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Practical Application of Bias  
Measurement and Mitigation  

Techniques in Insurance Pricing:  
Part 1—Types of Bias, Imputing Protected  

Class, and Simple Fairness Tests

By Members of the Casualty Actuarial Society Race  
and Insurance Pricing Research Task Force

Introduction to Part 1

Industry views on fairness in insurance pricing are evolving to include  
both the traditional understanding that insurance rates should not be 
“unfairly discriminatory”—that is, they should reflect differentials in risk 
among policyholders—and the potential that insurance rating may result in 
“discriminatory effects” where certain legally protected groups are subject 
to disproportionately higher or lower insurance rates than others. In the  
United States, many jurisdictions are taking regulatory and/or legislative action 
to encourage or require insurers to evaluate their own data and models for 
both of these types of fairness.1

This paper is intended as a practitioners’ guide for actuaries and insurance 
professionals responsible for building, maintaining, or updating insurance 
pricing models that satisfy multiple views of fairness.

The paper is presented in two parts, of which this is Part 1. Part 1 consists of 
three sections:

Section 1 of the paper introduces categories of “bias” as defined by the 
National Institute of Standards and Technology: systemic, statistical and 
computational, and human. This section reviews different types of bias and 
explain how they can affect data, model design, implementation, use, and 
monitoring. An understanding of these issues can help the analyst evaluate 
the results of fairness tests, identify the source of unfair outcomes, and/or 
determine how to address unfair outcomes.

1 For more detail on recent regulatory and legislative actions, as of May 2024, refer to the 
following three papers in the CAS Research Paper Series on Race and Insurance Pricing:  
(1) “Regulatory Perspectives on Algorithmic Bias and Unfair Discrimination,” (2) “A Practical 
Guide to Navigating Fairness in Insurance,” and (3) “Comparison of Regulatory Framework 
for Non-Discriminatory AI Usage in Insurance.”
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Section 2 covers a data preparation step that is essential for evaluating  
fairness—appending protected class information to insurance data when it is not 
already available or practical to collect. The U.S. insurance industry is currently  
focused on measuring potential discriminatory effects between policyholders of 
different racial and ethnic groups. This paper explores the Bayesian Improved 
First Name Surname Geocoding (BIFSG) approach to impute race or ethnicity 
using information that is generally accessible to insurers—policyholder name 
and location. It begins with the theory and data supporting the BIFSG method, 
then covers challenges arising from the two potential first name data files that 
have so far been developed for use in the United States, with regard to data 
cleansing and performance of the imputation method. This section also outlines 
different options for using the BIFSG output—a set of probabilities representing 
the likelihood that a policyholder belongs to one of six race/ethnicity groups—
including classification of records based on maximum probability, direct use of 
probabilities, and simulated imputations.

Section 3 extends the three families of fairness testing methods introduced in 
a previous paper in this series2—independence, separation, and sufficiency—
from their original applications on binary classification models to equivalent 
application to continuous models such as those used for insurance pricing. 
This section discusses how these fairness tests may be interpreted through an 
insurance pricing lens as premium parity and loss ratio parity tests. Illustration of 
these tests suggests that satisfying multiple types of fairness tests at the same 
time may be impossible. Thus, there is still a need for a robust discussion within 
the insurance industry on what types of parity insurers should aim to achieve.

Part 2 of the paper, which can be found on casact.org/raceandinsuranceresearch, 
is also presented in three sections.

•  Part 2, Section 4 delves into more complex fairness analyses that 
take into consideration multiple rating factors and distributional 
differences between protected classes across the levels of certain 
rating factors, conditional demographic parity, the proxy (“control 
variable”) test, and nonparametric matching.

•  Part 2, Section 5 reviews several technical bias mitigation methods that 
can be applied to insurance pricing data, models, or model outputs.

•  Part 2, Section 6 discusses several important non-modeling consid-
erations that can contribute to fairness concerns, such as targeted 
marketing practices, regulatory restrictions, and discounts.

While this paper may be read from start to finish, readers are invited to nav-
igate directly to the part and/or section of the paper that is most relevant to 
their current responsibilities.

2 These methods are introduced in the CAS Research Paper Series on Race and Insurance Pricing 
report, “Methods for Quantifying Discriminatory Effects on Protected Classes in Insurance”.
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Section 1. Types of Bias to Identify and Mitigate
In recent years, fairness in insurance practices, particularly with respect to protected  
attributes such as race and ethnicity, has become a significant and sustained focus of 
insurers and regulators. While all stages of the insurance life cycle, including marketing, 
underwriting, pricing, claims handling, and fraud investigation, are under scrutiny, much of 
the attention so far has been on fairness in insurance underwriting and pricing. Actuaries 
play a significant role in developing, implementing, and evaluating insurance underwriting 
and pricing models. New legislative and regulatory activity has aimed to better understand 
and address fairness in insurance. The 2022 paper Defining Discrimination in Insurance 
examines several terms used to describe fairness (or its absence) as they relate to insurance, 
such as unfair discrimination, proxy discrimination, and disproportionate impact and disparate 
impact (Chibanda 2022). Bias is often considered an underlying driver of these unfair  
outcomes, but the term itself is an umbrella that encompasses a variety of phenomena 
that can occur in a variety of contexts.

Understanding how biases can enter the modeling process and contribute to potential unfair 
discrimination or unfair outcomes can help inform choices in diagnostics and mitigation 
approaches, where appropriate. This section defines several types of bias and how each 
affects the stages of model development.

1.1. Types of Bias

There are dozens of types of bias. The National Institute of Standards and Technology 
groups them into three categories:

•   Systemic. Systemic biases result from societal and institutional procedures and  
practices that result in certain social groups being advantaged and others being  
disadvantaged. These biases can result from conscious social prejudices but  
can also arise from the majority following existing rules or norms. They can be  
occurring in the present or can present themselves as residual effects of historical 
procedures and practices.

•  Statistical and computational. Statistical and computational biases stem from 
errors that result when the sample is not representative of the population  
and from model design/validation choices. These biases can occur without  
discriminatory intent.

•  Human. Human biases reflect systematic errors in human thought. Human biases 
come in a wide variety, some of which are a fundamental part of the human mind. 
They may also be based on limited information or influenced by individual  
experiences (Korteling and Toet 2022).

Such biases can enter predictive models at multiple points, including but not limited to 
data collection and selection, model design, and model implementation/monitoring/use 
(American Academy of Actuaries 2023a). The following sections discuss potential impacts 
of bias at various phases of modeling.
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1.2. Impacts on Data

Systematic, statistical, or human bias can affect data in multiple ways.

Data selection. Human availability biases can lead modelers to use datasets and/or  
variables that are more available or accessible instead of a dataset that might be more  
suitable (NIST 2022). Such datasets may not appropriately reflect the population to which 
the model is relevant (Jager et al. 2020). Confirmation bias can result in choosing datasets 
and/or predictor variables that fit or confirm the modeler’s existing beliefs.

Data sampling. Some groups may be underrepresented in datasets due to systemic  
bias or other reasons, which can result in statistical bias if models do not perform well for 
underrepresented groups. For example, when Amazon trained a model to screen applicants 
in its hiring process on a dataset that was disproportionately male, the model performed 
better when evaluating men versus women (Datta 2021).

In insurance pricing, sampling bias may be present if the historical batch of insurance  
policies used to develop a model contains a different mix of risk characteristics than  
the future policies to which the model-informed decisions are applied. Underwriting  
risk selection guidelines, marketing strategies, and other generally acceptable business 
practices can result in subgroups being over- or underrepresented in the historical data 
used to build a model and model outputs that are imprecise and/or biased away from the 
true mean.

Data values. Even when datasets are representative, the data values contained within 
may still exhibit entrenched systemic and human bias in the target variables, predictor 
variables, or both.

Target variables. Bias in a target variable is also known as negative legacy (Datta 2021)  
or label bias (Verma 2021). It occurs when the target variable is affected by systemic  
and/or human bias. This could be human judgment in manually labeling outcomes or  
historical/institutional practices that have generated differential outcomes.

In insurance pricing, target bias could result from biased claim processes, such as higher 
rates of denied claims or lower claim payouts for certain groups. Claims fraud identification 
is also at risk for label bias, as cognitive biases and social prejudices may influence which 
claimants are more or less likely to be flagged for investigation. Fraud models built on such 
data are likely to produce results that reflect those same biases and prejudices. Overreliance 
on automation can unintentionally embed past human biases into future automated decisions 
(automation bias).

Predictor variables. Distributions of predictor variables can vary by subgroup due to 
systemic and human biases, posing a risk of creating disproportionate impacts and/or unfair 
discrimination in rates or other insurance outcomes. This type of bias can be the result of 
human judgments influenced by cognitive biases or social prejudices or simply mechanical  
errors. For example, some studies suggest that policing practices may be influenced by  
social prejudices and result in disproportionate numbers of traffic stops or citations between 
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drivers of different races (2021 CAS Race and Insurance Research Task Force 2022). 
Including unwarranted traffic citations as an indicator for risky driving in an auto insurance 
rating model may result in incorrect predictions of higher or lower loss costs for certain 
protected groups.

It is possible for predictor variables to both be directly predictive of insurance claims and 
act as proxies for discriminatory characteristics. For example, using the presence of diabetes 
as a rating factor will be directly predictive of health insurance costs, but because certain 
racial or ethnic groups may be predisposed to develop diabetes, including diabetes as a 
rating factor may lead to disproportionate impacts by race (Lindholm et al. 2022). In such 
situations, it is helpful to consider other attributes of the variable that influence society’s 
assessment of whether it is fair for insurance purposes, such as controllability and causality 
(see discussion of considerations in Frees and Huang 2023). Excluding or significantly 
tempering the effects of such variables in insurance pricing models can lead to moral hazards 
and escalating loss costs, which can have an adverse impact on insurance affordability 
and/or availability.

1.3. Impact on Model Design

Typically, insurance pricing models are developed with significant human involvement in the 
modeling process, which opens the possibility of human bias and behaviors affecting the 
model design and selection. That said, it is important to keep in mind that models built with 
less human involvement are not necessarily less susceptible to bias. Some examples of 
statistical and human biases that can affect model design are discussed below.

