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A NON S Y M M E T R I C A L  V A L U E  F O R  GAMES W I T H O U T  
T R A N S F E R A B L E  U T I L I T I E S ;  A P P L I C A T I O N  TO R E I N S U R A N C E *  

JEAN LEMAIRE 

We define axiomatically a concept of value for games without transferable 
utilities, without introducing the usual symmetry axiom. The model--a generali- 
zation of a previous paper [6] extending Nash's bargaining problemiattempts to 
take into account the affinities between the players, dehned by an a priori set of 
"distances". The general solution of all three- and four-person games is described, 
and various examples are discussed, like the classical "Me and nly Aunt" and a 
reinsurance model. 

Nous d6finissons de lnaniJre axiomatique un concept de valeur pour les jeux 5. 
utilit6s non-transf6rables, sans mtroduire l'axiome classique de sym6trie. Le 
module - -  une g6n6rahsation d'un concept de valeur E 6] 6tendant h plusieurs joueurs 
le probl~me de marehandage de Nash - -  tient compte des afffimt6s entre les joueurs, 
donn6es sous :forme d'une matrice de "distances" a priori. Nous donnons la solution 
gdn6rale do tousles jeux 5. trois et quatre joueurs, et discutons plusieurs exemples 
classiques, dont le c6lgbre "Ma tante et moi" et le module de rdassurance de ]3orch. 

I. INTRODUCTION 

In  most  of the value concepts of the cooperat ive theory  of games [6j, [lol, 
[12], the authors  have enforced a s y m m e t r y  axiom: every symmetr ical  game 
has a symmetr ical  solution; tha t  is, if the charactel is t ic  funct ion of the game 
is symmetr ica l  with respect to the bissecting line passing through the initial 

payoffs,  the solution grants  the same uti l i ty increase to each player. I f  this 
axiom seems innocuous (it is evident  tha t  the final payoff  must  not depend on 
a permutat ion,  on a re-numbering of the players), it implies the implicit as- 

sumpt ions  tha t  the game is adequate ly  represented by  the characterist ic  
funct ion and tha t  no element outside this funct ion influences the behaviour  of 
the par t ic ipants  and the results of the game. But  eve ryday  observat ions sug- 

gest tha t  the players usually do not behave as one would expect f rom the 
abs t rac t  s tudy  of the game:  some coalitions are formed more easily than 
others, two players tha t  should coalize in order to niake a profit  do not unite 
because of personal an t ipa thy ,  some persons are more likely to enter in a 
coalition with a given group than  others, e t c . . .  ; the characterist ic  funct ion 

form of the game seems unable to forecast the coalitions tha t  will effectively 
form, since it does not  take into account  the personal affinities between the 
players. For  instance, the French Comlnunist  par ty ,  during the Fou r th  Re- 
public consistently the largest par ty ,  never  managed  to enter into a govern- 
ment  coalition, because no other pa r ty  was ever willing to join it in a coalition. 

* Presented at the 14th AST1N Colloquium, Taormina, October 1978. 
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So the va lue - - s ay  the Shapley value, or any  value computed  on the basis of 
the character is t ic  function o n l y - - o f  this pa r ty  is largely overest imated,  since 
it does not  consider the aversion of the other  parties. 

We shall in this paper  develop a value concept  tha t  a t t empt s  to catch the 
notion of "aff ini t ies" ,  by  suppressing the s y m m e t r y  axiom and introducing 
"d is tances"  between players.  I t  is a modif icat ion of our former  [6] symmetr ica l  
value. 

2. AXIOMS 

Let  [N, v(C), ~] be a game wi thout  t ransferable utilities (shortly a non-trans-  
ferable game), where 

- -  N = {J . . . . .  n} is the set of the n players;  
- -  v(C) is the character is t ic  function,  defined on all the non-void subsets C 

of N (the coalit ions) '  the image of this funct ion is a subset v(C) of E I e l ,  
the Eucl idean space of dimension I C I, such that  v(C) is non-empty ,  closed, 
convex and super-addi t ive:  

V Ca, G, c N D - C~ Cl Co = 4, v(C~ U G )  D v ( G )  x v(G); 
- -  ~ is the prospect  space for the grand coalit ion N, i.e. the space delimited by  

the Pare to-opt imal  surface v(N) and the hyperplanes  perpendicular  to the 
axes whose coordinates are the initial utilities of the players. 

Let  [C, v(C'), ~cl be the subgame associated to the coalition C. The purpose 
of this paper  is to define a value for such games. We shall assume tha t  the 
players  will sign a t r e a ty  

y ( X )  = [ y d N )  . . . . .  yn(N)] ,  

where yl(N) specifies the mone ta ry  payoff  to player  j .  Since such a t r ea ty  
usually involves s ide-payments  (whose stun must  be zero), the components  of 
.9(N) must  satisfy a linear admissibil i ty condit ion 

( i )  y : ( N )  + . . .  + y , d N )  = z 

(the model can easily be ex tended  to the games wi thout  s ide-payments .  In 
tha t  case the treat ies have to ment ion the commodit ies  owned or exchanged by  
each part ic ipant) .  

An example of a non-transferable  game is the classical exchange of risks. 
Le t  the players be n insurance companies, of respective si tuations [Sj, F~(xj) 1, 
where S 1 is the initial surplus of company  j,  and F~(xj) the distr ibution funct ion 
of its total  claim amount .  Each company  evaluates  its s i tuat ion by an ut i l i ty  
funct ion 
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u/x j )  = uj  [&, Fj( . j ) ]  = Jr u j (S j -  xj) dFj(~j), 
o 

where u / x )  is the util i ty of a monetary  amount  x, with u}(x) > o and u~'(x) ~< o. 
The members of the pool will t ry  to improve their si tuations by concluding a 
t rea ty  of risk exchanges 

9 = [> (x~ ,  . . . ,  ~ , , )  . . . . .  y , , ( x ~ ,  . . . ,  ~) ] ,  

where yj(x~ . . . .  , x,~) is the amount  tha t  j has to pay  if the claims for the clif- 
ferent companies are respectively xz, . . . ,  x,~. 

Since all the claims must  be indemnified, the yj(x, ,  . . . ,  xn) must  satisfy the 
admissibility condition 

. 4 , , I  ] t 

the total  amount  of all claims. After tile signature of 9, the ut i l i ty of j becomes 

~J(9) = f ~J [ s j -  y~(x)] d F ( x ) ,  
0 

where O is the posit ive o r than t  of .E n and ./7(y) the n-d imensionM d is t r ibu t ion  
function of the clairns 2 = (xl . . . . .  x~). 

