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ON THE NUMERICAT. EVALUATION OF STOP-LOSS PREMIUMS

F. Covins, M. Vax Wouwe AND M. (GOOVAERTS

A numerical procedure 1s described to evaluate the stop-loss premium i case
the risk process 1s & compound Poisson process. The method is mainly based on
an algorithm of IR. Piessens and M. Branders for the numerical evaluation of
Fourier transforms.

1. INTRODUCTION

Until now a lot of attempts have been made for computing the stop-loss
premium in the case of a compound Poisson process. Some of these procedures
arc exposed in a contribution of BouMAN and EsSCHER (1903). A more recent
procedure was proposed by HALMSTAD (1976). He considers a discrete claim
amount distribution. His method is based on the use of generating functions.
The algorithm performs good results if one is able of determining the largest
claimsize, which is included in the computation of the approximated generating
function.

The numerical procedure, here presented, computes the stop-loss premium
for the compound Poisson process, involving a continous density function
g(x) for the individual claim amounts. In this sensc, it can be considered as
an extension of the procedure proposed by David Halmstad in the discrete risk
theory. The plan of the present paper is as follows: in scction 2 the analytical
steps in transforming the representation of the stop-loss premium are given
and applied to threc different cases. The next section gives a brief discussion
of the numerical procedure. The last section contains some numerical results.

2. ANALYTICAL STEPS

Recently SEAL (1977) described a numerical procedure to invert numcrically
some characteristic functions. In fact he uses a classical trapezoidal quadrature
formula in connection with the also classical cosinus transform, applied on
e-¢2f(x). In fact the following sct of inversion formulae hold

©

(1) d(u) = [ cos (ux)f(x)dx

@

2
(2) flx) = - [ cos (1x)d(2e)du
and, some elementary calculus shows that in case:

(3) fw) = § (v—2) dF(v, 1)
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where F(z, £) denotes the distribution function of the compound Poisson pro-
cess, with cosinus transform gp(1s), f(x) can be cast into the form:

©

2 11— 12
(4) flx) = -- J cos (nx) __CP:-“_(_) daut =0
Pis 1"?
where
(5) op(it) = e MM [ eos WA@Y g (3¢ [ sin (1x)dF4(x)).

]

et us consider next three special cases, namely a sum of exponentials, a
gamma and a Bessel density. Successively the following results can be obtained:

o
.

(©) 1) fx(x) = X awe™™®

(7) fcos (ux)fx(x)dx = Z a.,a.,ﬁ?
— 1

(8) f sin (1x)fx(x)dx = Z a,o, Eﬁ@

v
o

These results can be inserted in the r.h.s. of (5) in order to get an elegant
analytical expression for the Fourier transform ¢ p(u).

(9) 1) fxlx) = e~mw-yT(v).

Again performing an clementary calculation gives:

(10) J cos (ux)fx(x)dx = (_1_;.*;2)\,/2 cos (vArctg )

o

«

(11) J sin (ux)fy(x)dx

[

1
(1 4 u2)vie

sin (vArclg 1)

consequently the r.h.s. of (5) can be cvaluated numerically in a rather casy
manner.

As a last example we consider the Bessel density !
2\v-! e S
(12) i) fx(x) = (E> e ©e 1 (B V) x?®

1 The Bessel density is obtained in the following manner: consider a random variable X
distributed according to a gamma distribution with scale paramcter o« and mean
(p+ £+ 1)/a and take £ as an integer valued random variable with a Poisson distribution
with parameter 2. The compound distribution of X obtained by summing over 4 has the
density ae~1722(xa/n)e/2 I5(2 Varx). Introducing some other parameters gives raise to (12)
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i A LE+e
~ 1 1 X

where [ {x) = > i I:(§+k+ ) (;) denotes a modified Bessel function
Ao

I

1 p:
with E(X) g\ 40

1

~ BZ i
s = e v 2 foen + 5]

Making usce of some of the results appearing in GRADSHTEYN and RyzHik
(1905) onc gets:

J (1) v t AZLS ou— Aroto [ g w
cos (ux)fy(x)ydy = -— e Eru® COS relg | ~- —
) ! (1 4 u2/02)v/2 Y “\0 * 4 02422

(13)

as well as

f‘()f(w ! o e '(At“+52 "
sin (ux)fy(x)dx = -—--- -—-— —-¢ 2wt gin (v Arcle { — e ]
g (1 + 12/62)v/> > \0 4 02402

14)

And once more inserting these results into the r.h.s. of (5) gives raise to an
expression for op(n) which is extremely elegant to compute numerically.

