where K is a constant that doesn’t depend on β.
Under these specific assumptions of normality (see Section A.5 for more informa-

tion), the solution can be computed via the maximum a posteriori formula:

bt = argmax
b

p y X` jc m# p b` j

= argmin
b

NLL y, X,b` j- log p b` jb l.

yt prior

prior

The first summand is, for the workers’ compensation use case, given by the same 
formula optimized by a GLM, that is,

NLL y, X,b` j =
2v 2

1
y i - Xib` j2 .

i=1

n

/

The second summand, since β ∼ N(0, τ2), is equal to

-log p b` jb l =
2x 2

1
b j

2+C,
j=1

p

/prior

where C is a constant that does not depend on β, and can be removed from the opti-
mization problem, which becomes

 

bt = argmin
b 2v 2

1
y i - Xib` j2+

2x 2

1
i=1
n/ b j

2
j=1

p/

= argmin
b 2

1
y i - Xib` j2+

2x 2

v 2

i=1
n/ b j

2
j=1

p/ .  (A.1)

Formula in Equation A.1 shows as well that the Bayesian estimates’ optimization 

formula is equal to that of ridge regression with m =
x 2

v 2

. Furthermore, by the Jewell 

theorem, we already know that the optimal solution is equal to the Bühlmann estimates, 

with k =
x 2

v 2

.
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A.3. Penalized Regression: A Bayesian Interpretation
The equivalence of ridge estimates to this specific use case isn’t accidental. As Miller 

(2015) demonstrated, every penalized regression can be framed as a Bayesian model, 
rooted in the maximum a posteriori (MAP) formula:

 

bt = argmax
b

p y X` jc m# p b` j

= argmin
b

NLL y, X,b` j- log p b` jb l.

yt prior

prior  (A.2)

There is a one-to-one correspondence between prior distribution (prior assumption 
on the coefficients) pprior and penalties:

 Penalty b` j = -log p b` jb .prior  (A.3)

We just showed how the ridge penalty corresponds to a normal prior on the coeffi-

cients with m =
x 2

v 2

. Furthermore, under the hypothesis of the workers’ compensation 

use case, ridge regression and Bühlmann credibility are equivalent with k = λ.
In the case of the lasso, the associated prior is the Laplace distribution.
For context, the Laplace random variable with mean µ = 0 and scale γ has the 

distribution

fLaplace 0,c` j x` j =
2c
1

exp -
c

x
J

L

K
KK

N

P

O
OO.

Figure A.3 compares the Gaussian and Laplace distribution.
Replacing Equation A.3 with the prior assumption that β ∼ Laplace(0, γ), then

-log p b` jb l =
c

1
b j +C,prior

where C is a constant independent on β, which is ignored when computing a MAP 
estimator. The formula is equal to the lasso penalty with λ = 1/γ.

The formulas highlight a strong connection between Bayesian and penalized 
regression modeling:

1. Bayesian modeling offers a general framework with which to model the uncertainty 
of the estimation β when the number of observations is limited. This uncertainty 
translates into a choice of a prior hypothesis on the coefficients β, i.e, a certain 
distribution that the coefficients β are assumed to follow.
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2. The estimator of the Bayesian model can be found by maximizing the posteriori 
log-likelihood pposterior(β| y, X ). When taking the logarithm, its structure decomposes 
naturally into two terms: the log-likelihood (equal to the GLM formula) and the 
log-probability of the prior (which acts as a penalty).

3. Bühlmann credibility is an instance of a specific Bayesian model where the error 
distribution and the prior are conjugates (Table A.1). The choice of conjugate dis-
tributions allows us to compute the estimates in an explicit form. Explicit formulas  
were required due to the lack of computational tools, which are now available to  
everyone. Overcoming this bottleneck allows us today to both choose a range of more 
appropriate priors and to easily adapt the credibility framework to a multivariate 
setting via penalized regression.

A.4. Practical Comparison
Ridge and lasso, viewed as credibility methodologies, can benefit from a compari-

son with other credibility methods. We consider two comparison scenarios:

1. Increasing underlying exposures and fixed observed average
2. Increasing underlying average and fixed exposures

A.4.1.  Comparison with Increasing Exposures  
(Fixed Observed Average)

A meaningful comparison can be given by showing how the credibility estimates 
evolve as the underlying amount of exposures increases. Figure A.4 displays the evolution 

Figure A.3.  Comparison of Densities of Both the Normal/Ridge Prior 
and the Laplace/Lasso Prior
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of the estimates of an effect with an increasing number of observations (e.g., a workers’ 
compensation class code risk) when the average ȳ for such effect is kept fixed.