.9 is Pareto-optimal  if there is no .9' such tha t  U j ( f ' )  >1 U~ (.9) V j ,  with at 
least one strict inequality.  Borch (see for instance [1]) has demonst ra ted  tha t  
all the Pareto-optimal  treaties are characterized by the following relations. 

t t 

(2) kd. 9 [S$ - 39(x)] = k~u, [Sx - 3,~(X)] lej >i o g j .  

Let K =  {k~ . . . . .  le~}. The t rea ty  is unique for given K,  but  there usually 
exists an infinity of K satisfying (l ') and (2). 

I t  has been shown [5] tha t  this reinsurance marke t  is in fact a non-trans- 
ferable game and tha t  the problem of selecting an optimal set of constants k~ 
is identical to the determinat ion of tile value of the game. In [71 we have 
computed the Shapley value and the Nash-Lemaire value [6] of this game. 
Both values use the classical symmet ry  axiom. In the sequel, we shall extend 
axiomatical ly the lat ter  value to the non-symmetrical  case. We shall use four 
axionls. 

A x i o m  1 : L inear  invariance 

The solution is not affected by a linear t ransformat ion performed on the 
utilities of the players. 

Just i f icat ion:  Since utilities are only defined up to a linear t ransformation,  
it must  obviously be the case for the solution. 
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Axiom 2: Strong Pareto-optimality 

The solution depends on all the sub-treaties relative to all the sub-coalitions 
(with the exception of the sub-coalitions that form with probability zero--see 
section 4). Each sub-treaty (and the final treaty) must be Pareto-optimal and 
satisfy the admissibility condition. 

Justification: The axiom expresses the fact that, during a negotiation, the 
bargaining strength of a player depends on the terms he obtained during the 
preceding discussions; a player will get more from his partners if he has signed 
a favourable treaty in a sub-coalition. We thus authorize the formation of any 
coalition during the bargaining process. Each one may negotiate with a 
disjoint group in order to unify. During this partial bargain, we suppose that  
each coalition acts as a single player: no one has the right to disavow his 
signature and quit his coalition in order to negotiate separately. We also assume 
that  the grand coalition is formed step by  step; at each step two coalitions 
only merge, so that N is obtained after (.n- 1) steps 1). Since the power of a 
player depends on all the already signed contracts, they must influence the 
final payoff. Each sub-treaty must of course be Pareto-optimal in the cor- 
responding sub-game, and the admissibility condition must be satisfied. 

Axio*~ 3: I~depende.nce of irrelevant alternatives 

During each negotiation between two coalitions, exclusion from the prospect 
space of possible payoffs other than the solution and the disagreement t)oint 
(the utilities that  the players get in case they cannot reach an agreement) 
does not affect the solution. 

Justification: This axiom means that  the solution, which by axiom 2 must 
lie on the upper boundary of the prospect space, only depends on the shape of 
this boundary in its neighbourhood, and not on distant points. This expresses 
a structure property of the bargaining process : during the negotiations, the set 
of the alternatives likely to be selected progressively reduces, so that at the end 
of the discussion, the solution must only compete with very close points, and not 
with propositions already eliminated during the prior stages of the bargaining. 

Axiom 4: Partial symmetry 

If, during a negotiation between two disjoint groups, the prospect space is 
symmetrical, so must be the treaty signed. 

~) Those  b e h a v i o u r a l  h y p o t h e s e s  are n o t  ve ry  r e s t r i c t ive  since t h e  ax iom considers  
all t h e  g roup ing  possibi l i t ies .  For  ins tance ,  we p r o h i b i t  t he  s imu l t aneous  merg ing  of 
t h r e e  d i s jo in t  g roups  Ca, Cb, Cc B u t  t he  so lu t ion  will in p a r t i c u l a r  s t u d y  t he  g roup ing  
of Ca and  Co a t  one s tep  and  the  a d j u n c t i o n  of C,  d u r i n g  the  nex t  step.  The  two o t h e r  
cases (Ca and  C,  uni fy  f i rs t  t h e n  a b s o r b  C~, and  Cb and  Ce group  and  join Ca one s tep  
later)  will. also be considered.  I n  t he  same  fashion,  some schemes  of coa l i tmn  fo rming  
where  one p l aye r  re lna ins  i so la ted  ml t i l  t he  f inal  step, will i n t e r v e n e  in the  final t r ea ty .  
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Justification : The classical symmetry axiom is weakened, since we only en- 
force it for the sets of two players or groups of players. I t  implies that  the af- 
finities between the players do not affect the discussions between two coalitions, 
which consist of a tough haggling between two groups trying to take as much 
advantage as they can from the situation. The affinities will intervene in the 
kind of coalitions that tend to form, in the propensity that  some players have to 
start discussing with a particular group instead of another. In other words, 
the affinities influence tile choice of the groups that  enter negotiation, but not 
their negotiation itself. For example, the recent French political events demon- 
strate that  the fact that  the Communists and the Socialists have a strong 
affinity does not incite them to make concessions to each other: coalition 
forming and bargaining are two different things. 

Therefore, we shall separate the computation of the value of a game in two 
distinct parts : 

1. tile coalition forming procedure, which consists of the determination of 

a set of probabilities W = { Wc, u K~ V C c N, V C a c C, C a = C \Ca, C~t # ¢, 
Ca # ¢}, interpreted as "weights associated to orders of formation of the 

--"5, coalitions C = Ca U C~ ; 
2. the bargaining procedure, which attributes a payoff to each player, given 

the set W. 

3'  THE BARGAINING PROCEDURE:  EXISTENCE AND UNICITY THEOREM 

Let us denote ~(C) = ~(x, [ i ~ C) the treaty signed by a coalition C 

and U, (C) = U, [y, (C)J the utility i ~ C derives from this signature. 