3. THE NUMERICAL PROCEDURE

Recalling (4) the numerical inversion can be reduced to one over a finite interval

1— op(u
f cos (1ex) —?F(——) di a>0

a

in case the remaining contributions resulting from the integration outside
[a, b] can be cstimated with a satisfactory accuracy. But

L3

1= @r(n
I f cos (ux) i:i) du ‘ <
! 7?2

SN

b

consequently it is sufficient to choosc b sufficiently large. On the other hand-

1
< — alat)?.
72

e

i f cos (uz) |~ P20~ A MIEWX?) + ME(X) a’u‘
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Hence it is sufficicnt to choose a sufficiently small in order that

- sin (ax)
¥ ME(X?) + ME(X)?]

represents with the desired accuracy
1—op(u
f cos (1x) LDF() du.
u?

The numerical procedure is based on an algorithm of P1EssENs and BRANDERS
(1975) who gave an adaptive quadrative method for the automatic computa-
tion of integrals with strongly oscillating integrands. The integration of this
method is based on a truncated Chebyshev series approximation. In fact the
algorithm gives an adaptive quadrative method for the automatic computation
of one or both of the integrals:

b b

| sin (wx)f(x)dx and [ cos (wx)f(x)dx

to within a user-specificd absolute tolerance. This excellent algorithm has as
main components

1) a procedure for evaluating
Stz,(w) = [ sin (wx)f(x)dx
1

where Iy is a subinterval of [a, 8];

i) a method for calculating ef,(w), an estimate for the error
| Sp,(w) — [ sin (wx)f(x)dx |.

Iy

The interval [a, 0] is divided into # steps where # is also specified by the
user. The algorithm also gives an estimate of the total error and has also
a feature for detecting round-off errors. Consequently there are two possibili-
ties for the algorithm to give wrong results, namcly in case the number of
steps specified by the user is not large enough, secondly in case round-off
€ITors occur on a too large scale.

However the estimate of the error gives the possibility to decide whether
the desired accuracy is reached. In our examples we have indicated with an
asterisk the results that are not accurate enough, we also have written down
the estimate of the error in order that the reader will be able to check that
even a negative result can be obtained for the stop-loss premium in case the
crror estimate is larger than the absolute value of the final result.

21



TABLE 1: SUM OF EXPONENTIALS WITH PARAMETERS! v 1 3 4 3
Ay 0.6635948 0.3114878 0.02405664 0.0008425574 0.0000182026
oy 3.675472 0.7116063 0.09447445 0.009322980 0.0004965620
\\1“\ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
10 3.4863 3.2346 3.0199 2.8352 2.6745 2.5332 2.4077 2.2954 2.1940 2.1019 2.0179
(0.1E-4) (0.1E-4) (0.1E-4) (0.1E-4) (0.1E-5) (0.1E-5) (0.1E-5) (0.1E-5) (0.1L-5) (0.1E-5) (o 1E-5)
50 10.6928 9.3299 8.2545 7.4153 6.7527 6.2250 5.8001 8.4534 5.1661 4.9241 4.7166
(0.1E-4) (0.1E-4) (0.1E-4) (0.1E-3) (0.1E-4) (0.1E-4) (0.1E-4) (0.1E-4) (0.1E-4) (0.1E-4) (0.1F-4)
100 17.0946 14.42 12.5003 11.1041 10.0641 9.2633 8.6233 8.0934 7.6410 7.2454 6.8935
(0.1E-4) (0.1E-2) (0.1E-4) (0.1E-4) (0.1E-4) (0.1E-q) (0.1E-4) (0o1E-4) (0.1E-4) (01E-4) (o 1E-4)
150 22.5394 18.6348 15.9781 14.0978 12.7062  11.6213 10.7366 9.9912 .3496 8.7g00 8.2963
(0.1E-4) (0.1E-4) (0.1E-3) (0.1E-4) (0.1E-4) {0.1E-4) (0.1E-4) (0.1E-4) (0.1FE-5) (0.1E-35) (0.1E-5)
200 27.4555  22.3693 18.987 16.625 14.867 13.485 12.356 11.413 10.615 9.936 9.356
(0.1E-4) (0.1E-4) (0 1E-3) (0.1E-3) {0.1E-3) (0.1E-3) (0.1E-3) (0.1E-2) (01E-2) (0.aE-3) (0.1E-3)
250 32.00 25.73 21.644 18.79 16.670 15.006 13.664 12.570 11.666 10.916 10.29
(0.1E-2) (0.1E-2) (0.1E-3) (0.1E-1) (0.1E-3) (0.1E-3} (01E-3) (0.1E-3) (0.1E-3) (o.1k-2) (0.1FE-2)

