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A GAME T H E O R E T I C  L O O K  AT L I F E  I N S U R A N C E  
U N D E R W R I T I N G *  

JEAN LEMAIRE 

Universit6 Libre de Bruxelles 

Tim decision problem o[ acceptance or rejection of life insurance proposals is 
formulated as a ~vo-person non cooperattve game between the insurer and the set 
of the proposers Using the mmtmax criterion or the Bayes criterion, ~t ~s shown 
how the value and the optunal stxateg~es can be computed, and how an optimal se t  
of medina!, mformatmns can be selected and utlhzed 

1. FORMULATION OF THE GAME 

The purpose of this paper,  whose mathemat ica l  level is elementary,  is to 
demonst ra te  how game theory  can help the insurers to formulate  and solve 
some of their underwri t ing problems. The f ramework adopted  here is life 
insurance acceptance,  but  the concepts developed could be apphed  to any 
other  branch.  

The decision problem of acceptance or rejection of life insurance proposals 
can be formulated  as a two-person non cooperat ive game the following way:  
player  1, P~, is the insurer, while player 2, P2, is the set of all the potent ial  
pohcy-hotders.  The game is p layed m a n y  times, m fact each t ime a member  
of P.- fills m a proposal. \Ve suppose that  tlfis person is either perfectly hea l thy  

(and should be accepted) or affected by  a disease which should be detected 

and cause rejection. We shall assume for the moment  tha t  the players possess 
only two strategies each. acceptance and rejection for P~, health or disease 
for P2. To be more realistic we should introduce a third pure s t ra tegy  for P~: 
acceptance of the proposer with a surcharge. To keep the analysis as simple 
as possible we shall delay the introduct ion of surcharges until  sectmn 4. 

Consequently we can define a 2 x 2 payoff  matr ix  for the insurer. 

• P2 healthy ill 
.P~ proposer proposer 

acceptance A C 
rejection B D 

I t  iS evident tha t  the worst outcome for the insurer is to accept  a bad risk. 
In te rpre t ing  the payoffs  as utilities for P1, C should be the lowest figure. 
Clearly D > B:  it is bet ter  for the insurer to reject a bad  risk than a good 
risk. Also A must  be greater than B. One anight argue about  the relative 
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values, A and D, of the good outcomes. We shall suppose in the examples 
and the figures that  D > A, but the analysis does not rely on this assumptmn. 

In order to find the value of the game and the optimal strategy for P~, 
we can apply 
- -  the minimax criterion, or 
- -  the Bayes criterion. 

2. THE MINIMAX CRITERION 

To apply the minimax criterion assimilates P2 to a malevolent opponent 
whose unique goal is to deceive the insurer and to reduce his payoff. This is 
of course an extremely conservative approach, to be used by a pessimistic 
insurer, concerned only by its security level. 

2.1. Value and Optimal Strategies without information 

Since P2's objective is to harm P~, the game becomes a 2 x 2 zero-sum two- 
person game, which can be represented graphicaUy. The vertical axis of fig. 1 
is the payoff to P1. His possible choices are represented by the two straight 
lines. The horizontal axis is P2's choice: he can always present an healthy 
proposer, or a non healthy, or pick any probability mix in between. The use 
of mixed strategies is fully justified here since the game is to be played many 
times. Since P2's payoff is the negative of Pl 's ' ,  his objective is to minimize 
the insurer's maximum gain, the heavy broken line. The ordinate of point M 

Payoff Io 

p~ 

A 

B 

hea l thy  

Fig. i 

i 'x~n hi'Klllh 

D 
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is then the value of the game. The abscissa of M provides the optimal mixed 
strategy of P2 P~'s optimal strategy can be obtained similarly (for more 
details see for instance OWLN (1968, p. 29) ) 

Thus, by adopting a mixed strategy (to accept any risk with a probability 
D - B  

PA = A + D - B - c '  and t °  reject w i t h a p r o b a b i l i t y p n  = I - ¢'A),.P~ can 

A D - B C  
guarantee himself a payoff of v~ = A + D - B - C '  whatever the strategy 

adopted by his opponent. P2's optmml strategy is to present a proportion 
D - C  

PH = A + D - B - C  of good risks. 