Suppose that, at a given moment of the negotiation, a first group Ca of 
players has reached an agreement and signed a treaty p(Ca), allowing to each 
of its members an utility U,(Ca), while another group Cb (such that  Ca I'l Cb = 
¢) has concluded a treaty y(Cb), giving to each j a C~ an utility Uj(C~). Both 

groups meet in order to conclude a global t reaty p(Ca U Cb) (the symbol U" has 

a slightly different meaning than the usual reunion sign. Ca U Cb means "Ca 
joins Cd'. The • is placed to recall that  the result not only depends on the set 
Ca U Cb, but also on the manner in which this coalition was formed, i.e. on 

C,t and Cb). If both coalitions cannot agree on a treaty ~(Ca UCb), they 
necessarily return to the starting point of the negotiation, awarding to each 
player U,(Ca) (if i ~ Ca) or Uj(Cb) ( i f j  ~ Cb). For this reason, this point is called 
the disagreement point. 

Lermna : 

There exists one and only one t reaty satisfying the axioms. It  can be obtained 
by maximizing the expression 
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(3) n [u~(c~ uc~)  - UdCa)]. n [ u j ( c~  u c~) - ~:(cb)], 
IEC a t ~ C b 

providing each term of the product  is non-negative. 

P r o o f  

The demonstrat ion is a slight generalization of Nash's result [6]. Denote I tile 
number  of players of C~ (o < I < n) and L the cardinal i ty  of Cb (o < L 

n - I ) .  Number  the players in such a way tha t  the members of Ca occupy the 
indices I to I and the players of Cb the indices I +  J to L. The vector 

Od = [gl(Ca) . . . . .  U i ( C a )  , U i + i ( C b )  . . . . .  a i + g ( C b )  ] 

is the disagreement point of this negotiation. Let  + be the maximum of (3). 
is unique because of the convexi ty of ~¢° g c,. 
Suppose tha t  + is distinct from Oa (otherwise the problem is trivial since the 

prospect space consists of a single point). We can subject all the players' 
ut i l i ty functions to a linear t ransformation ,~, by changing their origins so as 
to carry 0 e  to ~7) = (o . . . . .  o) and their units to carry + to ~" = (l . . . .  , 1). Let 
~b° v Cb = "r(~C~ u c~) be the image of ~,c, u c~ by ~r. ~,  e Cb is convex. 4" is the 
unique point of tangency between ~b, u c'~ and the hyperboloid whose equation 
is 

I + L  

H U ~ =  I. 
i ' l  

~c. u c~ is even completely under  the hyperplane H,  of equation 
I + L  

U~ = I + L .  
i , . t  

y ' :  I ~ L  

In fact, if a point P e ~c'o u c~ was such tha t  U, > I + L, it would be 
l 1 

the same for any  point of the segment PC: by convexity.  Some of the points of 
I + L  

this segment would be inside the hyperboloid, with thus [I U, > 1, con- 
I + L  t 1 

t radict ing the fact tha t  d? ~ maximizes 1-I Ui. 
t 1 

Under Hi  we can construct a half hypersphere ~ around +~ with a radius 
sufficiently large as to include E" Consider first the game whose prospect . . C ~  U Cb" 

space is l imited by ~ and Hi. This game is symmetrical ,  and += is its solution 
by axioms 2 and 4- Axiom 3 allows us to withdraw all the points of ~ \ ~ °  u c~ 
without  al_tering the solution. Final ly  through axiom I we can perform the 
inverse t ransformat ion 

- ~T 

~c.  u c~ = ~ ~ (~co u c'~) 

and assert tha t  + = ,r -~ (t~ ~) is the optimal point. 
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Note that ,  as announced in the discussion of axiom 4, the negotiation 
between two groups of players is a "pure"  bargaining, i.e. not influenced by 
affinities between players. 

Theorem z 

To each set of probabilities W can be associated one and only one t rea ty  
.p(N) satisfying all the axioms. I t  can be obtained by the recursion. 

y,({,:}) = .,-, 

Io 
y,(N) = S w c °  0 ez y,(C~ 0 ~ )  

C a C  N 

ca.$ 

i e C  t 
o =  I C I  

V C z - t  < c  < n  

U~ = c\c~ 
i c e  

i =  l . . . . .  n. Ca = NICa, 

(4) 

where, at  each step, E Wc, v c ,  - 1 a n d W c ,  uc= > o, andyi(CaUC-~)  is 
C a (  6' 

obtained by maximizing (3), with the disagreement point 

U~(C,~) i e C~ 

c/c~) j ~ U~. 

Proof  

1. Existence: I t  is sufficient to verify that  2(N) satisfies all the axioms. 
This proof is s traightforward.  

2. Suppose that ,  for a given set {Wc° 0 ~},  there exist two different opti- 
mal solutions 2(N)  and 9'(N),  i.e. there exists at  least an i such tha t  
y,(N) ~ 34(N). 

We shall first show tha t  the two solutions must  differ in at  least a partial  

treaty.  In other words, it is iml)ossible tha t  y,(C~, 0 ~ )  = y;(C a ~" C--~) for 
all C~ c N and that  yi(N) ¢ y',(N). (4) expresses tha t  the partial  treaties 

y,(Ca U Ca) are summarized by a weighted ari thmetic mean. One could of 
course think of other parameters,  like the geometric or the quadrat ic  mean for 
instance, but the only parameter  satisfying the admissibility condition is the 
weighted ari thmetic mean 

r a C N  
L a @ ~  
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We shall now show that  the admissibility condition also implies that 
ld~c°0c. - W ~ . 0 N  Vi" It  is sufficient to prove it for n = 3 .  In this case, 
there are only three ways to form the grand coalition, which we shall note to 
simplify 

A = { 1 2 } U { 3  } 

= { ' 3 } 0 ( ~ }  

C = ( ~ 3 } U ( ~ } .  

Thus yl(N) = I,V~ y~(A) + I.V~ yl(B) + W~. y~(C) 

y2(N) = W~ y2(A) + I,V~ y2(B) + W~ y2(C) 

y3(g) = W~ y3(A) + W~ y3(B) + W~ y~(C). 

(1) allows us to replace y~(A) by z - y2(A) - ys(A), with similar relations 

for yl(B) and y~(C). We obtain 

y~(n) = W~ [z-  y2(A) - y3(A)] + l,V~Ez- y2(B) - y3(B)] + W~[z-  y2(C) - 

- y~(c)] 
y2(n) = I,V~ y2(A) + W~ y2(B) + I,V~ y2(C) 

y~(N) = W~ y~(A) + W~ y~(B) + W~ y~(C). 

Summing, and using (1), we get 

z = y2(A)(W~-I,V~) + ys(A)(I ,V~-W~) + y2 (B) (W~-W~)  + 

+ ya (B) (W~ -W~ )  + y2(C)(W~-I'VL) + ya(C)(W~-WL)  + 

+ w ~  + WLz + w ~ .  