The behavior of the lasso is different from the others, as it exhibits a minimum 
amount of observations (here λLasso/ȳ) for which the recorded experience does not influ-
ence the estimates β̂ and the predictions are equal to the complement of credibility. 
This can be seen as equivalent to considering a specific level of significance to include 
a variable in a GLM. The choice of including or excluding a specific level in a GLM 
may be based upon the result of a statistic (p-value) that will depend, among others, 
on the number of observations. If the statistic is below a certain threshold (e.g., 5% 
for p-values), then the factor will be included in the modeling, giving an underlying 
100% credibility. The lasso regression leads to similar results, but it allows interpolation 
between 0 and full credibility instead of a binary split (a yes-or-no decision).

When the number of observations is above the lasso’s threshold, experience gains 
weight onto the final estimate much faster than in the ridge/Bühlmann estimates.

The visualization in Figure A.4 shows, in a univariate example, how the signal is 
interpolated from the complement of credibility to the observed data by credibility 

Figure A.4.  Plot of the estimates b̂ with y- 5 5 and the number of 
observations varying. Parameters for each model were as follows:  
classical credibility Nfull 5 1,082, Bühlmann k 5 1,600, ridge lRidge 5 1/k, 
lasso lLasso 5 4,000. The formulas used to compute the estimates for the 
use case can be found in the relative section in the paper. The parameters 
were chosen arbitrarily to best display the differences of trend. Depending 
on the parameters, the curve would more or less be similar.



Casualty Actuarial Society 95

Penalized Regression and Lasso Credibility

and penalized regression. It also shows how both frameworks can be derived from a 
Bayesian prior hypothesis on the coefficients’ distribution, demonstrating how the 
penalized regression approach extends GLMs by integrating credibility in a multi-
variate context.

A.4.2.  Comparison with an Increasing Observed Average  
(Fixed Exposure)

We now focus on comparing the estimates of GLM, ridge, and lasso when the 
number of observations are fixed but the observed average effect ȳ changes. This toy 
example is helpful as it provides a sense of how these methodologies “learn” from the 
observed data.

First, we need to compute the estimates of each of the methodologies, i.e., the values 
of βj as a function of ȳ j.

GLM Solution
Because a GLM gives 100% credibility to the data,

bGLM,j = yr j .

Ridge Solution
To compute the ridge estimate, we need to solve for β̂:

bt Ridge = argmin
b 2

1
y- Xb` j2+

2
m
b j

2

j=1

p

/ .
i= 1

n

/

This solution can be found by means of computing the gradient and setting it to 
zero, similarly to the GLM. The solution is given by the vector that sets the gradient 
to zero, that is,

bt Ridge,j = n j +m

n j yr j .

The addition of the penalty term effectively “shrinks” the observed estimates ȳ j 
by a number that is dependent on the number of observations of the segment in 
question.

Lasso Solution
The same procedure should be applied to the lasso, which solves the formula

bt Lasso = argmin
b 2

1
y - Xb` j2+m b jj=1

p/i=1
n/ .
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We prove in Section D.1 that 

bt Lasso,j =

yr -
n j

m
if yr >

n j

m

yr +
n j

m
if yr < -

n j

m

0 otherwise.
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Whenever the quantity nj ȳj = ȳ i < λ, the coefficient for the class j will be set equal to 
zero, hence assigning no credibility to the data if the quantity of signal is not relevant 
enough. Appendix D explores in depth the modeling consequences of the structure of 
the lasso solution.

A.4.3. Final Comparison
Figure A.5 displays how the different estimates βj differ in the workers’ compensa-

tion use case for fixed λ, nj.

Figure A.5.  Plot of the correspondence between observed value y-j with 
estimates b̂j for GLM and penalized regression. For GLMs, the dashed line 
represents the identity function. For the ridge, the relationship is linear, 

by a factor of 
n j + 2m

n j . For the lasso, the relationship is piecewise linear.
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Compared to the GLM estimates (β̂j = ȳ j), the lasso reduces the coefficient by a 
factor λ/nj accordingly to the sign of ȳ j. If the value of ȳ j is lower than such a threshold, 
then such value is set to zero.

Compared to the ridge estimates (bt j = n j + 2m
n j yr j ), the lasso shrinks high values of 

the observed ȳj to a lesser degree (since lasso penalty grows linearly with the coefficients, 
and ridge quadratically), but does the opposite for small values of the observed (setting 
them to exactly zero).

A.5. Degrees of “Bayesian-ness”
We showed that Bühlmann credibility and ridge regression coincide when we do 

compute the Bayesian estimates via the maximum a posteriori, or MAP, formula. The 
MAP formula is not the only way to compute the estimates of Bayesian models—there 
are various other ways to do it.