2.2. Introduction of Medical Information 

The preceding model is extremely naive (and vv1Lt only be used as reference 
for comparisons) since it does not take into account P, 's  possibility to gather 
some information about the proposer's health, by asking him to fill in an 
health questmnnaire, or by requiring him to undertake a medical examination. 
This information is of course only partially reliable. But, however imperfect, 
it can be used to improve P~'s guaranteed payoff. How can the insurer make 
optimal use of the information lie does have ? It is sufficient for our purposes 
to characterize tile medical information by two parameters : Ps, tile probability 
of successfully noticing a bad risk, and PF, tile false alarm probability of 
detecting a non-existant illness. Let us introduce a third pure strategy for 
P , :  to follow the indications of tile medical information. If tile proposer is not 
healthy, his illness is detected with a probabihty Ps, and remains undetected 
with a probability 1 - -  P S . . P i ' S  expected payoff thus equals 

E = D p s  + C ( 1 - p s ) .  

Smailarly, his payoff m case the proposer is healthy is 

F = ( 1 - - p F ) A  + t~FB. 

Fig. 2 represents a "detector" with a .7 success probability and a .4 false 
alarm probability. 

We notice that, m this case, P1 can guarantee himself a payoff v2 > vl by 
mixing the strategies "to accept" and "to follow the detector's indication". 
Of course, for other values of Ps and PF, tile optimal mixed strategy varies 
and can mix a different set of pnre strategies. The detector can even be so 
imperfect that the line .FE passes below the intersection of B D  and AC; then 
the medical information is so weak that  it is useless. 



4 JEAN LEMAIRE 
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Pl 
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2.3. Optimal Deteclwn System 

f~n heall hy 

Fig. 2 

E~ ao % 

7o % 

A detector is characterized by a pair (Ps, PFF) of probabilities. The under- 
writers can decide to render the standards of acceptation more severe, by 
rejecting more people, thereby incrcasing the success probabihty Ps. Un- 
fortunately, the false alarm probability PF will then increase too. Can gaine 
theory help us to select an optimal detection system ? Must the company 
choose a "nervous" detector, with a high success probability, but also a high 
false alarm rate, or a "pldegmatic" or "slow" system with low probabilities 

Ps and PF ? 
Let us assume for sunplicity that  all the medical information has been 

aggregated mto a single discriminating variable (for instance by using dis- 
crlminant- or regression analysis). The distribution of the discriminatmg 
variable for the healthy population will usually overlap the dastribution for 
the non healthy group. The choice of a particular detector can consist of 
selecting a critical value, any higher observed value leading to rejection, any 
lower value to acceptance (this procedure is optimal if the distributions are 
normal with equal variances Otherwise, tile decision rule can be obtained by 
a hkelilaood ratio method (see appendix or LEE (1971, pp. 2oi-2o3)). 

The shaded zone represents the false alarm probability, the dotted region 
the success probability. Each critical value determines those two probabilities. 
If the critical value is moved to the right, the detector becomes slower. If it 
is moved to the left, it become~ more nervous. The set of all the critical values 
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healthy [ non healthy 

value 
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Fig. 3 
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Fig 4 

defines the efficiency curve of the d i scnminant  variable.  The weaker  the 
dlscriminant power of this variable,  the nearest  to the bissectmg line its 
efficiency line. A perfect  d iscr immant  variable has a t r iangular  efhciency xyz .  

The set of all the detectors  determines a set of values for the game. The 
highest value v* for the insurer is reached when the payoff  line is horizontal .  
This can be roughly seen as follows (for a more rigorous proof see LUCE and 
RAIFFA (1957, pp. 394-396)): the critical value, moving from left to right, 
generates a family of hnes with decreasing slope. If .Pat chooses a de tec tor  with 
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a pos~ttve slope, P= can reduce his payoff  below v* by  always present ing 
hea l thy  proposers. Similarly, ~f the slope is negative, a cont inuous flow of non 
hea l thy  proposers will keep P~'s payoff  below v*. 

~yotl t o  

Pt 

A 

D I 

C 

h , a i r  h~ rmn heulth, 

Fig 5 

The opt imal  detec tor  can be easdy obta ined by  equat ing the payoffs E and F : 

Dps + C ( 1 - p s )  = A ( l - p y )  + BpF. 