Aggregation bias, also known as ecological fallacy or confounding bias, refers to error 
introduced when trends in a predictor do not apply to all subgroups (American Academy of 
Actuaries 2023a). It can occur when another predictor is omitted or an interaction effect is 
overlooked. In the most extreme cases, aggregation bias can reverse the coefficient of the 
predictor, a phenomenon known as Simpson’s paradox.

Confirmation bias can harm predictive modeling analyses. For example, an actuary may 
have an existing bias going into the modeling exercise, expecting to see a particular result. 
The actuary does not see the results they expect, so they continue to tweak the model 
parameters until they eventually arrive at a scenario that confirms their existing bias.  
By becoming aware of confirmation bias, actuaries can be more open to accepting results 
that do not confirm their original hypotheses (American Academy of Actuaries 2023a).

Omitted variable bias can have a significant impact on risk classification models. Modeling 
algorithms can use only the predictors included in the training dataset; in some cases, 
additional data may be required to produce accurate results. Omitted variable bias can 
be seen when the output of an algorithm is based on certain learned correlations while a 
different, and potentially more accurate, output may have been produced had the algorithm 
considered different or additional information (Serwin and Perkins, n.d.).

By leaving out important variables, correlations can arise between other variables to try 
to account for this lost signal, or the signal can be lost altogether. This will lead to a less 
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explanatory model overall and potentially skew the coefficients of the other included 
variables (American Academy of Actuaries 2023a). For example, some studies have shown 
that differing levels of infrastructure investment may create or promote existing racial 
inequality (Norwood 2021). If that affects road quality, congestion, or other driving-related 
factors, it could result in an apparent variation in auto insurance risk by subgroup, especially 
if infrastructure information is not included in the rating model. This may present as a 
less desirable outcome for some policyholders, which may or may not be deemed unfair 
discrimination.

Other model design choices that bias can affect include these:

•  Choice of target variable. For example, a model to predict employee “productivity” 
could be trained on hours worked, which could disadvantage women with higher 
childcare burdens, as opposed to other measures.

•  Choice of model. Data dredging bias is the misuse of statistical inference by  
probing the data in unplanned ways to find “attractive” results (Catalog of Bias  
Collaboration 2020). Examples include testing of large numbers of hypotheses  
to produce statistically significant results even when the results are statistically 
nonsignificant (NIST 2022), selectively reporting the “best” model, or generating  
a hypothesis to explain results that have already been obtained but presenting  
it as if it were a hypothesis one had prior to collecting the data (Catalog of Bias 
Collaboration 2020).

1.4. Impacts on Model Implementation, Use, and Monitoring

Deployment bias happens when a model is used in ways the developers did not intend.  
For example, developers of an algorithm used by major U.S. cities to assist in coordinating  
housing to homeless people began phasing it out after several cities inappropriately 
used the algorithm as an assessment tool rather than as the prescreening tool as it was 
designed.3 In insurance pricing, an example of potential deployment bias might be the use 
of a submodel that was not developed for insurance risk assessment, such as a submodel 
that predicted credit default risk, as an input to a loss cost model.

Selective adherence is a human bias where decision makers selectively adopt algorithmic 
advice, such as, when it matches their preexisting beliefs and stereotypes (NIST 2022). 
Underwriters or claims adjusters, for example, may selectively vary from the recommendations 
of a model in their workflow.

Emergent bias and “concept drift” can occur when a model is used outside of the domain 
on which it was trained or in an unanticipated/new context (NIST 2022). In insurance,  
this could result from using a model trained on historical experience in new, different 

3 The Vulnerability Index—Service Prioritization Decision Assistance Tool (VI-SPDAT) was meant to help local 
social service providers assess what type of housing assistance might best suit a homeless person’s needs. 
Instead, resource-strapped cities relied on VI-SPDAT to make a binary choice: who gets housing and who 
doesn’t (Thompson 2021).
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markets/segments or continuing to use models that have not been trained on examples  
of new and emerging types of claims.

Automation bias is a tendency to favor results generated by automated systems over 
those generated by nonautomated systems, irrespective of their relative error rates 
(Alon-Barkat and Busuioc 2021). For example, insurers may implement models for making 
underwriting decisions or claims adjusting without testing whether the models are more 
accurate than a human.

Bias is not new to predictive modeling, and it is not possible to eliminate the risk of bias 
in model data, design, and implementation. However, the risk can be managed through 
governance and practice improvements for identifying, understanding, measuring, managing, 
and reducing bias.

Section 2. Appending Protected Attributes to a Dataset
To evaluate data for model fairness or discriminatory effects, insurers must first be able to 
label the data and categorize the information as belonging to various classes of interest. 
In principle, that would mean accessing and handling sensitive data. However, property 
and casualty insurers do not typically collect protected class attributes other than gender 
and age.

Given that limitation, researchers have relied on imputation methodologies. A popular 
choice today is the Bayesian Improved First Name Surname Geocoding (BIFSG) approach.

2.1. Data Sources Underlying BIFSG

The U.S. Census Bureau publishes demographic summary information from its data efforts. 
In particular, the Census Bureau publishes demographic breakdowns for race and ethnicity 
at various geographic levels of detail, such as by ZIP Code Tabulation Areas (ZCTAs),  
by census tract, and by census block group. Historically, this is the starting point for the 
imputation. The geocode is captured or derived from the data, and the racial and ethnic 
proportions are then appended at that geographic level of detail.

The Census Bureau also separately provides summary racial and ethnic distributions by 
surname. Elliott et al. (2009) introduced a manner to blend these two sets of information  
utilizing the Bayesian formula and some independence assumptions, which they coined 
the Bayesian Improved Surname Geocoding (BISG) approach. Voicu (2018) expanded  
the methodology to incorporate a third dataset containing summary racial and ethnic  
distributions by first name from the mortgage data–gathering efforts of Tzioumis (2018) 
commonly known as the Bayesian Improved First Name Surname Geocoding (BIFSG) 
approach. Rosenman et al. (2022) introduced a variation of BIFSG that uses first name 
and race and ethnicity breakdowns based on voter registration data from six southeastern 
U.S. states. Two tools were developed for the execution of the aforementioned approaches. 
The Python package surgeo uses the first name summary information based on mortgage 
data, while the R package wru uses the information based on voter registration.
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2.2. Derivation of BIFSG

The mathematics behind BISG and BIFSG can be found in various sources, such as the 
documentation for the surgeo package or as part of the Elliott et al. (2009) paper. For the 
readers’ convenience, a simple presentation of the BIFSG formulation is offered here:

Given r, g, s, and f, where

 r = race and ethnicity,

* 4r !
White,Black,Hispanic, Asian and Pacific Islander (API),

American Indian and Alaska Native (AIAN),Multiracial
;

 g = geocode—either ZCTA, census tract, or census block group;
 s = surname; and
 f = first name;

P r g, s, fa k =
P ri, g, s, f` ji
/
P r, g, s, f` j

.

Using the probability chain rule,

P r, g, s, f` j = P g` j p P r ga k p P s r, ga k p P f r, g, sa k.

Assuming

P s r, ga k = P s ra k, and

P f r, g, sa k = P f ra k,

the desired conditional probability formula becomes

P r g, s, fa k =
p g` j p P ri ga k p P s ria k p P f ria k

i
/
p g` j p P r ga k p P s ra k p P f ra k

=
P ri ga k p P s ria k p P f ria k

i
/
P r ga k p P s ra k p P f ra k

.

The above simplifying assumptions for conditional probabilities on surname given race and 
on first name given race are major simplification steps, essentially trading local conditional 
probabilities for global conditional probabilities in the equation. This allows for the most 
direct blending of information from the three datasets.
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The evaluation that follows in 2.3 includes comparisons against the BISG approach, which 
does not utilize the first name and the associated race and ethnicity summary information. 
The formulation for BISG follows the above derivation for BIFSG in principle, and is not  
separately demonstrated here:

P r g, sa k =
P ri ga k p P s ria k

i
/
P r ga k p P s ra k

.

2.3. Evaluating the Relative Performance of Imputation Methods

The discussion that follows uses the following data sources to perform imputations:

•  Census 2010 demographics data summary by ZCTA for the geocode information,

•  Census 2010 demographics data summary by surname for the surname  
information, and

•  mortgage information–based demographics data summary by first name for  
the first name information.

The practitioner should consider whether the data sources are appropriate given their intended 
purpose. The evaluation here reflects the use of common sources of information for the 
BIFSG approach and is not itself an endorsement or recommendation of any one particular 
set of data. For those using alternative data for imputing race and ethnicity based on the 
BIFSG approach, due diligence is needed to understand the selected imputation process and 
understand and document key assumptions and considerations when evaluating the results.

To evaluate the various implementations of BISG and BIFSG, this analysis relies on North 
Carolina voter registration data.4 The data contain zip code, surname, first name, and race 
and ethnicity information. For the purposes of this paper, only those records where BIFSG 
can be applied were kept in the dataset. Records where the race/ethnicity information is 
either unknown or entered as “OTHER” were removed. In total, out of 8.4 million records 
(8,424,012), 5.7 million records (5,659,018) were retained for evaluation purposes.

This section compares the various imputation implementations with a consistent suite of 
summary statistics. The analysis begins with the proportion of each race/ethnicity from the 
imputation, as a check on whether the imputation distribution is statistically biased relative 
to the listed race/ethnicity distribution. Then, for each race/ethnicity group, the imputation 
is evaluated using the following metrics:

•  Precision: True Positive/(True Positive + False Positive)

–  reflects the correctness of the imputation in designating records as being of the 
specific race or ethnicity

4 It is important to note that this test set may not be representative of the United States as a whole or other 
parts of the United States, so the results should not be extended to other datasets/populations.
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•  Recall: True Positive/(True Positive + False Negative)

–  reflects the proportion of a specific race or ethnicity the imputation correctly  
identifies

•  F1 Score: 2 p Precision p Recall/(Precision + Recall)

–  reflects the harmonic mean of Precision and Recall and is a single measure that 
reflects both the false positives and the false negatives

•  Accuracy: True Positive/Total Records Imputed

–  calculated across all race and ethnicity groups

There is often a tradeoff between precision and recall. If the imputation process is careful 
and only indicates the most probable records to be of the designated race or ethnicity,  
it will achieve a higher precision for being wrong less often in the records the method tags, 
at the cost of tagging fewer of the records belonging to that race or ethnicity. That is,  
the method gains precision at the cost of lower recall.