As mentioned earlier, Bayesian statistics treats parameters as distributions them-
selves (the “posterior” distribution), and in general, penalized regression provides as 
prediction the mode of such estimators. Another typical estimator could be the posterior 
mean, and it can be proven to coincide with the mode in the case of the Bühlmann 
Gaussian example mentioned in the previous sections.

Ideally, we would be interested in computing the whole posterior distribution of  
the parameters β, but outside of a limited number of convenient combinations of  
likelihoods and relative conjugate priors, the posterior distribution might not be known 
analytically. Inference can quickly become intricate when delving into details. For 
instance, while we set prior distributions for the parameter β, those priors (like the 
normal distribution) depend on additional parameters, such as the standard deviation σ.  
In Bayesian statistics, these metaparameters might have their own prior assumptions. 
To maintain practicality, various approximations are available to modelers based on 
desired complexity. As Murphy (2012) illustrated, a hierarchy can be constructed where 
the more integrals executed, the “more Bayesian” the approach becomes (Table A.2).

The hierarchy serves as a guide through various actuarial methodologies that 
incorporate Bayesian statistics to varying extents. GLMs are based on the maximum 
likelihood method, while penalized regressions are MAP estimates of Bayesian models. 

Table A.2.  From Murphy (2012)

Method Definition

Maximum likelihood û = argmaxup(D |u)

MAP estimation û = argmaxup(D |u)p(u|h)

ML-II (empirical Bayes) ĥ = argmaxh∫p(D |u)p(u|h)du = argmaxhp(D |h)

MAP-II ĥ = argmaxh∫p(D |u)p(u|h)p(h)du = argmaxhp(D |h)p(h)

Full Bayes p(u, h|D) ∝ p(D |u)p(u|h)p(h)
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Generalized linear mixed models, which are examples of empirical Bayes estimates, were 
popularized in the actuarial realm by Klinker (2011). In practice, GLMs share many 
similarities with ridge penalized regression. Both use Gaussian priors β ∼ 1(0, σ2) and 
yield shrunken parameter estimates for β. Full Bayes models, on the other hand, 
necessitate specialized coding languages or Bayesian tools like Stan.

It’s worth noting that the sparsity lasso introduces applies to maximum posterior 
estimates and doesn’t necessarily extend to entire distributions.

Concluding this section on Bayesian interpretation, it’s essential to recognize that 
there is no single best approach. Each method has its merits depending on the use 
case. While more Bayesian models might excel in certain scenarios, our monograph’s 
purpose is to introduce sophistication to address practical challenges within our statis-
tical methodology.

GLMs, widely accepted and comprehended within the actuarial community, have 
set a foundation. Penalized regressions, however, emerge as a natural progression from 
GLMs. They not only introduce a touch of Bayesian thinking, such as prior assump-
tions and the complement of credibility, but also bridge the gap between traditional 
statistical methods and machine learning techniques. This intersection with Bayesian 
statistics offers a pragmatic balance, especially considering that penalized regressions 
require tuning just a single parameter.

In the authors’ view, this blend of simplicity and sophistication makes penalized 
regression an invaluable tool, serving as a practical introduction to more advanced 
Bayesian concepts within the standard approach.
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Lasso credibility is a new technique, but it aligns with the existing considerations in 
Actuarial Standard of Practice No. 25, Credibility Procedures. In this appendix, we spend 
time detailing that alignment. First, we introduce how the existing terminology of 
ASOP 25 can be applied when using the default complement in lasso credibility. Then, 
we confirm that lasso credibility is in ASOP 25’s defined scope and show that lasso 
credibility has all of the characteristics of an actuarially sound credibility procedure. 
Finally, this section will confirm that these conclusions hold when the selected comple-
ment of credibility is applied through the offset and differs from the default assumption 
of lasso credibility.

B.1. Definitions: Default Complement of Lasso Credibility
Our first consideration is to verify that penalized regression is a credibility procedure 

by definition. Note that for the purposes of discussion, in this appendix the displayed 
text comes from the relevant sections of ASOP 25.

Appendix B.  Alignment of Lasso 
Credibility with ASOP 25

2.2 Credibility Procedure
A process that involves the following:

a. The evaluation of subject experience for potential use in setting assumptions 
without reference to other data; or

b. The identification of relevant experience and the selection and implementation 
of a method for blending the relevant experience with the subject experience.