zz€
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TABLE 2! GAMMA WITH PARAMETER Y =2

\t< 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
10 3.0816 2.2494 1.6014 1.1126 0.7548 0.5004 0.3245 0.2060 o.1280 o 0780 0.0467
(0.1E-7) (0.1E-7) (0.1E-7) (0.1E-7) (0.1E-7) (0.1E-7) (0.1E-7) (0.1E-7) (0.1E-7) (0.1E£-7)  (0.1E-7)
50 6.90604  3.15472 1.21819  0.39689  0.10941 0.02566 0.00515 ©0.00089g ©0.00013 ©0.000017 ©0.000002
(0-1E-7)  (0.1E-7) (0.1E-7) (0.1E-7) (0.1E-7) (011E-7) (0.1E-7) (0.1E-7) (0.1E-7) (0.1E-7) (0 1E-7)
100 9.76033 3.01087 0.64113 0.00348 0.00040  0.00066  0.00003  0.000001 0.000001* 0.000002* 0.000017*
(0.1E-7)  (0.1E-2) (0.1E-7) (0.1E-7) (0.1E-7) (0.1E-7) (0.1E-7) (0.1E-7) (0.1E-8)  (0.1E-8) (0.1E-8)
150 11.96605 2.65728 0.32899 0.02232 0.00084  0.000018 0.0000002 —0.0003* 0.000002* 0.0000004 *0.00004 *
(0.1E-7)  (0.1E-7) (0.1E-7) (0.1E-7) (0.1E-7) (0.1E-7) (0a1E-7) (0.1E-1) (0.1E-3) (0.1E-4) (0.1E-2)
TABLE 3: BESSEL WITH PARAMETERS v=2,3=3, 0=2
\z“\ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
10 5.53219  4.72127 3.98049 3.31460 2.72575 2.21351 1.77513  1.40594 1.09990 0.85009 0.64921
(0.1E-35) (0.1E-5) (0.1E-5) (0.1E-5) (0.1E-5) (0.1E-4) (0.1E-6) (0.1E-6) (0.1E-6) (0.1E-6) (0.1E-6)
50 25.09 19.991 15.1 10.8945 7.31074  4.55612  2.62337 1.39119 0.67851 0.30432 0.12564
(0.1E-2) (0.1E-3) (o0.1) (0.1E-6) (0.1E-6) (0.1E-6) (0.1E-6) (0.1E-6) (0.1E-6) (0.1E-6) (o. 1E-6)
100 50.00 39.4531  29.16 19.66130 11.73572 6.03894 2.62637 0.95378 0.28765 0.07200 0.01499
(0.1E-2) (0.1E-4) (0.1E-1) (0.1E-6) (0.1E-6) (0.1E-6) (0.1E-6) (0.1E-6) (0.1E-6) (0.1E-6) (0.1E-6)
150 75.0010  59.082 43.33083 28.39635 15.76430 7.02082  2.41692 0.62524 ©0.12045 0.01 727  0.000853
(0.1E-4) (0.1E-3) (0.1E-6) (0.1E-6) (0.1E-6) (0.1E-6) (0.1E-6) (0.1E-6) (0.1E-6) (0.1E-6) (0.1E-6)
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4. NUMERICAL RESULTS

We will give here the numerical results obtained for the three particular cases
considered in section 2.

et the stop loss point be given by (1 +x) tE(X), then the following results
arc obtained for different values of the time paramcter and for different
values of x. An cstimate of the crror is given in parentheses.
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