A common method for using the imputation results is to assign to each record the  
race/ethnicity with the highest imputed probability. The classification statistics in Tables 2.1  
and 2.2 are the results from using this imputation approach and selecting the race/ethnicity 
based on the maximum probability of the six imputed categories.

As can be seen in Table 2.1, introducing surname and first name information to the imputation 
process using the BIFSG approach leads to more accurate imputations overall. Furthermore, 
as Table 2.2 shows, using additional information improves the precision and recall of the 
imputation for most groups. More specifically, the improvement is seen for the four race and 
ethnicity groups white, Black, Hispanic, and Asian and Pacific Islander (API), which represent 

Table 2.1. Comparison of Accuracy for Imputation Methods

Percentage of Total Records

Race/Ethnicity Actual Geocode BISG BIFSG

White 76% 88% 78% 78%

Black 17% 11% 18% 17%

Hispanic 4% 0% 3% 3%

Asian and Pacific Islander (API) 1% 0% 1% 1%

American Indian and Alaskan Native (AIAN) 1% 1% 1% 0%

Multiracial 0% 0% 0% 0%

Total 100% 100% 100% 100%

Overall accuracy 78% 81% 84%
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Table 2.2. Comparison of Precision, Recall, and F1 Score for Imputation Methods

Race/ 
Ethnicity

Percentage  
of Total 
Records

Precision Recall F1 Score

Geocode BISG BIFSG Geocode BISG BIFSG Geocode BISG BIFSG

White 76% 81% 88% 89% 94% 89% 91% 87% 88% 90%

Black 17% 52% 56% 62% 33% 57% 62% 40% 57% 62%

Hispanic 4% 13% 68% 74% 0% 53% 66% 0% 60% 70%

API 1% 7% 76% 81% 0% 58% 63% 0% 66% 71%

AIAN 1% 60% 66% 65% 44% 51% 40% 51% 58% 49%

Multiracial 0% 0.0% 3.5% 2.8% 0.0% 0.1% 0.4%  0.1% 0.7%

nearly all the data under evaluation. The results are mixed for American Indian and Alaska 
Native (AIAN) or those identified as multiracial. The improvement from incorporating additional 
information can also be seen from a review of the overall imputation accuracy.

Because BIFSG is a formula-driven approach to impute the race and ethnicity probabilities, 
the decisions made along the way of computation can lead to different probability imputations. 
The paragraphs below highlight a few such junctures to illustrate the variations.

First, note that the three datasets are not consistent representations of the U.S. population. 
In particular, the racial breakdowns vary across the three datasets (the first name file in the 
example that follows is based on the mortgage data aggregation, as used in surgeo).

As seen in Table 2.3, while the ZCTA table and the surname table are comparable,  
the results are not exact. The mortgage data supplied a robust 2.66 million observations 
and 2.45 million Specific First Name levels for the process, after the sufficiently unique 
first name records were collated into a single All Other First Names level. However, the 
biased sample representation of the mortgage data compared with the geocode and the 
surname table is very pronounced. This is further exacerbated by the more unique first 
names generally representing those in various minority groups. Typical implementations  
for the first name file use only the specific first names data, within which 85% of the names 
are categorized as white. When the first name from the record does not match a specific 
entry in the first name file, the typical treatment is to use an alternative approach, such as 
the BISG approach, rather than using the All Other First Names proportions from the first 
name file and continuing with the BIFSG algorithm.

In the BIFSG formulation, there is an order to look up the geocode, surname, and first name 
probabilities, The first probability takes a different form than the subsequent two probabilities. 
This gives rise to three possible variations to BIFSG. The formulation above reflects starting 
with the geocode probability, and we will distinguish this variation with a subscript BIFSGg. 
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The other two alternative formulations, leading with surname and with first name, are referred 
to as BIFSGs and BIFSGf, respectively:

BIFSGg:P r g, s, fa k =
p ri ga k p p s ria k p p f ria k

i
/
P r ga k p P s ra k p p f ra k

.

BIFSGs:P r g, s, fa k =
p ri sa k p p g ria k p p f ria k

i
/
P r sa k p P g ra k p p f ra k

.

BIFSGf:P r g, s, fa k =
p ri fa k p p g ria k p p s ria k

i
/
P r fa k p P g ra k p p s ra k

.

A summary of the classification statistics for these three variations is shown in Tables 2.4 
and 2.5.

The choice of order in the probability chain rule between leading with geocode—P(r |g)—and 
leading with surname—P(r |s)—results in comparable performance. However, whereas leading 
with first name—P(r |f)—yields comparable overall accuracy, as Table 2.4 shows, this choice 
trades away recall performance in return for greater precision, as Table 2.5 shows. The 
choice of leading with first name—P(r |f)—also produces a more biased imputation distribution 
of race/ethnicity compared with the other two approaches. In practice, most practitioners 

Table 2.3. Comparison of Race/Ethnicity Tables Underlying Imputation Methods

Source
Data  
Segments

Total 
Records White Black Hispanic API AIAN Multiracial

ZCTA* TOTAL 311,857,728 63% 12% 17% 5% 1% 2%

Surname 
file

Specific  
Surnames

265,660,058 64% 12% 17% 5% 1% 2%

All Other  
Surnames

29,312,001 67% 9% 14% 8% 1% 2%

Blank 7,170 94% 2% 2% 1% 0% 1%

TOTAL 294,979,229 64% 12% 16% 5% 1% 2%

First name 
file

Specific First 
Names

2,449,240 85% 4% 7% 4% 0% 0%

All Other 
First Names

214,124 51% 12% 8% 28% 0% 0%

TOTAL 2,663,364 82% 4% 7% 6% 0% 0%

*ZCTA = ZIP Code Tabulation Area.
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Table 2.4. Comparison of Accuracy for BIFSG Variations

Percentage of Total Records

Race/Ethnicity Actual BIFSGg BIFSGs BIFSGf

White 76% 78% 78% 88%

Black 17% 17% 17% 8%

Hispanic 4% 3% 3% 3%

API 1% 1% 1% 1%

AIAN 1% 0% 0% 0%

Multiracial 0% 0% 0% 0%

Total 100% 100% 100% 100%

Overall accuracy 83.8% 83.9% 83.9%

Table 2.5. Comparison of Precision, Recall, and F1 Score for BIFSG Variations

Race/ 
Ethnicity

Percentage 
of Total 
Records

Precision Recall F1 Score

Geocode BISG BIFSG Geocode BISG BIFSG Geocode BISG BIFSG

White 76% 89% 89% 85% 91% 91% 97% 90% 90% 91%

Black 17% 62% 62% 78% 62% 61% 37% 62% 62% 50%

Hispanic 4% 74% 75% 81% 66% 65% 56% 70% 70% 66%

API 1% 81% 81% 77% 63% 63% 64% 71% 71% 70%

AIAN 1% 65% 64% 80% 40% 40% 30% 49% 49% 43%

Multiracial 0% 3% 3% 3% 0% 0% 0% 1% 1% 0%

choose either to lead with the geocode information as Elliott and colleagues (2009) did in 
their BISG paper or with the surname information as implemented in the surgeo package.

A Caution When Utilizing the Python surgeo Package

Further study into the algorithm under the surgeo package reveals an additional variation. 
The summary data with the first name and race/ethnicity information are provided with 
counts Ni and P(r|fi), for each first name fi . The Bayesian formula is then typically applied to 
derive, for a given race r and each first name fi , P(fi|r) via

P fi ra k =
NjP r fja k

j
/
NiP r fia k

.
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The probabilities used in the surgeo package can be replicated by surrendering knowledge 
of the counts associated with each first name. Assume equal likelihood of each first name in 
general (i.e., ignore observed counts and assume instead Ni = Nj, for all i, j ). The above formula 
would then reduce to

P fi ra k =
P r fja k

j
/
P r fia k

.

Tables 2.6 and 2.7 show a comparison of BIFSGs and BIFSGsurgeo.

Table 2.6. Comparison of Accuracy for Standard 
versus surgeo BIFSG

Percentage of Total Records

Race/Ethnicity Actual BIFSGs BIFSGsurgeo

White 76% 78% 83%

Black 17% 17% 13%

Hispanic 4% 3% 3%

API 1% 1% 1%

AIAN 1% 0% 0%

Multiracial 0% 0% 0%

Total 100% 100% 100%

Overall accuracy 83.9% 84.5%

Table 2.7. Comparison of Precision, Recall, and F1 Score for Standard versus surgeo BIFSG

Race/ 
Ethnicity

Percentage 
of Total 
Records

Precision Recall F1 Score

BIFSGs BIFSGsurgeo BIFSGs BIFSGsurgeo BIFSGs BIFSGsurgeo

White 76% 89% 87% 91% 94% 90% 91%

Black 17% 62% 69% 61% 52% 62% 59%

Hispanic 4% 75% 79% 65% 60% 70% 68%

API 1% 81% 87% 63% 57% 71% 69%

AIAN 1% 64% 69% 40% 37% 49% 49%

Multiracial 0% 2.9% 3.4% 0.4% 0.4% 0.7% 0.8%
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While the reasonableness of surrendering the counts information available in the first 
name and race summary data and making a uniform occurrence assumption can be 
debated, Table 2.6 shows that the surgeo approach appears to result in improved overall 
accuracy. In particular, per the recall metric in Table 2.7, the surgeo approach improves 
tagging more of the records listed as white, at the cost of tagging less of the non-white 
groups. The improved accuracy of the surgeo approach comes with a cost in bias in the 
imputed distribution, as can be seen in Table 2.8. The effect observed is specific to evaluating  
the imputations on the North Carolina voter registration data and highlights the need for 
practitioners to consider the choices made in their specific adaptations of the BIFSG 
algorithm. The classification matching and difference between the BIFSGs and BIFSGsurgeo  
is summarized in Table 2.8.