When using the default complement of credibility (no offset), we define the above-
mentioned terminology as follows:

• Relevant experience: the overall average relativity of a particular segment
• Subject experience: the experienced relativity of a particular segment
• A method for blending the relevant and subject experience: the penalized 

regression framework through the application of a penalty while maximizing the 
likelihood during the fitting process
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Therefore, lasso credibility is a credibility procedure under ASOP 25’s definition of 
the term.

B.2. Considerations and Scope of ASOP 25
Now let’s look at Section 1.2.c of ASOP 25 to confirm that penalized regression is 

within the scope set out by ASOP 25.

This Standard applies to actuaries when performing actuarial services involving 
credibility procedures in the following situations:

[. . .]

c. When the actuary is blending or considering blending subject experience with 
other experience; [. . .]

Sets of data, that include data other than the subject experience, that, in the actuary’s  
judgment, are predictive of the parameter under study (including but not limited 
to loss ratios, claims, mortality, payment patterns, persistency, or expenses). Relevant 
experience may include subject experience as a subset.

As lasso credibility is a credibility procedure and we are blending the subject 
experience with other relevant experience, it is within the scope of ASOP 25. Having 
determined that lasso credibility is within the standard’s scope, we should now further 
scrutinize the application of the default complement of credibility to make sure our 
relevant experience satisfies the other considerations of ASOP 25.

2.4 Relevant Experience

When modeling using our simulated countrywide data, we assume we have no 
prior knowledge for the risk relativities of the variables we include in our model. There-
fore, a 1.0 relativity (there is no relationship between the characteristic and true risk) 
is appropriate. In general, the 1.0 assumption will be valid in the absence of other 
information.

The text of ASOP 25’s Section 3.3, “Selection of Relevant Experience,” can be split 
into four main points.

The actuary should use care in selecting the relevant experience.
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This first section is the most important. Below, we make generalizations that are 
appropriate for most modeling exercises. However, data, projects, and models will 
always have at least one uniqueness that will require special treatment. Please treat the 
guidance below as guidance for a “normal” project, and take care to identify situations 
that might require exceptions to these generalities. We continue to assume for now that 
we have no prior knowledge about the variable being evaluated.

Moving on to the second point:

Such relevant experience should have characteristics similar to the subject experience. 
Characteristics to consider include items such as demographics, coverages, frequency, 
severity, or other determinable risk characteristics that the actuary expects to be 
similar to the subject experience. If the proposed relevant experience does not meet and 
cannot be adjusted to meet such criteria, it should not be used.

The actuary should apply credibility procedures that appropriately consider the  
characteristics of both the subject experience and the relevant experience.

The actuary should consider the extent to which subject experience is included in 
relevant experience. If subject experience data is a material part of relevant experi
ence, the use of that relevant experience may not be appropriate. In some instances, 
no relevant experience is available to the actuary. In this situation, the actuary should 
exercise professional judgment, considering available subject experience, in setting 
an estimate of expected values.

Satisfying this requirement relies on the assumption that we have no prior knowl-
edge for a particular characteristic and that our data is sufficiently homogeneous to be 
modeled together in the first place. Let’s look at the next point:

The blending of subject and relevant experience in penalized regression is deter-
mined by the penalty parameter. The penalty parameter behaves similarly to Bühlmann 
credibility’s k parameter as demonstrated in Appendix A. We suggest that if a model 
fitted through the maximization of likelihood is appropriate for this analysis, then a 
lasso credibility approach is an appropriate method of blending the subject and relevant 
experience. Now, to the fourth point:
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The goal of this consideration is to ensure that the complement of credibility is 
not self-deterministic. For example, if the subject experience is 80% of the relevant 
experience, and the subject and relevant experience are given 50% weight each, we are 
really giving 90% of the credibility to the subject experience.

The model structure when using the default complement of credibility will auto-
matically fulfill these considerations as the selected complement is not influenced at 
all by our modeling data. The “null relativity” assumption for categorical and ordinal 
variables is truly independent of our subject experience. This consideration will be highly 
material only when applying a selected nondefault complement of credibility through 
the use of an offset.

We discuss one more item before moving on, ASOP 25’s Section 3.2.c.

The actuary should use an appropriate credibility procedure when determining if 
the subject experience is fully credible or when blending the subject experience with 
relevant experience. The procedure selected or developed may be different for dif
ferent practice areas and applications. Additional review may be necessary to satisfy 
applicable law.

In selecting or developing a credibility procedure, the actuary should consider 
the following criteria:

[. . .]

c. whether the procedure is practical to implement while taking into consideration 
both the cost and benefit of employing a procedure.