Since the W's are the coefficients of a weighted arithmetic mean, 

W ~ + W ~ + W ~ .  = 1, a n d t h e s u m  

yz(A) (W~ - W~) + y2(B) (W~- W~) + y2(C) (14:~- W~) 

+ y3 (A) (W~-  l,V~)+ ya(B)(W~-I,V~) + y3(C)(W~,-I,V~) 

must be identically equal to zero, V y2 and ya. Thus W t = W ~ V i. 

So there exists a coalition C a c N such that y~(C a U~a) ~ Y~(Ca £rC--~). 
Since the solution of the maximization of (3) is unique, this result can only be 
explained by a difference of the disagreement points y¢(Ca) and y~(Ca). Sup- 
pose U, [y,(Ca) ~ < U¢ [y~(Ca)]. There exists a player j ~ C a such that  Uj [yj(Ca) ~ 
> U: lye(Ca) t, for otherwise p(Ca) would not be Pareto-optimal in the subgame 

Ice, ~(c,~), ~cJ. 
The same argument can be repeated iteratively for the coalition Ca" there 

exists a C b c C a such that  U~ [yt(Cb)] < U~ [y~(Cb) ]. j must also belong to C b 
t 

(or another player j '  such that  Uj, [yj, (Co) ~ > U~, [yj, (Cb)]), in fact, if j were 
a member of CalC ~, .y(Cb) would not be Pareto-optimal in [C b, v(C~), ~c~ as 

' and axiom 2 would be violated. 2'(Ca/Cb) in [C\aC b, v(C;), ~c. ~c~ 
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So we can present a finite succession of coalitions 

N~ C ~ 3 C ~  . . .  ~ C / ~  . . .  ~ CF 

such that, for all f < F: 

¢,j ~C:; 
/ u, b,dc:)] < [ydc:)l; 

v'j Eyj (c:)l > G: Eye(C:)]. 
The last term CF can only be the coalition formed by players i and j (other- 

wise we could have continued tile process). There exists thus two treaties 
f(CF) and 2'(CF), Pareto-optimal in [{ij}, v(C), ~{@' i.e. such that  

max {Ut[y~({i, j})] - U~[y~({i})l} • {Us[yj({i,j})] - Uj [yj({j})]} 

= max {U, [y;({i,j})] - U, b4({i})]} "{Uj [yj({i,j})] - Uj [Yj({J})I}. 

This contradicts the lemma, applied to the coalitions Ca = {i} and C~ = {j}. 
The solution is constructed by induction on the number of players of the 

coalitions: one must successively compute the value of all the two-player 
coalitions, then all the three-player sets . . . .  to end up finally with the grand 
coalition. The optimal treaty for a coalition C of c players is obtained by 
considering the set of its 2c-*- I (strict) sub-coalitions C~ for which there 
already exists a computed sub-treaty. For each Ca, one computes by (3) a 

treaty .9[Ca Lr (CICa)]. The utility granted to a player never diminishes when 
one or more partners are added to the coalition: (3) always provides a 

Us(Ca U c-~) greater or equal than Us(Ca). The higher his disagreement point, 
the higher the utility awarded to a player. The procedure provides 2 c-~-  1 
(generally) different partial treaties, which are summed up by a weighted 
arithmetic mean. The fact that  W~, 0 ~ does not depend on i allows us to 
interpret those weights as "probabilities associated to orders of formation of 
the coalitions". 

To sum up, the value concept takes into consideration all the possible 
orders of formation of the grand coalition, weighted by their respective prob- 
abilities; each player allies with other players or sets of players so that  after 
( ~ -  1) junctions N is formed and a treaty concluded. All the grouping pos- 
sibilities are considered, weighted, and account in the final solution. 

For ,n= 2, the value coincides with the unweighted value [6], the Nash 
solution [8] and the Shapley value [121. 

For 'n=3,  the value weights three different partial treaties 5[{12} U{3}], 

.9[{13} U{2}] and .9[{1} U {23} ]. Since the disagreement points are computed 
on the basis of coalitions of one or two persons, the partial treaties are the same 
as in the symmetrical value. The solution differs generally from the Shapley 
value. 
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For n > 3, however, the generalization is more than  just "adding weights" 
to the partial  treaties, since the disagreement points already take the affinities 
into account and favour the close partners. 

Nothing was said u I) to now as far as the determinat ion of the weights 
Wc= 0 b; is concerned. This will be the subject of the next  section. 

4" FORMALIZATION OF THE A F F I N I T Y  C ONC EPT:  THE COALITION I:ORMING 

P R O C E D U R E  

We suppose that  the affinity between two players can be expressed by a non- 
negative number,  d~j, representing the "dis tance"  (in a broad sense) between 
i and j :  the larger tile distance, the lesser the affinity between both players. 
dtj = coo means tha t  the an t ipa thy  1)etween them is so strong tha t  they  will 
never join together a sub-coalition 2). On the other hand, d~j = o implies tha t  
the coalition {i, j} will immediately form. This is a relatively uninteresting 
case, since it amounts  to the same thing to consider {i, j} as a single player. I t  
is therefore not restrictive to suppose that  the (symmetrical) matr ix  of the 
distances (the figures of the diagonal are irrelevant) does not contain more 
than one zero in each row or colunm (the reunion of three players in a single 
step is indeed not allowed, al though the model could be easily adapted to this 
case, by introducing as a first stage the merging of the three players with 
probabil i ty one). 

Define the "dis tance"  between two coalitions C~t and Cb by 

.X £ d,j 
t6Ca 16Cb 

dco,c~ = I C~ I I Co I" 

The value of all the two-player coalitions can easily be computed by (3). 
Suppose, by induction, tha t  we have already computed the solution for all the 
sets containing at most 0~-  l) players. I t  only remains to calculate the value 
of the grand coalition. 