The overall match rate between the two imputations is 95.4%. Surgeo’s variation in approach 
leads to greater conservativeness in imputing a record as being of a minority class than if one 
uses the frequency of first names information. This results in a biased imputation, in return for 
an improvement in imputation accuracy. This is consistent with what the observations for 
the other summary statistics shared earlier.

2.4. Data Cleansing—Handling Surname Conventions

Of some interest for the analyst are some of the common conventions in the surname data. 
This section discusses a few common conventions and explores their treatment, both to 
illustrate some practical explorations and to illustrate the difficulties in cleansing the names 
data. This treatment is by no means complete in breadth or in depth, and the analyst is 
encouraged both to develop techniques for standardizing names data and recognize the 
cost–benefit tradeoffs associated with such efforts.

Generational Suffixes

The census surname demographics summary dataset does not take into consideration  
generational suffixes (e.g., JR, SR, III, IV). Thus, it is assumed that generational suffixes  
are removed from the surname column before going through the imputation process.

Table 2.8. Summary of Predicted Race/Ethnicity from Standard versus surgeo BIFSG

Predicted Records 
by Race/Ethnicity

BIFSGsurgeo

White Black Hispanic API AIAN Multiracial

BIFSGs White 4,420,821 0 0 0 0 0

Black 226,094 742,634 0 0 0 40

Hispanic 23,095 503 169,613 0 12 28

API 6,578 428 274 40,038 12 621

AIAN 2,847 503 0 0 22,042 4

Multiracial 852 0 0 0 0 1,979
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Spaces, Hyphens, and Apostrophes

Of the 8.4 million records in the North Carolina voter registration data, approximately 
111,000 records contain spaces in the surname, 103,000 records contain hyphens,  
and 9,000 records contain apostrophes (with a select few situations where multiple  
phenomena are present). Together these records represent 2.6% of the total data.  
Thus, a reasonable resolution may be to develop holistically some basic processing  
rules and move forward.

In dealing with spaces, a difficulty arises in that there is not a dominant common  
prefix causing the issue. For example, summarizing by the leading three characters 
of surnames with spaces shows no single three-leading-character combination that 
exceeds 6,000 occurrences. However, a survey of the data shows that multiple surnames  
(a variation of hyphenated last names) account for a large number of occurrences. In these 
situations, reasonable choices include matching to one of the names or matching to the 
compound name. Where the race or ethnicity is comparable, the choices lead to comparable 
components.

As Table 2.9 shows, where the two names are of similar percentages (e.g., both LOPEZ  
and HERNANDEZ lead to greater-than-90% Hispanic probability and small percentages  
for the other race and ethnicity groups), the choice of method should generally lead to 
comparable final imputed results. However, where the two names have different probability 
distributions, the choice of methods can lead to different imputation outcomes. These 
variations should be considered in the context that hyphenation and spaces represent in 
total a small percentage of all the records, and the compound name surname situations 
make up a subset of this segment of the data.

There are a few other situations worth mentioning. Prefixes such as “VAN,” “ST,” or “DE” 
are another common reason for spaces in surnames. In these situations, a survey of the 
surname file shows that it is reasonable to make an exact match with spaces removed. 

Table 2.9. Race/Ethnicity Probabilities for Surname Adjustments to “Hernandez-Lopez”

Method Name Count White Black Hispanic API AIAN Multiracial

Exact lookup HERNANDEZLOPEZ 1,508 1.1% 0.1% 98.6% 0.1% 0.1% 0.0%

First surname HERNANDEZ 1,043,281 3.8% 0.4% 94.9% 0.6% 0.2% 0.2%

Second surname LOPEZ 874,523 4.9% 0.6% 92.9% 1.0% 0.4% 0.3%

Reverse surname LOPEZHERNANDEZ 1,893 1.6% 0.1% 97.8% 0.1% 0.1% 0.1%

Straight avg* — — 4.3% 0.5% 93.9% 0.8% 0.3% 0.2%

Weighted avg** — — 4.3% 0.5% 93.7% 0.9% 0.3% 0.2%

* Straight avg: P(r = Hispanic|s) = (94.9% + 92.9%)/2 = 93.9%.
** Weighted avg: P(r = Hispanic|s) = [1.04/(1.04 + 0.87)] p 94.9% + [0.87/(1.04 + 0.87)] p 92.9% = 93.7%.
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Alternatively, stripping the prefix and matching the main body of the surname may be 
serviceable, particularly if the exact match is not available.

Two common forms of apostrophized prefixes are with O’ and with D.’ The exact lookup 
(without the apostrophe) can be found in common cases. There are a few interesting 
observations to be made here. First, generally, the prefixes D’ and O’ reflect surnames that 
are predominantly listed as white in the census data. The proportion listed as white drops 
notably when the prefix is dropped in the lookup. Second, this observation is not universal. 
The common O’ prefix name O’NEAL shows meaningfully different race and ethnicity distri-
butions than O’BRIEN and O’CONNOR (and D’ANGELO and D’AMICO). Names containing 
apostrophes represent a small segment of the North Carolina voter registration data. 
Thus, efforts to enhance the imputation process to better predict this segment of the data 
will likely have limited overall benefit in the analysis.

Additional Options for Missing Surname Joins

As a default for missing surname joins, one can use the All Other Names entry from the census 
data for purposes of calculating the imputation (Table 2.10). Although crude relative to the 
above-mentioned treatments, the simplicity in implementation is a benefit with this option.

Alternatively, where the surname match fails, one can shift to a coarser imputation 
approach. As the surname probabilities would be needed for BIFSG and BISG, one can 
use the geocode-only probabilities for imputation purposes. That is, one can use the  
census race/ethnicity percentages by geocode directly, without the surname and first 
name adjustments.

This idea can be similarly leveraged where the first name join fails against the mortgage 
summary data. The researcher can either use the All Other First Names entry in the 
mortgage summary file or shift to imputing using the BISG process, which does not require 
matching the first name.

These represent but a few of the surname complications that may arise. While this section 
has presented a variety of basic approaches to handle these complications, researchers are 
encouraged to explore their own treatment of data cleansing, while balancing the benefits 
they expect to gain relative to the efforts put forth.

The foregoing discussion illustrates the probabilities associated with P(r|s), which would be 
employed as part of BIFSGs. Similar explorations can be done with P(s|r), the component 
used for BIFSGg and BIFSGf.

Table 2.10. Race/Ethnicity Probabilities for “All Other Names” Census Surname Category

Category Count White Black Hispanic API AIAN Multiracial

All Other Names 29,312,001 66.7% 8.5% 13.7% 8.0% 0.9% 2.3%
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2.5. Utilizing Imputed Probabilities

The geocode-only, BISG, and BIFSG imputation approaches result in probabilities for 
each of the six race and ethnicity categories as categorized in the geocode, surname, 
and first name files: white, Black, Hispanic, API, AIAN, and multiracial. The following are 
three common ways to use the probabilities from any of these three approaches:

1. Classification for each record, based on maximum probability

2. Use of each probability, as imputed

3.  Simulated classification—random assignment of race and ethnicity, with likelihoods 
based on the imputed probabilities

The following example illustrates the three approaches. Appendix A provides the R code 
that was used to create this illustration. Consider a simulated dataset, with the following 
information:

•  The number of records is N = 1,000.

•  Each has a likelihood of being class A based on a uniform draw on probabilities 
between 0 and 1.

•  A random draw is made for each record to determine class, based on the probabilities 
determined above.

•  For class A, the probability that outcome = 1 is 0.6. For class B it is 0.4.

•  A random draw is made based on the above-defined probabilities to determine 
outcome.

Table 2.11 shows the first 10 records from this simulation.

Given the probabilities, an imputation can be made for each record by choosing the  
class with the maximum probability. The results can be found in the “Class Based on Max 
Imputed Percent” column (column e). The imputed class A feature can be developed from 
this column:

XA: x = 1 if Imputed Prob A(col b) > Imputed Prob B (col c), and 0 otherwise.

A second manner is to use the probabilities directly (“Imputed Prob A,” column b) to develop 
the class A probability feature:

XA: x = Imputed Prob A(col b) .

This creates a probability feature instead of a binary feature and is usable for modeling 
and statistical summary computations in many instances. These probabilities can serve as 
more meaningful weights than the imputed classifications/counts for purposes of analysis 
that is based on summarizing data, such as premium parity or loss ratio parity. Furthermore, 
the probabilities can be useful for developing and evaluating visual tests. In particular, the 
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relevant target or fairness metric can be plotted against the probabilities or probability 
bands rather than in a binary nature and reviewed for patterns or lack of patterns.

Finally, instead of taking the class with maximum probability, a class feature vector can be 
developed through simulation. Randomly draw between A and B using the probabilities, rather 
than deterministically assigning the class value with the highest probability. Four simulated 
class columns are shown in Table 2.11 in the columns “Sim 1” through “Sim 4” (columns f–i). 
The analysis can be run repeatedly on simulated class features:

XA: x = 1 if simulated class is A, and 0 otherwise.

This last approach has the benefit of providing a distribution of model outputs or statistical 
measures, at the cost of increased processing time.

For those interested in carrying out the described computations and evaluating proportions 
of outcome = 1 for each class in Table 2.11, Table 2.12 shows a summary for comparison. 
In every case, the proportion for class A can be computed as

Proportion =
xA/

xA pOutcome/
.

With 1,000 records and 100 simulations, Table 2.12 shows the results of each classification 
approach.