The use of penalized regression carries additional computation cost. The time 
required to fit an individual penalized regression model with a fixed penalty value is 
quite similar to that needed for an equivalent unpenalized GLM. The computation cost 
of penalized regression increases because of the need to test various penalty parameters 
in a cross-validation routine. Such time can be costly on very large data sets, but the 
ubiquity of cloud computing has made penalized regression more accessible on data 
sets of all sizes.

The preceding sections justify that the default assumptions of lasso credibility are 
appropriate for a “normal” actuarial loss model when there is no prior knowledge 
about a given variable. In the next section, we explore how ASOP 25 applies when 
using a different complement in lasso credibility.

B.3. Alternate Complements in Lasso Credibility
When using a nondefault complement of credibility, as in the case study, we need 

to realign our terminology with that of ASOP No. 25. That alignment is the same as 
earlier with the exception of our relevant experience, which we define as follows:
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• Relevant experience: relativities produced by our lasso credibility model on the full 
countrywide data set

Therefore we revisit only ASOP 25’s guidance relating to selection of relevant 
experience.

2.4 Relevant Experience
Sets of data, that include data other than the subject experience, that, in the 

actuary’s judgment, are predictive of the parameter under study (including but not 
limited to loss ratios, claims, mortality, payment patterns, persistency, or expenses). 
Relevant experience may include subject experience as a subset.

The actuary should use care in selecting the relevant experience. . . . Such relevant 
experience should have characteristics similar to the subject experience. Characteristics 
to consider include items such as demographics, coverages, frequency, severity, or other 
determinable risk characteristics that the actuary expects to be similar to the subject 
experience. If the proposed relevant experience does not meet and cannot be adjusted 
to meet such criteria, it should not be used.

The actuary should consider the extent to which subject experience is included in 
relevant experience. If subject experience data is a material part of relevant experi
ence, the use of that relevant experience may not be appropriate.

In some instances, no relevant experience is available to the actuary. In this 
situation, the actuary should exercise professional judgment, considering available 
subject experience, in setting an estimate of expected values.

In our case study we assumed that the countrywide data is similar enough to indi-
vidual states for the countrywide model to be used as a complement. In the case study, 
the relevant experience does include the subject experience as a subset.

Section 3.3, “Selection of Relevant Experience,” has additional considerations for 
relevant experience that are satisfied through the selection of current rates or a country-
wide model as an offset for a state-specific model.

Now to the next relevant point of ASOP 3.3:
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Previously, this consideration did not require significant attention as the “null” 
complement was not related to our subject experience. Now, actuaries should take 
care to understand the potential influence of their modeling data on the selected com-
plement of credibility. If industry rates or competitor rates are selected, it is unlikely 
or impossible that the modeling data is a material subset of the selected complement. 
In our example, the large state data is a subset of the full modeling data set and did have 
an influence on the creation of the complement of credibility. For our example, we 
assumed it did not have undue influence. In practice, an actuary should more thoroughly 
consider the data’s influence on the selected complement.

B.4. Lasso Credibility and ASOP 25 Summary
Lasso credibility meets the definition of an actuarial credibility procedure, and the 

considerations of ASOP 25 should be directly applied when using this methodology. 
Considerations for the selection of a complement of credibility are not changed when 
using lasso credibility instead of a different credibility procedure. However, the appli-
cation of professional judgment in lasso credibility requires both industry knowledge 
as well as knowledge of penalized regression. This application of judgment in lasso 
credibility will be most common in the adjustment of the lambda penalty parameter.
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C.1. Rebasing Model Output
To make modeling output more interpretable and comparable, we often rebase 

the coefficients and factors by modifying the intercept, and we assume a log-link for 
this example. The term coefficients refers to the un-exponentiated betas produced by the 
model for a particular variable. The term factors refers to the exponentiated combination  
of coefficients with their corresponding X values. This post-modeling rebasing will have 
no effect on the scoring of the model as the rebasing factor may be incorporated into the 
intercept.

This is not to say that the selection of the base level during modeling is immaterial. 
The base level should still be selected to be the most statistically sound in penalized 
regression. For example, the optimal base level for a categorical variable should be the 
level with the highest level of exposure. After modeling, factors can be rebased to a 
selected base level for implementation and the base rate can be adjusted to achieve the 
desired rate level.

The tables below show an example of rebasing in a model using only one categorical 
variable with levels A, B, and C. The original base level is A, and we are rebasing to 
make level B the new base level.