A coalition configuration of order m (shortly a m-configuration) is a vector 

C~VIC~ = ~ a-Cb 
m 

C m =  (C1 . . . . .  C,,,) U C~ = N 
a . t  

C , , # ~  g a, 

-0) H o w e v e r ,  t h e  h y p o t h e s e s  of  t h e  mo( le l  i m p l y  t h a t  t h e y  will be  fo rced  to  c o o p e r a t e  
a t  t h e  f ina l  s t ep ,  s i n c e  t h e  gTand  c o a h t i o n  is b o u n d  to  e v e n t u a l l y  f o r m .  T h i s  is a con -  
s e q u e n c e  of  t h e  f a c t  t h a t  we r e q u i r e d  t h e  v a l u e  of a n - p e r s o n  g a m e ,  a v a l u e  t h a t  is u s e l e s s  
if we k n o w  in a d v a n c e  t h a t  A r will n e v e r  fo rm.  B u t ,  a s  o u r  t h e o r y  a lso  p r o v i d e s  t h e  
v a l u e  of all  t h e  ( n - - l ) - p e r s o n  s u b g a m e s ,  a s  well  a s  t h e  p r o b a b i l i t i e s  of  f o r m a t i o n  of 
e a c h  s u b c o a l i t l o n ,  no  m o d t f t c a t i o n  is r e q u i r e d  w h e n  o n e  (or more )  o f  t h e  d i s t a n c e s  is 
i n f in i t e .  
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indicat ing the coalitions formed af ter  step (n--m).  During a negotiat ion,  m 
successively takes all the integer  values, decreasing from n to ~. At the be- 
ginning, n = m, and C n = ({,}, {2} . . . . .  {n}). After  the final junction,  m =  1 and 
C t =  ({1 . . .  n}). For  I < m < n there exists several different coalition con- 
figurations, denoted by C~ ~, C~ ~ . . . . .  Let  M m be the set of all the m-config- 
urations.  We shall denote  i ~ j  if i and j belong to the same coalition of C m, 
i @ j if they  do not. 

Each  m-configuration C m generates a number  of descendants  C "z-t obta ined  
by  joining two coalitions of C% Let  Dt  be the set of all the descendants  of C m. 
Of course, two different m-configurat ions can produce the same descendant .  
Le t  I,Vc,, be the probabi l i ty  tha t  C m forms during the procedure,  and I, Vc=-, t c ~ 
the (conditional) probabi l i ty  tha t  C m generates C m-*. 

Natura l ly ,  this probabi l i ty  is zero if C m-~ cannot  be a desceadant  of C m. 
\Ve must  associate to each distance mat r ix  D a set W of probabili t ies 

I'Ve, O c-~, defined V C o N ,  V C~ c C  ~ - C a  = C\Ca, C a # Q ,  Ca#q~. 

D ={do} (Woo0<} 
Of course not  any  rule R that  associates a set W to a mat r ix  D is suitable for 

our  problem. A rule will be said coherent if it satisfies the following conditions. 

Condit ion I (Rules o f  probabil i ty  calculus) 

1.a. I,Ve,,, >~ o V C m 

1.b. ~ Wo,,  = 1 m =  l . . . . .  n 
M m 

1.c. Z W c ~ - , t c  . . . .  1 V C  m 
D 1 

1.d. W c . . . . .  X W e , ..... { c,* " Wc ~  V C m-1 
M m  

Condit ion 2 (Relation between aff ini t ies and probabilities) 

2.a. Wc, .  is a non-increasing function of d o 

Wc, ,  is a non-decreasing funct ion of d~ 

2.b. lim W c . . . .  l i ~ j  
gO---+O 

2.c. lira W c ~  = o V C m, i,,~j 

rl°~ Vm D-- 1 < m < n 

g C"~ D- i ~ j  

vc,,>i j 

Condit ion 3 (Possible s y m m e t r y  o f  two players)  

3. If  djt = d u V l, then Wc~ = Wc~, where C~ ~ is obta ined  from C.~' by 

commut ing  i and j.  
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Condi t ion 4 (Relations between successive configurations) 

. If  W c ~  > l'Vc~, then  l ,Vc~-, > Wc~, - ,  V m ,  if czm -~ is a descendant  

of C~ ~ and if -yCm-~ is the descendant  of C~ ~ obta ined through the same 
adjunct ion.  

Condit ion 5 (Relalio~as between configuralion probabili t ies and weights) 

5. Woo ir W, = I'Ve', V C a, where C ~ = (Ca, Ca). 

Condilior~ 6 (Invaria~,ce wi th  respect to a s imi lar i ty )  

6, W is not  affected by  a mult ipl icat ion of the distances by a positive 
cons tant :  if d;  = kd 0 V i i ,  W ' =  W.  

Note  tha t  any  coherent  rule determines a set lV whose cardinal i ty  exceeds 
by  far (for n >  2) the number  of distances. I t  can be shown tha t  D ]  = 

1) 
- -  - l a n d ] W I  = Z (~) (2 ' - '  - 2). 

2 ,_, 

We obtain the following numbers  for 3 ~< n <- to. 

N u m b e r  of N u m b e r  of 
*z d i s t a n c e s  p r oba b i l i t i e s  

3 2 2 

4 5 14 
5 9 64 
6 14 244 
7 20 846 
8 27 2,778 
9 35 8,828 

lo 44 27,488 

There  exists few coherent  rules. In  the sequel, we shall use the following 

1 

d 2 
Ca, Cb 

I417C~-~ I C = = 

d 2 
,. C¢, C~ 

rule 

w he r e C  m-~ = (C~, . . ., Ca U Cb, . . ., Cm) is the  d e s c e n d a n t  of C m = (Ct, . . . ,  
Ca . . . .  , Ct, . . . .  , Cr,). We thus suppose the a t t rac t ion  between two coalitions 
inversely propor t ional  to the square of their  distance. 
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5" RESOLUTION SCHEME OF ALL THREE-PERSON GAMES 

1. Suppose three players, 1, 2 and 3, of initial utilities Ux ({1}), U2 ({2}) and 
U~ ({3}), and of affinities defined by the set (d~,o, d~3, d2a). For the sake of 
simplicity, we shall in the sequel omit the braces, e.g. write 12 instead of 
{ 1 2 } .  

2. The maximizat ion of the products  

W~ 0 2 ) -  0"~ (1)~ • W~ ( 1 2 ) -  U~ (2)] 
Icr~ (13) - 0"~ (~)1 • W ~  (~3) - 0"~ (3)~ 
W~ (23) - ~ (2)1 • W~ ( 2 3 ) -  ~ (3)J 

provides the treaties 

:~(12) = [y~ (i2) ,  y~ (12)1 

.9(23) = [y2 (23), y~ (23)J. 