Table 2.11. Approaches to Utilize Imputed Probabilities—Simulated Example

ID

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Class
Imputed 
Prob A

Imputed 
Prob B Outcome

Class Based  
on Max Imputed 

Percent Sim 1 Sim 2 Sim 3 Sim 4

1 A 72% 28% 0 A A A A A

2 A 88% 12% 0 A A A A A

3 A 76% 24% 1 A A B A A

4 A 89% 11% 0 A A A A A

5 A 46% 54% 1 B B A B A

6 B 17% 83% 1 B B B B B

7 B 33% 68% 0 B B B A B

8 B 51% 49% 0 A A B B B

9 B 73% 27% 0 A A B A B

10 A 99% 1% 0 A A A A A
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Please note that the purpose of the foregoing example is to illustrate some of the  
uses of the imputation outcomes only. In practice, the relationships between features  
and outcomes are more complex than the example shown here. Practitioners should  
carefully consider the possible sources of errors as they evaluate the results that utilize 
the feature imputations. To further complicate matters, in practice the actual distribution  
is unknown. While the population distribution can be used as a reference, it is possible  
the underlying distribution of the data under evaluation may not reflect that of the  
population.

Section 3. Fairness Criteria to Identify  
and Measure Potential Disparities

3.1. Relationship of Fairness Criteria to Pricing Models

In an earlier paper in this series, Mosley and Wenman (2022) explained how three types  
of fairness criteria apply to binary classification models, i.e., models that produce an 
output of either 0 or 1. Binary classification models are commonly used in the insurance 
industry for use cases such as fraud detection and claims segmentation, but these  
definitions need to be modified to apply to rating models built to predict a continuous 
response variable. This paper continues this discussion by providing additional detail  
on how these concepts apply to regression models, such as loss cost models used for 
pricing, and tying the general-purpose fairness criteria to traditional insurance metrics 
such as premium and loss ratio.

The three fairness criteria are

•  independence—the model’s predictions and the protected attribute are statistically 
independent;

•  separation—conditional on the observed response variable, the model’s predictions 
and the protected attribute are statistically independent; and

•  sufficiency—conditional on the model’s predicted values, actual outcomes and the 
protected attribute are statistically independent.

Table 2.12. Summary of Simulated Outcomes for Approaches to Utilizing  
Imputed Probabilities

Class

Outcome
Simulation Results  
(100 simulations)

Actual
Classify Based 

on Max Pct
Direct Use 

of Pct mean min median max

A 60% 54% 53% 53% 49% 53% 56%

B 39% 45% 46% 46% 43% 46% 50%

2ND PAGES 2ND PAGES

Sonja Uyenco
Rectangle



Casualty Actuarial Society Research Paper: Series on Race and Insurance Pricing       21

 Practical Application of Bias Measurement and Mitigation Techniques in Insurance Pricing: Part 1

These are broad criteria that can be satisfied by more than one metric, and this paper 
examines their application to metrics that may be appropriate for regression models.  
This discussion will use the following notation:

•  Y denotes a response variable and Ŷ  is an estimator for Y.

•  A represents the protected attribute, with levels a and b. For k equal to either a or b,

– Pk is the aggregate premium charged to members of group k;

– Lk is the aggregate losses among members of group k; and

– Xk is the aggregate exposure among members of group k.

The concepts in this section will be demonstrated using the following scenario, which 
illustrates how a loss ratio disparity can arise when the effect of a rating factor is different 
for members of different groups.5 Assume the loss experience shown in Table 3.1 exists 
for groups a and b within a protected class, segmented by a binary rating factor, R, having 
levels “N” and “Y.”

The “full information” loss cost relativity is what could be calculated using both the rating 
factor and the protected class. In practice,6 it may not be possible or permissible to review 
loss experience by protected group. From the perspective of an analyst who does not have 
information on the protected attribute, the data would look like that in Table 3.2.

Using these data would lead to a one-way relativity of 1.48 for level Y of the rating factor, 
using level N as the base level. Comparing this with the full information relativities illustrates 
a potential source of unfairness under the sufficiency fairness criterion; although the effect 

5 As discussed in Section 1, multiple potential sources of bias could affect a model. Appendix B contains a 
variation on this example in which the source of bias is use of a proxy variable. The reader may find it instructive 
to compare and contrast these two examples.
6 Use of protected class information in insurance rating varies across jurisdictions. In some jurisdictions, 
characteristics that are protected for general usage—such as gender, age, and marital status—are permitted  
for insurance rating purposes.

Table 3.1. Hypothetical Example Where Effect of Rating Factor Differs by Protected Group

Full Information (Protected Group Known)

Level of Rating  
Factor (R)

Protected 
Group (k)

Exposure 
(XR,k)

Losses  
(LR,k)

Loss Cost 
(L
–

R,k = LR,k/XR,k)
Loss Cost Relativity 

(L
–

R,k/ L
–

N,a)

N a 90 $90,000 $1,000 1.00

N b 10 $8,000 $800 0.80

Y a 90 $135,000 $1,500 1.50

Y b 10 $10,000 $1,000 1.00

2ND PAGES

Sonja Uyenco
Rectangle



22       Casualty Actuarial Society Research Paper: Series on Race and Insurance Pricing

 Practical Application of Bias Measurement and Mitigation Techniques in Insurance Pricing: Part 1

of the rating factor is lower for the minority group b, the estimate of the one-way relativity 
is driven by the majority group a due to higher data volume. The result is a relativity that is 
too high for the minority group b and slightly too low for the majority group a.

3.2. Testing Independence Using Premium Parity

For binary classification models, the independence criterion is satisfied when the following 
condition, known as demographic parity, is met:

P Yt = 1 A = aa k = P Yt = 1 A = ba k.

When Y is binary, this is equivalent to

E Yt A = a9 C = E Yt A = b9 C.

In other words, the average model prediction is equal for each level of the protected attribute.  
The latter formulation can be applied to models with a continuous response variable because 
it does not rely on the probability that a binary variable is equal to 1. This criterion can be 
referred to as premium parity when the model involved is a model for charged premium. 
In this context, a demographic parity test for an insurance pricing model corresponds to 
checking that the average premium is the same, within a materiality threshold, for each level 
of the protected variable. The test can also be used to compare two models by identifying 
which one has a lower premium disparity among groups.

Because the focus of a premium parity test is on a specific pricing algorithm, rather than 
the company’s historical premium over multiple rate changes, it is assumed throughout 
this section that all premiums are at the level of the algorithm that is being evaluated 
for fairness. If a proposed rating model is being assessed, this means that the historical 
dataset used to perform the test needs to be re-rated using the proposed rating model. 
If we are monitoring the fairness of a pricing algorithm that is currently in effect, re-rating 
would not be needed, but it is important to use only premium data for policies rated using 
the current model.

Table 3.3 illustrates the concept using the scenario described earlier, where a rating  
factor of 1.48 is used for level Y of the rating factor. The first step is to calculate the premium 

Table 3.2. Calculating Relativities without Knowing Protected Group

Protected Group Unknown

Level of Rating 
Factor (R)

Exposure 
(XR)

Losses  
(LR)

Loss Cost  
(L
–

R = LR/XR)
Loss Cost  

Relativity (L
–

R/L
–

N)

N 100 $98,000 $980 1.00

Y 100 $145,000 $1,450 1.48
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under the proposed rating structure. To fully define the rating structure, assume a base 
rate of $1,508.7

Next, as shown in Table 3.4, the data can be summarized by protected group to calculate 
the average premium.

In this scenario, the premium parity criterion is satisfied because the average premium 
is the same for groups a and b, which effectively demonstrates that the proposed rating 
structure is independent of the protected attribute (i.e., uncorrelated). This implies that in 
order to satisfy the independence criterion, the distribution of the protected attribute must 
be consistent across all levels of the proposed rating structure, or that when distributional 
differences exist in the rating structure, the differences have offsetting effects on the 
average premium.

Now suppose an alternate rating structure (Table 3.5) is used based on the full information 
two-way relativities from Table 3.1, using a base rate of $1,538.8 Under this rating structure, 
the premiums would be as shown in the table.

Table 3.6 shows the results when summarized by protected group.

Under this alternate rating structure, premium parity is not achieved due to the difference  
in average premium for groups a and b, which is caused by differences in the actual loss 

Table 3.3. Rating Structure Based on One-Way Relativities

Level of Rating 
Factor (R) Relativity

Protected 
Group (k)

Exposure 
(XR,k)

Individual Customer 
Premium

Total Premium 
(PR,k)

N 1.00 a 90 $1,508 $135,720

N 1.00 b 10 $1,508 $15,080

Y 1.48 a 90 $2,232 $200,880

Y 1.48 b 10 $2,232 $22,320

Table 3.4. Summarizing Proposed Premium by Protected Group (One-Way Relativities)

Protected Group (k) Exposure (Xk) Premium (Pk) Average Premium (Pk/Xk)

a 180 $336,600 $1,870

b 20 $37,400 $1,870

7 In this example, the overall loss cost is $1,215, and assuming a target loss ratio of 65% requires an average 
premium of $1,869. This is what results in a base rate of $1,508.
8 This was selected to produce the same overall rate level as the rating algorithm in Table 3.3 to ensure that 
differences between the two algorithms do not result from changes in the overall rate level.
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experience by protected group and use of a rating model that picks up on those differences. 
In this example, premium parity can be achieved only at the expense of other notions 
of fairness: specifically, with Table 3.5 providing individual premiums that more closely 
correspond to loss experience, a comparison to Table 3.3 shows that customers in group b 
are overcharged, while customers in group a are undercharged. In later sections, this paper 
explores this from a loss ratio perspective, and then as a general phenomenon, i.e., that 
a difference in actual loss experience leads to a need to make choices between different 
fairness criteria.

In practice, significant work is involved in creating the theoretical models underlying  
the premium calculation for a book of business, and the model output is often adjusted, 
such as through selections and expense or profit loading, to produce the pricing algorithm. 
Fairness tests should be performed on this final pricing algorithm to assess the actual 
impact on policyholders most accurately. However, given the significant amount of time 
involved in developing a rating model, it is also prudent to perform preliminary fairness 
tests to provide an early indication of potential fairness concerns. For example, tests of 
premium parity can be performed on the theoretical models used to develop the pricing 
algorithm, such as checking that the average prediction of a loss cost model is similar for 
each group. Assuming that adjustments do not materially change the relative ordering 
of premiums—as is typically the case when loading for expenses and profit—a disparity 
in a theoretical model would lead to a disparity in the charged premium, so performing a 
demographic parity test on a theoretical model provides an early indication as to whether 
there might be a disparity in the charged premium. Performing the test before and after 
selections would provide insight as to whether business adjustments to the model may 
have introduced a disparity.