Category Coefficient
Rebased 

Coefficient Factor Rebased Factor
Rebased 
Intercept

A 0 0 − (β1) 1.0 exp(−β1) exp(β0 + β1)

B β1 β1 − β1 = 0 exp(β1) exp(β1 − β1) = 1.0 exp(β0 + β1)

C β2 (β2 − β1) exp(β2) exp(β2 − β1) exp(β0 + β1)

Category Coefficient
Rebased 

Coefficient Factor
Rebased 
Factor Base Rate

Rebased 
Base Rate

A 0.0 −.2 1.0 0.819 100 122.1

B .2 0 1.221 1.0 100 122.1

C .5 .3 1.549 1.340 100 122.1

Appendix C. Miscellaneous
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The tables represent the mathematical transformations necessary to rebase the 
coefficient. In the model fit, category A was originally the base level, as highlighted by 
its 1.0 factor. In the rebased columns, such reference is changed to the factor B, which 
has a factor of 1.0 in the “Rebased Factor” column.

C.2. Penalized Regression and Near Aliasing
Near aliasing can cause large instabilities in GLMs, but models using penalized 

regression do not exhibit such volatility. We can explain this through the lens of credi-
bility. Take for example two indicator variables that overlap entirely except for a handful 
of characteristics. Those non-overlapping risks are implicitly being given full credibility  
by the GLM, as one indicator will increase drastically and the other will decrease until 
both segments are perfectly identified. This extremely high or low prediction for the small  
segment can greatly skew test statistics. When using lasso penalization, it is highly likely 
that one of the indicators will be highly penalized, and that the other will be included 
and will correctly account for the overlapping risks.

C.3. Penalized Regression and the AIC
In the context of model selection in GLMs, the modeler may need to decide on 

one model between two alternatives. For example, such a comparison could be based 
on evaluating performances in a holdout, or testing, data set. Another way to compare 
models is not to use any testing set at all but instead use statistical theory to approximate 
the generalization power of a model using training data alone. This approach doesn’t rely 
on new data sets to assess the generalization power of the model, avoiding the problems 
described above.

The Akaike information criterion, or AIC, is one of the most popular of such 
metrics, whose formula is

AIC b` j = 2NLL b` j+ # of degrees of freedom.

Here, NLL represents the negative log-likelihood computed in the training data, 
and # of degrees of freedom represents the number of nonzero entries of the GLM 
coefficient β.

Given two different modeling alternatives, the modeler can compute the AIC for 
such models. Since the AIC formula “penalizes” the decrease of the NLL of the more 
complex model with the degrees of freedom (hence the complexity), the model with 
lower AIC should be preferred.

The curious reader may notice that the AIC formula looks similar to the penalized 
GLM Equation 3.1:

bt = argmin
b

NLL y, X,b` j+ m Penalty b` j.
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Both formulas consider the trade-off between the goodness of fit (negative log-
likelihood) and the complexity of the model (in the AIC, the number of degrees of 
freedom, in penalized regression, the penalty).

The connections between AIC and penalized GLM, with lasso in particular, are much 
more deep. First, we can define a penalized GLM version of the AIC, by just defining

Penalty b` j = # of degrees of freedom = # of nonzero entries of b,

The solution of this problem is known as “best subset selection” problem. Many 
authors consider this the gold standard for building models: who would not compute the 
most performant GLM model given a “complexity” budget determined by the degrees 
of freedom? The model is not popular because it is proven to be numerically intractable. 
However, one can prove that the best “numerically tractable”11 approximation to that 
problem is the lasso. The mathematically inclined reader can refer to Hastie, Tibshirani, 
and Tibshirani (2020) for a more in-depth discussion of this approximation result.

That paper also contains an unexpected result: lasso outperforms best subset 
selection in conditions characteristic of insurance data. This result may sound counter-
intuitive, because from a theoretical perspective, best subset selection is superior to lasso. 
But this does not mean that it will perform better in practice for every (or even a typical) 
high-dimensional regression problem that we might want to solve. Best subset selection 
tends to have much higher variance than the lasso, because there is shrinkage inherent  
in the latter’s coefficient estimates. As a result, which estimator performs better in practice 
really depends on a lot of factors, such as the signal-to-noise ratio.

11 A problem is considered numerically tractable if an optimization algorithm can provide its optimal solution in a 
reasonable time. This usually means that the problem is convex.
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The monograph details the intimate connections between penalized regression, with 
lasso in particular, and credibility, Bayesian statistics, and machine learning. There is 
one last connection, for the more mathematically inclined reader—that with convex 
optimization.

Lasso regression is known for its ability to achieve sparse solutions, where some of its 
estimated coefficients will be exactly equal to zero. The mathematical reasons for why 
sparsity happens are, however, either not discussed at all or hidden in very technical 
explanations that require a certain level of familiarity with advanced convex optimization 
concepts. That does not need to be the case—and this section is an attempt to show 
that sparsity is achieved because lasso fits the signal up to a threshold.