3- Grand coalition 

m Configurat ion Probabi l i ty  

3 (1 ,2 ,3)  

2 (12, 3) t'V~,3 = A/d~, 
1 

A ' (13, 2) I'V13,2 = / dx~  where A = 
l 1 1 - -  + +- -~-  (,,  23) W,,~3 = A/at ,  d;~ 7~ d,, 

m Configurat ion Probabi l i ty  T rea ty  Obta ined  by maximiz ing  

1 (t23) I'V12ba = W1~,a .9(12 U3) 

l,V~a/,2 = W13,2 .5(13 U2) 

[Ul(123)--Ul(12)]  . [U2(123)--U2(12)] . 
[ U3(, 23 ) - -  U3(3)] 

[U1( ,23) - -  Ul(13)] • [U2(123)--  U~(2)] 
[U3(123)-- U,(13)] 

[Ul(123)--r . r , ( , )]  . [U2(123)--U~(23)] . 
[U~( , 2 3 ) - -  8,(23)] 

Example I The constant-sum three-person game. 

The characteristic function of this game is 

'v(~) = V ( I )  = v(2)  = v(3)  = o 

v(12) = v(13) = v(23) = v(123) = 1. 
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S" 

Uti l i t ies  

1. In i t i a l  ut i l i t ies  ( .o, .o, .o 

2. 2 -p l aye r  coa l i t ions  

(~ U 2) ( .5, .5, .o 

(l U 3) ( .5, .o, .5 

(2 U 3) ( .o,  .5,  .5 

3. G r a n d  coal i t ion.  D i s t a n c e s :  dr ,  = 1, d 1 3  = 2, d23 = 2.5 

F o r l n a t m n  of N 

(12U3) 
(13/.f2) 
(l ~'23) 

P robab i l i t y  

l'ITl2tr:l = I'Vi2,.a = .7092 (.5, .5, .o ) 
1'111~02 = I'V13,., = '1773 (.5, .o, -5 ) 
1'V~023 = I,V~,23 = . 1135 (.o, .5, .5 ) 

Value (.4433, .4113, .1454) 

v(12) = v0B)  = v 0 2 3 )  = ~. 

Using  the  s a m e  d i s t ances  as in e x a m p l e  1, we o b t a i n  

F o r m a t i o n  of N P r o b a b i h t y  

(12U3) 
(1302) 
( 1 U23) 

U t l h t y  

I'V1@3 = .7o92 (.5, .5, .o ) 
I'Vi@~ = .z773 ( 5, .0, .5 ) 
I'Vt/b.2a = .1135 (.3333, '3333, .3333) 

Value  ( .48 t l ,  .3924 , .1265} 

W e  not ice  t h a t  1 a n d  2 t a k e  a big a d v a n t a g e  of the i r  v ic in i ty .  Besides ,  the  
so lu t ion  conve rges  t o w a r d s  (.5, .5, .o) as  d12 a p p r o a c h e s  o. 1 becomes  a l i t t le  
m o r e  t h a n  2 because  he  is s l igh t ly  n e a r e r  of 3. 

Example 2. A pa i r  of shoes.  

"l  owns  a left  shoe. 2 a n d  3 are  each  in possess ion  of a r igh t  shoe. T h e  pa i r  can  
be  sold for  I uni t .  H o w  m u c h  is I en t i t l ed  to ?" This  e x e m p l e  is f a m o u s  in g a m e  
t h e o r y  because  i m p o r t a n t  concep t s  l ike the  core,  the  b a r g a i n i n g  set,  the  kerne l  
and  the  nuc leo lus  c o m p l e t e l y  fail to c a t ch  the  t h r e a t  poss ibi l i t ies  of coa l i t ion  
(23) a n d  lead  to the  p a r a d o x i c a l  a l l o t m e n t  (1,o,o). Moreover ,  the  so lu t ion  is the  
s a m e  if t he re  are  999 left  shoes a n d  1,ooo r igh t  shoes :  the  s i tua t ion  b e c o m e s  
n e a r l y  s y m m e t r i c a l  a n d  the  owner s  of r igh t  shoes  still get  no th ing .  T h e  S h a p i e y  
va lue ,  (~, ~, ~), is c e r t a i n l y  m o r e  in tu i t ive ,  a l t h o u g h  it s eems  a b i t  too  gene rous  
t o w a r d s  1. Our  u n w e i g h t e d  va lue  is (~, ~s, '~ ~). 

T h e  c h a r a c t e r i s t i c  func t ion  is 

v(¢) = v(I)  = v(2) = v(3) = v(23) = o 
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One notices tha t  2 makes  the  most  out of his fr iendship with ~. The  solution 
converges  towards  (.5, -5, o) as all2 ~ o. The  share of 1, a lways  included in the 
in terval  [1/3, 1/2], diminishes when 2 and  3 feel more  inclined to coalize before 
enter ing discussion with him. For  the  set  (&o = 2, d,a = 2.5, &a = I), for 

instance,  the  solution is (.38 1 8, .3252, .293O ). I t  tends  to ( t/3, t/3, 1/3) as d2a -+  o. 

Example 3. The re insurance model.  

As Gerber  [3], [4~ has shown tha t  exponent ia l  u t i l i ty  funct ions possess ve ry  
desirable proper t ies  for insurers, we shall suppose  t ha t  

I 
Uj(X) = ~j  ( 1 - -  e-a, '~) j =  1 . . . .  , ~,. 

Solving equat ions  (2), t ak ing  into account  the admiss ibi l i ty  condi t ion (1'), 
leads to the  solution 

yj(e) = qjz+yj(o), 
where 

and  

1 

a/ 
q J - -  

n £1 
a~ 

It..l 

- --  Log • yj(o) = Sj qj S, + a, kj/  

This is a famil iar  quo ta -share  t rea ty ,  with quotas  qj and  s ide -paymen t s  

yj(o). As qj does not  depend on tile cons tan ts  hi, the bargain ing procedure  will 
only have  to de te rmine  the a m o u n t  of the compensa t ions  yj(o). 

Suppose t h a t  the three companies  only differ by  their  a t t i t ude  towards  risk : 
al  = .3, ao. = .6, aa = .1, while the other  pa r ame te r s  are equal:  the reserves 
equal  to lO, and the to ta l  claim am oun t s  are F-dis t r ibuted ,  with a mean  1.2 
and  a var iance  1.25. 

1. 

The initial  utilities are then  

Ul(x,) = 3.0778 
U2(x2) = 1.6539 
Ua(x~) = 5.8242. 