Table 3.5. Rating Structure Based on Full Information Relativities

Level of Rating 
Factor (R)

Protected 
Group (k)

Exposure 
(XR,k)

Full Information 
Individual Premium

Full Information  
Total Premium (PR,k)

N a 90 $1,538 $138,420

N b 10 $1,230 $12,300

Y a 90 $2,307 $207,630

Y b 10 $1,538 $15,380

Table 3.6. Summarizing Proposed Premium by Protected Group  
(Full Information Relativities)

Protected  
Group (k)

Exposure  
(Xk)

Full Information Alternate 
Premium (Pk)

Average Premium 
(Pk/Xk)

a 180 $346,050 $1,923

b 20 $27,680 $1,384
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An additional practical consideration when performing a premium parity test is determining  
which data will be used to calculate the metrics and whether there are any associated 
limitations. Such considerations also affect what notions of “premium” will be used. Fairness 
should be considered throughout the model life cycle, with premium parity being relevant 
during the development and monitoring stages of the life cycle. The approach will vary 
depending on the point in the model life cycle at which the calculations are being performed.

During the development stage of the model, some examples of approaches to evaluating 
fairness of rates prior to implementation include the following:

1.  Testing the predictions from a theoretical rating model, based on training data. 
This allows for early indications of potential fairness concerns.9

a.  Pro: Using modeling data for tests at this stage has the significant advantage 
that the data are readily available.

b.  Con: The output of a theoretical model is generally not the premium that is 
charged to the customer, so this needs to be supplemented with later tests  
on the final pricing model.

2. Testing the proposed rating algorithm on renewal policies:

a.  Pro: This allows for an assessment of fairness concerns for policies currently 
written by the company. Assessing impacts that a proposed rating algorithm has 
on current customers is already part of standard pricing processes, minimizing 
the amount of incremental effort.

b.  Con: This does not assess fairness for potential new customers, which is a 
concern when the distribution of the current book of business differs materially 
from the market of potential customers.

3. Testing the proposed rating algorithm on historical quote data:

a.  Pro: This may provide a better indication of fairness across the market of 
potential customers than inforce data would.

b.  Con: This adds complexity to the fairness testing process, as it requires re-rating 
old quotes using the model that is being developed. Quotes for customers who 
did not purchase a policy will not be available in the model training data.

During the monitoring stage of the model, approaches to assessing the fairness of rates 
post-implementation include the following:

1.  Testing the current written premium for policies starting after the effective date of 
the current rating plan:

a.  Pro: Data are straightforward to obtain, as policies have already been rated  
and premiums recorded in the policy database.

9 While not strictly a premium parity approach, comparing average losses by protected group within the training 
data can give an even earlier indication of a potential premium disparity, since a disparity in the model response 
variable could lead to a disparity in model predictions.
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b.  Con: This will only capture customers who have purchased a policy, and it  
may fail to detect situations in which an unfairness in the rates has dissuaded 
customers from purchasing a policy.

2. Testing premium quotes produced after the effective date of the current rating plan:

a.  Pro: This can mitigate the impacts that consumer purchasing decisions can have 
on the results.

b.  Con: This could produce a biased sample of the marketplace, with customers 
who tend to shop around being overrepresented.

A decision that needs to be made across all approaches is choosing the number of years 
of data to use in the parity calculations. The broad objective is to base the analysis on data 
that have both a credible volume and are representative of the market of potential customers. 
Some considerations that can inform this decision include the following:

•  If more than one year of data is used, an individual customer may appear in the data 
multiple times, which could distort the results. For example, if historical policy data 
are used, long-standing customers (who are presumably satisfied with their policy) 
will be overrepresented in the analysis. If quotes are used, customers who tend to 
shop around frequently will be overrepresented.

•  Older data may not be representative of the market of potential future customers 
if material changes have occurred in the book of business resulting from deliberate 
changes in the company’s risk appetite.

•  Older data could be representative of the market of future potential customers if 
shifts in the book of business are a result of customer attrition, and if a new pricing 
algorithm is expected to attract previous customers.

•  During the monitoring phase, limited data could be supplemented with re-rated 
historical data, but this adds additional complexity to the monitoring process.

Affordability Metrics

Variations on the premium parity methodology can incorporate other concerns related to 
fairness in insurance pricing, such as affordability of insurance. An example of an affordability 
metric would be the ratio of premium to total income, effectively performing a premium 
parity test after first normalizing based on income. Parity of the premium-to-income ratio 
would correspond to the notion that insurance should be equally affordable regardless of 
membership in a protected group. This approach has the advantage of being simple and easy 
to explain, but one of its limitations is that it does not account for differences in coverage 
selected, and individuals in low-income areas may select lower coverage to help with 
affordability concerns. The method could be refined by adjusting the premium data for  
differences in coverage prior to calculating a premium-to-income ratio.

An alternate approach could be to define a binary “affordable” indicator, based on the 
premium being below a certain income-sensitive threshold, and examine parity of this 
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indicator. This approach can avoid potential distortions resulting from high-income individuals  
having very low premium-to-income ratios. The corresponding notion of fairness would 
reflect whether the premium is below the affordability threshold, rather than how much it is 
below the threshold.

In practice, the income of an individual insured is not typically known, nor is there an algorithm 
analogous to BIFSG for inferring income. In the United States, because of the lack of precision 
at the individual level, affordability is often measured at a geographic level using census 
data related to income. For example, the Federal Insurance Office (2017), in its Study on the 
Affordability of Personal Automobile Insurance, calculates an affordability metric as average 
written voluntary market premium within a zip code divided by median household income 
within that zip code; it considers insurance to be affordable if this metric is below the national 
average of 2%.

Alternate approaches could use different measures of income in the census or measure 
affordability on a comparative rather than binary basis (e.g., an index of 1.8% is more affordable 
than 1.9%). Affordability parity for a protected class can be assessed by using census data 
related to that protected class. In other words, one could examine the extent to which 
insurance is less affordable in zip codes that have a higher percentage of a protected group.

3.3. Testing Separation Using Loss Ratio Parity

For classification models, the separation criterion corresponds to checking whether the error 
rates (false negative10 and/or false positive rates) are the same for each protected group of 
interest. This involves comparing the model’s predictions to actual outcomes. An example  
of a separation condition for a classification model is equalized odds, which is that

P Yt = 1 Y = y, A = ab l = P Yt = 1 Y = y, A = bb l,

for y = 0 and y = 1. (A weaker separation condition, equal opportunity, requires only that this 
condition hold when y = 1, i.e., that true positive rates are the same for both protected groups.)

For pricing models, there is no direct analogue to the formulas used for classification models 
because separation conditions such as equalized odds are conditional on actual outcomes, 
whereas the purpose of a pricing model is to predict the expected outcome. The vast majority  
of individuals will have no claims, which makes it much less meaningful to condition on actual 
claims outcomes. Dolman and Semenovich (2018) propose that for insurance premiums 
this condition be adjusted to

E Yt n, A = a
R

T
SS

V

X
WW = E Yt n, A = b

R

T
SS

V

X
WW.

10 False negative rate parity is mathematically equivalent to true positive rate parity, which is a term commonly 
used in fairness literature. Similarly, false positive rate parity is mathematically equivalent to true negative 
rate parity.
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With this approach, μ is the “true risk type” of the individual, which in an insurance context 
would be the theoretical pure premium. They refer to this condition as actuarial group fairness 
and observe that the condition will be satisfied any time the premium is a function of μ alone, 
such as by pricing to a constant loss ratio. In practice, expense and profit loads may  
vary by client, in which case this condition corresponds to assessing whether there are 
material differences in expense and profit loading by protected group. With “true” risk being 
unobservable, they propose using a model for μ; however, a drawback of this approach  
is that the model for μ could itself be biased.

This section explores an approach for calculating loss ratios based on actual historical 
claims for each protected group, which avoids the need to use a model. When modeling 
a continuous variable, the error is also continuous, so the natural analogue of looking at 
error rate metrics is to compare the charged premium to actual losses. Calculating the loss 
ratio for each group is a natural way to test this condition, because it is based on a traditional  
actuarial metric. The condition that La/Pa = Lb/Pb is referred to as loss ratio parity. In practice, 
achieving exact equality is not feasible due to volatility of claims data, so loss ratio parity tests 
generally assess whether the difference in loss ratio among groups is within a specified 
tolerance level or, when comparing models, identify which model has a smaller disparity in 
loss ratios among groups.

Revisiting the scenario described in Table 3.1 and applying the proposed rating structure 
from Table 3.4 produces the results displayed in Table 3.7. Here, the rating structure does 
not achieve loss ratio parity due to the difference in overall loss ratio between groups a and b; 
this is in contrast with Table 3.4, where premium parity is achieved.

However, applying the proposed rating structure from Table 3.6 to the scenario described 
in Table 3.1 produces the results displayed in Table 3.8. The full information two-way rating 
structure satisfies loss ratio parity in this scenario. Table 3.8 is in contrast with Table 3.6, 
in which this rating structure did not achieve premium parity.

Table 3.7. Summarizing Loss Ratio by Protected Group  
(One-Way Relativities)

Protected  
Group (k) Losses (Lk) Premium (Pk) Loss Ratio (Lk/Pk)

a $225,000 $336,600 66.8%

b $18,000 $37,400 48.1%

Table 3.8. Summarizing Loss Ratio by Protected Group  
(Full Information Relativities)

Protected  
Group (k) Losses (Lk)

Full Information Alternate 
Premium (Pk) Loss Ratio (Lk/Pk)

a $225,000 $346,050 65.0%

b $18,000 $27,680 65.0%
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Because loss ratio parity tests involve claims data, the analyst needs to consider two 
competing criteria when selecting data:

1.  Because the loss ratio test involves comparing predictions of claims to actual claims, 
as with any predictive model, the testing data should be independent of the training 
data to assess the model’s performance more realistically on “unseen data.”