Let’s start to evaluate how, in a multivariate setting, the GLM estimates adapt to 
the data by examining the gradient of the GLM formula.

The gradient of a GLM (with canonical link) can be seen as the difference, for each 
level of a variable, of the total observations and the total estimates included in the GLM 
model (Ohlsson and Johansson 2010):

dNLL y, X,b` j
j
=

∂b j

∂NLL y, X,b` j
= n i - y i` jxiji=1

n/ ,

where µi = Link–1 (Xiβ) is the prediction for a given β. At the GLM solution β̂, the 
gradient is null. In particular, we have

 i! J n i - y i` j = 0./  (D.1)

This is consistent with the results already described in Section A.1: GLMs give 
100% credibility to the data, and average predictions will coincide with the average  
of the observations for each level j included in the model (regardless of the number 
of exposures).

If we want to leave some room for the complement of credibility and shrink the 
estimates), we could consider adding some “slack,” so that the model can match the data 
only up to a certain threshold. For example |∑i∈J(yi − µi)| ≤ ε for a certain value ε. This 
is exactly how the lasso guarantees optimality.

Appendix D.  Sparsity: A Convex 
Optimization Perspective
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The following sections will prove that the optimality condition for

bt = argmin
b

NLL y, X,b` j+m b jj=1

p/

is equivalent to (where µi = Xiβ)

 

i! J n i - y i` j/ # m * bt j = 0

i! J n i - y i` j = msign bt ib l * bt j > 0/

i! J n i - y i` j = -msign bt ib l * bt j # 0./
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]
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]
]  (D.2)

Any final estimate of the lasso, regardless of fitting procedure, will satisfy the above 
optimality condition system (Equation D.2). We can clearly see the slack discussed 
above when matching observed and predicted averages: a coefficient will be deemed 
nonrelevant (and thus set to zero) if its contribution to the likelihood via the gradient 
falls below the threshold λ; when the effect is instead considered relevant the coefficient 
will moved to capture it but just until the error tolerance threshold λ is hit, rather than 
going all the way like it would on a GLM.

The next sections provide a smooth learning curve to understand the origin of 
Equation D.2. First, by considering a simple example, we show how sparsity naturally 
arises from the nondifferentiability of the absolute value |β| contained in the lasso 
penalty. Then, we introduce the least amount of concepts from convex optimization 
necessary to provide the optimality guarantees for the lasso problem.

D.1. Simplified Proof of the Lasso Problem
Consider the simplest possible lasso regression expressed as

 
bt = argmin

b 2
1

y-b` j2+m b ,
 (D.3)

where we have a one-dimensional parameter β aiming to approximate a single 
observation y.

Computing the solution by setting the gradient to zero is not possible as the abso-
lute value is nondifferentiable at zero. Instead, one can write the function as a piecewise 
parabolic function:

 

2
1

y-b` j2+m b =
2
1

y-b` j2+mb if b $ 0

2
1

y-b` j2-mb if b < 0.

Z

[

\

]
]]

]
]]  (D.4)
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For every value of y and λ, this function is convex, meaning that there is one and 
only one global minimum. Figure D.1 highlights all the possible cases, depending on 
the value of y. It is clear that the optimum β̂ of the piecewise function lies either at the 
global minimum of the parabola or at β = 0, where the two parabolas intersect.

We can then deduce that if the minimum of the function lies in the right interval 

β > 0, then the optimum will be β̂ = y − λ (which is the global minimum of 
2
1
(y − β)2 + λβ). 

Equivalently, if it lies on the left part of the parabola (β < 0), then the optimum will be 
β̂ = y + λ. Combining the inequalities, we prove that the optimum of Equation D.3 is

 

bt =

y - m if y > m

y + m if y < -m

0 otherwise

Z

[

\

]
]]

]
]]

 (D.5)

Figure D.1 shows the plot of the optimum β̂ as a function of the value of y.

Figure D.1.  The left graph represents the plot of three different  
lasso formulas (Equation 12.4) with different fixed values of y and  
l 5 1. The right side represents b →→ 1/2(3 – b)2 + |b|, the left side is  
b →→ 1/2(–3.8 – b)2 1 |b|, and discontinuity is b →→ 1/2(–3.8 – b)2 1 |b|.  
The dots represent the optimum b̂ for each function. The right graph  
represents the evolution of the optimum b̂ as a function of the values y. 
The colored points represent the couples (y, b̂) of the three functions 
of the left-side graph. The function is also called soft-thresholding in 
the literature.
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The example highlights how the discontinuity in the lasso penalty |β| achieves a 
sparse solution. The lasso estimate will be exactly equal to zero in correspondence of 
values of y smaller than λ in absolute value and will be equal to the value of y shrunken 
by a constant of size λ otherwise. It is thanks to its nondifferentiable nature that the 
lasso problem allows us to obtain sparse solutions.