The t reat ies  arising f rom the merging  of two companies  are 

{I} U{2} '  Quotas  q~ = 2/3 Side p a y m e n t  yl(o) = - o . 6 7 7 8  

q2 = l/3 
Util i t ies af ter  re insurance Ui [..9(12)1 = 3.1o14 

U-. [..9(12)] = 1.656o; 

I4 
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{1} 8(3}: 2. Quotas qt = 1/4 Side p a y m e n t  y~(o) = o.7111 

qa = 3/4 
Utilities af ter  reinsurance Ui [.?(13)1 = 3.0856 

Us[.?(~3)j = 5.8676; 

3. {2} ~r{3 }" Quotas  q2 = .1429 S idcpaymen ty2 (o )  = - 1.218o 
q3 = .8571 

Utilities af ter  reinsurance U~ [2(23)] = 1.656o 

Us[lP(23)I = 5.9599. 

Adding the th i rd  player  leads to quotas  qt = 2/9, q2 = 1/9, q3 = 2/3. 3, 
being the least risk averse, takes advantage  of this to a t t rac t  a large propor t ion  
of its par tners '  portfolios. As a compensat ion for its increased liabilities, it will 
na tura l ly  demand  a high fixed sum. We obtain the following side paymen t s  

and utilities. 

Side paymen t s  Utilit ies 

1. {12} U{3} y~(o) = .2127 Ut(~p) = 3.1o65 

y2(o) = l.O844 U2(.9) = 1.6565 
ya(o) = - 1.2971 U3(i)  = 5.8565 

2. {13} ~r{2} yl(o) = .2882 UlO~) = 3.1o13 
y2(o) = 1.2576 U2(.9) = 1.6554 
y3(o) = - 1.5458 Us(9) = 5-9583 

3. {1} Lr(23} yl(o) = .5356 U i ~ )  = 3.o834 
y2(o) = 1.o89o U2(2) = 1.6565 

y~(o) = - 1.6264 Us( i )  = 5.9897. 

suppose tha t  1 and 3 are the closest friends, i.e. 
d23 = 2.5), the final t r e a ty  is 

y~(o) = .3o29 U~(..9) 
y2(o) = 1.2o78 U2(2) 
ya(o) = - 1.51o7 Ua(20) 

The last company  to enter  the bargaining has a solid disadvantage.  
Wi th  the set of distances D1 = (d12 = 1, &s = 2, d23 = 2.5), the final solution is 

yl(o) = .2627 U~(_9) = 3.1o31 
y2(o) = 1.1156 U2~)  = 1.6565 

y3(o) = - 1.3783 U3~)  = 5.8897 

1 and 2 take advan tage  of their  vicini ty  to pay  as less as possible to 3. If  we 
tha t  Do, = ( d n = 2 ,  d i s = l ,  

= 3.1oo3 

= 1.6557 
= 5.9438. 

As the initial utilities correspond to side paymen t s  of (yl(o) = .6o96, 
y2(o) = 1.4659, y a ( o ) =  - 1 . 2 2 o l )  the final solution achieves the same 
ut i l i ty  increase as a gain in capital  of (.3469, .35o3, .1582 ) for the set D1, and of 

(.3o67, .2581, .29o6 ) for D2. 
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6. RESOLUTION SClIEME OF ALL FOUR-PERSON GAMES 

I. Treaties for all the sub-sets of two or three players: see § 5. 
2. Trea ty  for the grand coalition. Distances (&2, &, ,  &a, d2a, d,~, d,~). 
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m C o n f i g u r a t i o n  P r o b a b i l i t y  

( 1 , 2 , 3 , 4 )  
(t2,  3, 4) W,a,~,4 = A/d~, 
(~3, 2, 4) l, Vta,=.4 = A/at, 

(~4, 2, 3) W,4,~,a = A/dr, 

( ' ,  23, 4) W,.,a.4 = AidS, 
( ' .  24. 3) I'V,.=a.a = Aid',, 

( , .  2, 34) I,Vt,o.,s~ = A/d], 

w i t h  A = 

1 

1 1 l 1 1 l 

dh + ~  + dh + ~ + + -  - -  - -  d , ,  ~ dh 

m P a r e n t  D e s c e n d a n t  P r o b a b i l i t y  

(12. 3 .4 )  (123.4)  I'V~=3.41~2.a.4 = B/d~t.a wi th  B = 
(124, 3) Wx~4,a,1...,a,a=l~/d~,,, ( I I l )  - t  
(12. 34) Wxa.ad12.a.* = l?/d~, d~..---'~ + dlt..----~ + da';i~ 

(13. 2.4) (,23.4) w,,,.,l,~.=., = c/d].., w i th  c = 

( ' 34 ,  2) Wt34.~lla.~,4 = / d  . . . .  I 1 

d,,,, ~ d,, (13, 24) W~a,2,tl~a,:,4 = C/d~, ~ + + 
(14, 2, 3) (124, 3) l'Vla4.alt4.a.3 = DidO,,. w i t h  D = 

( , 3 4 . 2 )  I'V,~,~,,,.~.~ = D / d : , , .  . ( l_;i - -  + t + 7¢-t)- '  
( ' 4 . 2 3 )  l.Vm:alt4.~., = D/dE. d .... ~ d.. 

( ' .  23. 4) (123. 4) I'Vlza.4ll.:~.4 = Elder.8 w i t h  12 = 

( ' , 2 3 4 )  Wt,aa,],.23., = E/d~., ( , "~--- + 1 + "5i-1)-' 
( '4 ,  23) W,4,~.a[,,,a,4 = E/d',, d,,,, ~c,,,, dr, 

( ' ,  24, 3) ( ' 24 ,  3) W ~ , ~ l , . ~ , a  = F/dt~.,, w i t h  .F = 

( , ,  234 ) I , V ,  234[1 24 3 = / d t~ , ,  l l 1 

(13, 24) lVt~.=alx.=4.~ = F/d~t~ ~ + - -  + 

( 1 ,  2, 34) (I ,  234) Wa.=a4lt.a,a4 = G/d,".~, w i t h G  = ( ,)' (134, 2) |~2"~a4,2]1,=,=4 = G/d~,,, 1 + 1 + 
1,34 1,$4 (12, 34) W**,ad,,~,a4 = G/dr, ~ ~ 