2.  Because claims data are more volatile than data on rated premium, data volume 
needs to be high enough to provide a credible result. Data volume concerns can 
be amplified when performing fairness tests, since such tests involve segmenting 
the data based on protected group, some of which may have low data volume and 
higher expected variance in the actual outcomes. Comparing results on a confidence 
interval basis can help the analyst understand whether there is enough data to draw 
conclusions based on the test.

The ideal approach would be to perform the test using holdout data from the modeling 
process, provided data volume is sufficient. If holdout data volume is low, this test could be 
supplemented by tests on training data or combined training and holdout data. However, 
if training data are used in a loss ratio test, the results should be interpreted with caution; 
tests that use training data can overstate model performance, and as a result, disparities  
in loss ratios among groups could be understated because the loss ratios for each 
group are more likely to be closer to a target loss ratio than they would be on holdout data. 
(This concern did not arise in the discussion of premium parity because the premium parity 
approach is not conditioned on actual claim outcomes. Rather, premium parity tests only the 
mechanics of the rating algorithm.) When a generalized linear model is used, after holdout  
testing is complete, it is standard practice to refit the model on combined training and holdout  
data to increase credibility of the final model. In this case, the loss ratio test should be redone 
using the final model, using combined training and holdout data, to confirm that results are 
consistent with what was observed during holdout testing.

Like any other analysis involving premium and losses, adjustments for trend, development, 
and change in benefit level should be considered. (Recall that the discussion on premium 
parity relied on the assumption that premium data are at the level of the rating algorithm under 
evaluation, so additional premium adjustments are unlikely to be needed.) However, when 
performing a disparity test, consider that multiplicative adjustments will not have a material 
impact on the results if the magnitude of the adjustment is similar for each protected group; 
in this situation a disparity would exist before the adjustment if and only if it exists after the 
adjustment. Situations in which the differences may be material include longer-tailed lines, 
books of business where the distribution of protected groups has been shifting over time, or 
situations where protected groups experience different trend rates or development patterns.

Much like premium parity, loss ratio parity can be assessed throughout the model-building 
process by assessing the components that contribute to the rating model. Some examples 
include the following:

1.  Initial tests can be performed on a theoretical loss cost model by assessing the  
parity of the ratio of aggregate losses to aggregate model predictions (weighted 
by exposure) for each group.
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2.  To assess the fairness of a proposed pricing algorithm, once the algorithm is finalized, 
the test from example 1 can be repeated using the actual charged premium, weighted 
based on the earned exposure underlying the claims data in place of the theoretical 
loss cost. The differences between this approach and the test described in example 1 
would be material only if differences exist between the indicated and proposed rating 
factors. Comparing the results from this test and the test in example 1 can assess 
whether disparities in the proposed pricing algorithm can be attributed to disparities  
in the indicated plan or whether they can be attributed to adjustments made to the 
indicated plan, i.e., whether the differences between the indicated and proposed plans 
are correlated with protected class.

3.  To monitor rates that are currently in effect, loss ratio parity can be monitored based 
on the ratio of actual losses to earned premium for each group, using data after the 
effective date of the rating plan.

A limitation across all three of these approaches is that the data are based only on policies that 
are already part of the company’s book of business, so if the distribution of the company’s 
current book of business differs from that of the potential customer base, results could 
be distorted. For example, if a rating model is consistently overestimating the premium for a 
group, then the corresponding loss ratio disparity could go undetected because members  
of that group may not purchase policies in the first place. This limitation is generally unavoidable 
given that loss ratio tests rely in a fundamental way on claims that are actually on a company’s 
book, but the impact of this limitation could be assessed by monitoring the distribution of 
the book of business compared with the general public.

When a loss ratio parity test is performed on a one-way basis, it provides an assessment 
of bias and potential for unfair discrimination in the overall rating structure. The American 
Academy of Actuaries (2023b) recommends performing a loss ratio parity test on a two-way 
basis, considering protected class and a rating factor of interest. Consistency of loss ratios 
across both dimensions indicates that the rating factor is equally predictive across the 
protected groups. This approach can be effective in detecting situations in which the rating 
factor is a source of bias on the grounds that the effect is not consistent from one group to  
another (i.e., aggregation bias), or in other words, when there is an interaction effect between 
protected class and the rating factor. For this reason, this test is sometimes also referred  
to as an interaction test. Interactions such as this can arise through bias in the data values 
(in situations in which there is inconsistency involved in the collection of data on the rating  
factor) or through omitted variable bias (in situations where there is a true interaction present 
that is not being recognized in the model). When a loss ratio disparity is detected in the 
overall rating structure, performing this test for each rating factor can help identify any rating 
factors that could be contributing to the overall disparity.

3.4. Testing Sufficiency Using Lift Charts and Loss Ratio Parity

The previous section argued that while loss ratio parity doesn’t exactly match the definition 
of separation (because separation conditions on actual rather than expected outcomes),  
it is a reasonable analogue of separation metrics because both look at parity of model 
error across groups. This section presents an argument that loss ratio parity, while not 
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precisely meeting the definition of sufficiency, is also a reasonable analogue of the  
sufficiency condition for a model with a continuous response. Conceptually, separation 
corresponds to all groups having the same premium after conditioning on losses—which 
means having the same loss ratio at each loss level. The sufficiency criterion is conditioned  
on premium to check whether each premium level has the same amount of losses— 
which would mean having the same loss ratio at each premium level. The lack of a clear 
one-to-one correspondence between parity metrics for models with a continuous response 
and models with a categorical response is consistent with the fact that classification 
models have two discrete types of errors (false positives and false negatives) and multiple 
types of error rates, while regression models with a continuous response do not directly 
fit into this framework.

For classification models, the sufficiency condition corresponds to parity of metrics such 
as the false discovery rate (probability of a false positive, given that a model has predicted 
positive) and false omission rate (probability of a false negative, given that a model has 
predicted negative) among protected groups. There are also more stringent conditions 
such as calibration and well-calibration that are described in Mosley and Wenman (2022). 
Like separation, these tests are based on a comparison of model predictions to actual 
outcomes, and for a premium model, a sufficiency test would similarly involve a comparison 
between premium and actual losses.

More formally, for a classification model, let R be a model’s estimate of the probability that 
Y = 1. The calibration condition is defined as satisfying

P Y = 1 R = p, A = aa k = P Y = 1 R = p, A = ba k

for all probabilities p between 0 and 1.

For models with a continuous response (in the pricing use case, with premium P), the 
calibration condition generalizes to

E Y P = p, A = a9 C = E Y P = p, A = b9 C,

where P is the model’s prediction—in this case, the premium. Given that the number of 
unique values for premium is typically large, this may not be a meaningful calculation unless 
the premium is divided into buckets prior to calculating average losses within each bucket. 
Essentially, this corresponds to producing a quantile plot for each protected group, much 
like the traditional quantile plots that are used for evaluating the accuracy of rating models. 
(See, for example, Section 7.2.1 in Goldburd et al. [2020].) Lift charts can provide a visual 
confirmation of whether the calibration condition is satisfied. This would involve verifying 
that there is a lack of a consistent pattern of differences in losses across premium levels. 
When performing this test, the quantiles need to be defined across the whole dataset, 
rather than separately for each protected group, to ensure that a consistent set of premium 
quantiles is used for each protected group. This introduces a risk that the amount of data  
in each bucket could be different by protected group, so results need to be interpreted 
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carefully in lower-volume buckets to ensure that a lack of pattern isn’t driven by usual  
volatility. The choice of the number of quantiles selected can be informed by the need to 
have sufficient data volume for minority groups in each bucket. An alternate approach 
to ensuring adequate data volume in each bucket could be to generate quantiles based 
on the premium for members of the minority group (to ensure even data volume among 
buckets among the group for whom data are sparsest) and use the same quantiles for 
the majority group.

This approach is closely related to loss ratio parity, because if both groups have the same 
losses for a given premium level, then they will have the same loss ratio at that premium 
level. The differences are the following:

•  Loss ratio parity, as described in the previous section, considers parity only at  
a “global” level rather than ensuring that parity is consistent at different premium 
levels. (If it is reasonable for us to assume that the loss ratio is the same across  
all premium levels, then a global loss ratio parity does satisfy the calibration  
condition.)

•  The calibration condition does not require that the loss ratio be the same across 
premium levels. Therefore, if there is a nonuniform distribution of protected groups 
across premium levels, it could result in a situation where loss ratio parity is achieved 
at each premium level, but not globally.

The examples in Figures 3.1 and 3.2 illustrate some possible outcomes of a visual sufficiency 
test and how to interpret those results. These are artificial examples created for explanatory 
purposes, and as such they will look “cleaner” than typical results.

–

 200

400

600

800

1,000

1,200

1,400

1,000 1,100  1,200 1,300 1,400 1,500 1,600 1,700 1,800 1,900

Lo
ss

 c
os

t

Premium

Exposure A Exposure B Losses A Losses B

Figure 3.1. Example of Visual Test in Which Sufficiency Is Satisfied
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The model passes the test when losses are similar across each bucket. In the example 
shown in Figure 3.1, even though there is volatility in the losses for group B on the left side  
of the chart, that can be explained by the lower exposure for group B. On the right side 
the losses for group B roughly track those of group A, indicating that this model passes  
a sufficiency test. In contrast, consider the example in Figure 3.2.

In this example, the model does not pass a sufficiency test, because losses for the two 
groups are different at each premium level. The consistency of the pattern—group B having 
lower losses than group A when premium is low, but the reverse being true when premium 
is high—suggests that this is not being driven by volatility of the data, as was the case in the 
previous example. Notably, in this example, the two groups in this example achieve aggregate 
loss ratio parity—each group’s loss ratio is roughly 65%—but it does not satisfy the calibration 
test because loss parity is not consistent across premium levels.