We now review how to demonstrate the lasso solution in a general way using simple 
tools from convex optimization.

D.2. General Proof of the Lasso Problem
When required to find a minimum of a function analytically, the practitioner 

would naturally compute the gradient of that function and find the parameter β that 
solves the equality of the gradient to zero.

In the case of the lasso problem, we saw how this is not possible due to the non-
differentiability of the penalty at β = 0. As a matter of fact, it is still possible to compute a 
minimum of the lasso regression by setting the gradient to zero: we just need to generalize 
the definition of the gradient.

The gradient is defined as the slope of the tangent to the graph of a function. In 
the case of a discontinuity, there may be multiple slopes that are tangent to the graph 
of the function. The gradient loses its uniqueness property, and it is hence said that the 
function is “not differentiable.”

A generalization of the gradient, the subgradient, is defined as the set of possible slopes 
that are tangent to a graph. Formally, given a convex function f  ∈ Rp, the subgradient is

∂f b 0` j = u ! R f b` j- f b 0` j $ u b-b 0` j' 1.p

In the case of the absolute value function, since the subgradient is equal to the 
gradient when the function is differentiable, for all values strictly different than zero 
the gradient will be equal to the sign function, that is, 1 for all positive values and −1 
for all negative values. In the discontinuity point at 0, it will take all possible values 
between −1 and 1.

 

∂ b =

-1 if b < 0

-1,` 1B if b = 0

1 if b > 0

Z

[

\

]
]
]

]
]]

 (D.6)

Generalizing the gradient to the subgradient allows us to compute the minimum 
for the lasso. It is established that if f is differentiable and convex, then

 
bt = argmin

b

f b` j + 0 = df btb l. (D.7)
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If f is not differentiable (but still convex), then the optimality condition becomes

 
bt = argmin

b

f b` j + 0 ! ∂f btb l (D.8)

by the subgradient optimality condition (see Boyd and Vandenberghe 2004). Since the 
subgradient of a sum is the sum of the subgradients and the subgradient of a differen-
tiable function is the gradient, in the case of the (simplified) lasso regression we can 
write the condition #eq-subdiffoptimal as

bt = argmin
b 2

1
y-b` j2+m b + 0 ! bt - yb l+ m∂ bt ,

where (β̂ – y) is the derivative of 
2
1
( y – β)2.

Since the subgradient of β → |β| is given by Equation D.6, we can prove the opti-
mality of Equation D.5: if the optimum is β̂ = 0, then there exists a number |u| ≤ 1 such 
that 0 = –y + λu . This happens only when |y| ≤ λ. For the other cases (β̂ > 0, β̂ < 0) 

Figure D.2.  The graph on the left illustrates the subgradient for  
a piecewise function. In blue, we see the subgradient at value 2. 
As the function is differentiable, there exists only one subgradient, 
and it is equal to the gradient. Since the function at 0 is not 
differentiable, there is more than one tangent line to the graph. 
The subgradient is drawn in red. The graph on the right represents 
some possible tangent lines for the lasso function b →→ |b|. Thus,  
we have a visual intuition of why −|b|b50 5 [–1,1].
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the lasso penalty is differentiable and by standard arguments one can verify the opti-
mality of Equation D.5.

The subgradient definition provides the optimality conditions of the lasso regres-
sion in all its generality, both in a multivariate setting and using a generic negative 
log-likelihood. It provides as well the tools to understand the optimality conditions 
from Equation D.2. To see this, consider the general lasso problem

bt = argmin
b

NLL y, X,b` j+m b jj=1

p/ .

To compute the optimal solution, first the subgradient of the negative log-likelihood 
is required:

∂b j

∂
NLL y, X,b` j+m b jj=1

p/R

T
SS

V

X
WW = dNLL y, X,b` j

j
+ m∂ b j .

At optimum β̂ zero must belong to the subgradient, which means that depending 
on the sign of β̂j we have that

dNLL y, X,b` j
j
# m + bt j = 0

dNLL y, X,b` j
j
= msign bt ib l + bt j > 0

dNLL y, X,b` j
j
= -msign bt ib l + bt j # 0,

Z

[

\

]
]
]
]]

]
]
]
]

which proves Equation D.5. The results of this section combined provide as well all 
required tools to prove the optimal solution formula.
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