'm C o n f i g u r a t i o n  T r e a t y  

wl0.~.4 = A /ah  B/a;,,, + A/dh  C / d k ,  + A/a;,  E / d L ,  = W1=3,~ 
Wl,4,3 = A/dh  B/dh.,  + A/dh  D/d~,,, + A/d,", F/d;,~, = W,=,,~ 
Wta4,, = A/d~ C/d~3., + A/d~, D/d~,., + A/d], G/d,".,, = W~a4., 
Wa.2a4 = A/d]. E/at,., + A/dl,  lr/d',,.~ + A/d], G/d~.,, = [V~.234 
W,,,a4 = A/d], B/d~, + A/d], G/d~, = W,=i~a4 
w,~,=4 = A/a',.. C/all, + AlaL FId~, = W,~>.4 
W,4.,s = A/d~, D/d~, + A/dl~ E/d',, = IV,sO2, 

.;9(, 23 U4) 
y(,24 03) 
Y(,34~2) 
9(1 U234) 
y(12034) 
5(13U24)  
5 (14U23)  
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Coa l i t ion  f o r l n a t i o n  

123 0 4 1"V123,4 

124U3 l'Vlza, a 

t 3 4 0 2  l'Vx~4,z 

1 U234 l,V~,=3a 

12 U34 1'V~2,~4 

t3U24 l,V~3,~ 
14U23 l'l/'la,2a 

Example 4. The homogeneous weighted major i ty  game (3 ; 2, l, 1, 1)h. 

This four-person game, a simplification of the game "Me and my  Aun t "  was 
studied by Owen [9] in his generalization of the Shapley value. The strongest 
player, l, possesses two votes, while each of his opponents has only one. As 
three votes are required to win the game, the only winning coalitions are 

(i) 1 and one, two or all three of his partners,  
(ii) 234. 

The game is however complicated 1)y the fact tha t  players 1 and 2 are 
parents  ; in fact, 1 is 2's aunt.  Since we only want  to s tudy  the influence of this 
relationship, we can set d~2 = 1 and all tile other distances equal to 2. 

W e i g h t  U t i l i t y  

= .2527 (.4722, .3889, .1389, .o ) 

= .2527 (.4722, .3889, o , .1389) 

= .0774 (.4444, .o , 2778, .2778 ) 

= .0774 (.o , .3333, .3333, .3333) 
= .2222 (.5 , .5 , .o , .o } 

= . 0 5 8 8  (.5 , .o .5 .o  ) 

= . o 5 8 8  _(.5 _ , _  .o : z o  : _ 5 _ _ )  

V a l u e  (.443 o, -3334, .11t8 ,  . t t t 8 )  

The solution converges towards (-5 .5 , .o , .o ) 
when dr2 ~ o. Owen's modified version of Shapley's  value tends to (2/3, 1/3, 
o, o, o) in this case (see discussion of § 7). 

7" A F IVE-PERSON GAME 

Example 5. Me and nay Aunt.  

This is the original game introduced by Davis and Maschler, perhaps the most 
celebrated game of the theory (see [2] for an interesting discussion of the game). 
I t  is in fact the homogeneous weighted major i ty  game (4; 3, l, I, 1, 1)n with the 
addition tha t  player 1 (my aunt) and player 2 (me) " in principle" agree to form 
a coalition. 

The Shapley value is 
The kernel, the nucleolus and the 
Nash-Lemaire value agree on a 
division proportional to the weights = 

(.6, .1, .1, .1, .1 ) 

(317, 117, #7, l/7, 117 ) 

(.4286, .1428, .1428, .1428, .t428) 

Most of tile discussions among the game theorists in fact center on the words 
"in principle":  tile problem is phrased in an asymmetr ic  fashion, whereas it is 
symmetr ic  in terms of payoffs to coalitions. One way to capture into the model 
the preferences between l and z is to introduce some external feature, like our 
"affinit ies",  independent ly  of the characteristic function. 
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The computa t ion  of the weighted value, assuming tha t  d12 = 1 and d,j = 2 
V (ij) ~ (12) becomes rather  lengthy. The solution is 

(.4472, .2849, .0893, .o893, .o893) 

and favour the nephew more than  his aunt.  The payoff  vector converges 
towards (.5, .5, .o, .o, .o) when d12--~ o, a division tha t  we feel more intui t ive 
than Owen's limiting value (.75, .25, .o, .o, .o). As a ma t t e r  of fact, we think 
that ,  if 2 knows tha t  his aunt  feels compelled to agree with him and tha t  the 
other players are consequently irrelevant, he should be able to "ex t r ac t "  {- 
from her. If the blood ties are strong enough, no other partnership is thinkable,  
and any threat  of the aunt  to negotiate with somebody else will not  be credible : 
the a symmet ry  between t azld 2 disappears and the equal division seems the 
only fair payoff. 

Remark  tha t  the limit value does not depend on the part icular  choice of the 

rule R. 
Note tha t  the bargaining set for the configuration (12,345) grants  player t a 

payoff  in the interval [.5 ° .75] (it of course does not introduce any consanguini ty 
in the problem). Our value thus stands at one end of this interval (the more 
generous towards the weaker player), Owen's generalization at the other end. 

The different concepts of value a t t empt  to be good predictors of the actual 
outcomes of negotiations. I t  is thus  always interesting to compare the values 
with experimental  data. "Me and nay A u n t "  has been effectively played 12 
times under  the direction of Selten and Schuster [11] (no preference relationship 
was introduced in the experiments). The game ended 8 times with a coalition 
between l and 2, with a payoff to 1 always inferior than  .75. The division 
(.75, .25, .o, .o, .o) appeared twice during bargaining, bu t  the stronger player 
was never able to protect his share and the coalition broke off. The average 
payoff  was .4668 to I, .t333 to the other players, a division tha t  seems con- 
sistent with the predictions of the kernel and our unweighted value. 

The facts tha t :  

(i) the average gain of 1 was well under  the figure predicted by the Shapley 
value ; 

(ii) even without  affinities, t was never able to force a gain of -75, 
natura l ly  corroborates the idea tha t  the Shapley value (or modified value) 

seems to be too generous towards the stronger players, by overlooking the 
threat  possibilities of the weaker players. 

I t  can besides be shown that ,  for n > 2, our value will always award more to 
the weaker players than  Shapley's value. I t  is due to the fact that ,  if one 
accepts Shapley's  axioms, the pivotal player becomes all of his admission 
value, while the axioms of § 2 have the effects by (3) of sharing this quan t i ty  
between the members of the coalition according to their respective strengths. 
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