3.5. Comparing Premium Parity and Loss Ratio Parity

A key advantage shared by both premium parity and loss ratio parity is their ease of 
calculation and explainability. They are based on familiar actuarial metrics—and checking 
these metrics for parity involves the same calculations that would be performed to produce 
the traditional breakdowns of premium and loss ratio by the levels of a rating factor. They 
should be easy to apply consistently by a wide range of insurers of various levels of  
analytical sophistication. Transparency is a key advantage when assessing models for 
bias, because a bias assessment will be less convincing to a wide range of stakeholders  
if it involves a method that is complex or opaque. Of course, simplicity comes at a cost—
these metrics cannot capture nuances such as situations in which a disparity can be 
attributed to “acceptable” distributional differences of protected groups across levels of  
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Figure 3.2. Example of Visual Test in Which Sufficiency Is Not Satisfied
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a rating factor. Methods that can account for “fair” distributional differences are discussed 
later in this paper.

Premium parity corresponds to a notion of fairness based on the idea of equal impacts on 
different groups: that average premiums do not vary by protected group. In contrast, loss ratio 
parity corresponds more closely to traditional actuarial notions of fair rates—that rates should 
differentiate between insureds with differences in expected costs. Especially in situations 
where loadings for expenses and target underwriting profit are constant multiplicative or  
additive factors, disparities in loss ratio should correspond to disparities in underwriting profit, 
so loss ratio parity corresponds to a notion of fairness in which all protected groups are 
equally profitable on average. In other words, loss ratio parity means that no protected group 
gets overcharged, relative to any other protected group.

An additional advantage of premium parity is that it is simpler to calculate than loss ratio 
parity, as it does not require claims data, and generally a lower data volume is needed for 
credibility given that premiums are less volatile than claims. A key advantage of loss ratio 
parity is that it requires a consistently accurate assessment of risk across protected groups. 
However, in cases where individuals may be exposed to risks outside their control in part due 
to their protected group membership, a purely risk-proportional approach could be viewed  
as unfair on the grounds that achieving loss ratio parity could lead to charging people for 
risks outside their control.

With premium parity and loss ratio parity each corresponding to a different notion of fairness, 
a natural question that arises is “Why not just use a model that satisfies both?” The next 
section demonstrates that when average losses differ between protected groups, these 
two parity conditions cannot be achieved simultaneously.

Cannot Simultaneously Achieve Premium Parity and Loss Ratio Parity

One of the challenges with assessing model fairness is that there are multiple parity 
metrics available, and in many cases, it is mathematically impossible to achieve all forms 
of parity at once. For classification models, various authors11 have shown that, provided the 
response variable is not statistically independent of the protected attribute, it’s not possible 
to construct a model that simultaneously achieves demographic parity, false positive rate 
parity, and false negative rate parity. A short argument demonstrates that the analogous 
statement is true for loss cost models:

If groups a and b have different lost costs, then a pricing model cannot simultaneously 
achieve premium parity and loss ratio parity between these two groups.

This statement can be verified by proving the logically equivalent statement that a pricing 
model that has achieved both premium parity and loss ratio parity can occur only when 
groups a and b have identical loss costs.

11 A more general proof appears in Barocas et al. (2023).
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Recall that for group k the losses, premium, and exposure are denoted by Lk, Pk, and Xk, 
respectively. Achieving loss ratio parity means that both protected groups have the same 
loss ratio, or

Pa

La =
Pb

Lb .

Achieving premium parity means that both protected groups have the same average  
premium, or

Xa

Pa =
Xb

Pb .

The premium parity condition can be re-expressed as

Pb = Xa

PaXb .

Combining this with the loss ratio parity condition gives

Pa

La =
PaXb

LbXa .

Canceling out the Pa and rearranging gives

Xa

La =
Xb

Lb .

which shows that the two groups must have the same loss cost for both premium parity 
and loss ratio parity to hold. The same argument would apply if Pa and Pb are outputs of a 
theoretical loss cost model rather than the actual premium, with the interpretation being 
that parity of average model predictions cannot be achieved simultaneously with parity  
of the ratio of aggregate losses to aggregate model predictions.

This means that when protected groups have differences in average losses, if a pricing 
algorithm achieves premium parity, then a loss ratio disparity will exist. This can lead 
to cross-subsidization between protected groups, and potentially to adverse selection 
if premium parity is not enforced consistently across insurers. Premium parity could 
be viewed as unfair; it could cause affordability concerns for the groups that are over-
charged relative to risk and raise concerns about availability of insurance for the groups 
that are undercharged relative to risk. Loss ratio parity is an important metric in situations 
where insurance availability is a concern; absent a robustly enforced take-all-comers  
rule, a loss ratio disparity could discourage insurers from writing business to some  
protected groups.
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A consequence of this fact is that it’s not possible to address fairness through an exclusively 
technical analysis—since it’s not possible to achieve both premium parity and loss ratio 
parity simultaneously, exogenous information is needed to identify which parity metric more 
closely corresponds to a socially accepted notion of fairness for a given use case. This need 
is amplified by the observation that there are reasons that each metric could be seen as fair, 
and reasons that it could be seen as unfair. Depending on the circumstances, the relevant 
notion of fairness could come from a variety of sources, such as regulatory definitions of 
fairness or a company’s business strategy. Alternatively, it could be the case that neither 
premium parity nor loss ratio parity is considered an appropriate notion of fairness for a 
given context, and more nuanced metrics, such as those described in the second part of 
this paper, may be preferred.

Part 2 of the paper can be found on casact.org/raceandinsuranceresearch.

•  Part 2, Section 4 delves into more complex fairness analyses that take into  
consideration multiple rating factors and distributional differences between protected 
classes across the levels of certain rating factors, conditional demographic parity, 
the proxy (“control variable”) test, and nonparametric matching.

•  Part 2, Section 5 reviews several technical bias mitigation methods that can be 
applied to insurance pricing data, models, or model outputs.

•  Part 2, Section 6 discusses several important non-modeling considerations that can 
contribute to fairness concerns, such as targeted marketing practices, regulatory 
restrictions, and discounts.
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Appendix A. Simulation for Utilizing Imputed Probabilities
The following R code was used to create a simulated dataset with 1,000 records, each 
classified as either class A or class B.

Assumptions:

•  The number of records is N = 1,000.

•  Each has random likelihood of being class A based on a uniform draw on probabilities 
between 0 and 1.

•  A random draw is made for each record to determine class, based on the probabilities 
determined above.

•  For class A, the probability that outcome = 1 is 0.6. For class B it is 0.4.

•  A random draw is made based on the above-defined probabilities to determine 
outcome.

R Code:

set.seed(12345)
N <- 1000
prob.class.A <- round(runif(N),3)
prob.class.B <- 1 - prob.class.A
var.class.A <- rbinom(N, 1, prob.class.A)
var.class <- ifelse(var.class.A == 1, “A”, “B”)
prob.outcome <- ifelse(var.class.A == 1, 0.6, 0.4)
var.outcome <- rbinom(N, 1, prob.outcome)
var.class.impute <- ifelse(prob.class.A < prob.class.B, “B”, “A”)
df <- data.frame(var.class, prob.class.A, prob.class.B, var.outcome,  
var.class.impute)
for (i in 1:100) {
  prob.name <- paste(“prob.class.impute”, i, sep=””)
  prob.name <- runif(N)
  var.name <- paste(“var.class.impute”, i, sep=””)
  df[,var.name] <- ifelse(prob.name < prob.class.A, “A”, “B”)
}
write.csv(df, “tmp_outfile.csv”)
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Appendix B. Illustration of Premium Parity and  
Loss Ratio Parity in a Proxy Variable Situation
The hypothetical example in Section 3.1 illustrated the concepts of premium parity and 
loss ratio parity in a situation where the source of a loss ratio disparity was an uncaptured 
interaction between protected class and a rating factor. This appendix revisits that example, 
using instead sample data that correspond to a correlated (or “proxy”) variable as a potential 
source of bias. Assume that the loss experience in Table B.1 exists for groups a and b within 
a protected class, segmented by a binary rating factor.

In this example, because the effect of the rating factor does not vary by protected group, 
the “full information” relativities are the same as the relativities derived if data on protected 
class membership were unavailable, shown in Table B.2.

Assume a base rate of $1,538 is used, with a relativity of 1.5 for level Y of the rating factor. 
This would result in the aggregate premiums shown in Table B.3.

Next, summarize the data by level of the protected attribute and calculate the average 
premium, as shown in Table B.4.

In contrast with the example in Section 3.1, in this example we see that premium parity is 
not achieved, but loss ratio parity is. Notice that the premium disparity results from the fact 
that the protected class has a different distribution for each level of the rating factor, which 
was not the case in the example in Section 3.1.

Table B.1. Hypothetical Example Where a Rating Factor Is a Proxy for Protected Class

Full Information (Protected Group Known)

Level of Rating 
Factor (R)

Protected 
Group (k)

Exposure 
(XR,k)

Losses  
(LR,k)

Loss Cost  
(L
–

R,k = LR,k/XR,k)
Loss Cost Relativity  

(L
–

R,k/L
–

N,a)

N a 70 $70,000 $1,000 1.00

N b 10 $10,000 $1,000 1.00

Y a 10 $15,000 $1,500 1.50

Y b 10 $15,000 $1,500 1.50

Table B.2. Calculating Relativities without Knowing Protected Group

Protected Group Unknown

Level of Rating 
Factor (R) Exposure (XR) Losses (LR)

Loss Cost  
(L
–

R = LR/XR)
Loss Cost Relativity 

(L
–

R/L
–

N)

N 80 $80,000 $1,000 1.00

Y 20 $30,000 $1,500 1.50
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Table B.3. Rating Structure Based on One-Way Relativities

Level of Rating 
Factor (R)

Protected 
Group (k)

Exposure  
(XR,k)

Individual Customer 
Premium

Total Premium 
(PR,k)

N a 70 $1,538 $107,660

N b 10 $1,538 $15,380

Y a 10 $2,307 $23,070

Y b 10 $2,307 $23,070

Table B.4. Summarizing Proposed Premium by Protected Group (One-Way Relativities)

Protected Class 
Group (k)

Exposure 
(Xk)

Premium 
(Pk)

Average Premium 
(Pk/Xk)

Losses  
(Lk)

Loss Ratio 
(Lk/Pk)

a 80 $130,730 $1,634 $85,000 65.0%

b 20 $38,450 $1,923 $25,000 65.0%
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