Then 

(1) 
D - C  C - A  

PF - B - A  PS + B - A  

defines a s traight  line in fig. 4, whose intersection with the efficiency line 
determines  the opt imum.  

Note  tha t  the opt imal  s t ra tegy  of P~ is a pure s t ra tegy:  to follow the advace 
of the de tec tor ,  the insurer does not  have to throw a coin after  the mecidal 
examinat ion m order to decide if tile proposer is accepted. What  happens is 
tha t  the "noise"  in the observat ion system, however  small, provides the 
necessary randomizat ion  in order  to p reven t  P2 from outguessing the insurer. 

2. 4. The Value of Improving the Detectton System 

A medmal examinat ion  can always be improved" one can introduce an electro- 
cardmgram,  a blood test  . . . .  for each proposer.  But  ~s it wor th  the cost ~ An 
improved  discrimination abil i ty means tha t  tile distr ibutions of fig. 3 are more 
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Fig. 6 
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D 

C 

separated and present less overlap. The characterizing probabilities ibs and PF 
are maproved, and the efficiency line moves away from the bisecting line. 

The intersection of the improved efficiency line with (1) (which is determined 
only by the payoffs and therefore does not change with increased discrimina- 



8 JEAN LEMAIRE 

tion) provides the new optimal detector; the associated value is higher for 
the insurer. If the cost of implementing the new system is less (in utilities) 
than the difference between the two values, it is worthwhile to introduce it. 
The insurer should be willing to pay any amount inferior to the difference of 
the values for the increase in lus discrimination ability. 

2.5. An Example 1 

All the proposers above 55 years of age willing to sign a contract of over 
3 million Belgian Francs in a given company have to pass a complete medical 
examination with electrocardiogram. We have selected 200 male proposers, 
loo rejected because of the electrocardiogram, and loo accepted. This focuses 
the attention on one category of rejection causes: the heart diseases, and 
implicitly supposes that  the electrocardiogram is a perfect discriminator. This 
(not unrealistic) hypothesis being made, we can consider the rejected persons 
to be non healthy. Correspondingly the accepted proposers will form the 
healthy group. We have then noted the following characteristics of each 
proposer: 

x~: overweight or underweight (number of kilograms minus number of 
centimeters minus loo) ; 

x2: number of cigarettes (average daily number); 
m: the presence of sugar 
x4:  or albumine in the urine; 
xs :  the familial antecedents, for the mother, 
xs" and the father of the proposer. 

We then define a variable 

l o if the proposer is healthy 
x0 = 1 otherwise 

and apply a standard selection technique of discriminant analysis in order to 
sort out the variables that  slgnihcantly affect Xo The procedure only retains 
three variables xj, x2 and m, and combines them hnearly into a discriminating 
variable. The value of this variable ~s computed for all the observatmns, and 
tile observed distributions are presented in fig. 8. As was expected, the discrimi- 
nation is quite poor, the distributions strongly overlap. The multiple correla- 
tion between Xo and the set of the explaining variables equals .26. The group 
centroids are respectively .4657 and .5343- 

We then estmaate for each possible crltmal value Ps and PF and plot them 
on fig. lo. 

t This  example  p re sen t s  ve ry  weak  de t ec to r s  a n d  is on ly  i n t r o d u c e d  m order  to  illu- 
s t r a t e  t h e  p r e c e d m g  theory .  
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Fig 8 

S 

Fig 9 

We must  now assign uNhtlcs to the various outcomes. We shall select 
A = 8, B =  4, C = o and D = lo. Then the value of the game without  medical 

information is 5.714, P2 presenting 2/7 of bad usks and P i  accepting 3/7 of 
the proposals. 

Let  us now introduce the medmal reformation and for instance evaluate the 

s t ra tegy tha t  corresponds to a .5 critical value. On fig. lO, we can read ~s = .51 

and PF = 33. Then E = .5] × ]o + . 4 9 x o  = 5-], and F = 3 3 x 4  + 
.67 x 8 = 6.68. The value of this game is 6 121, P2 presenting more bad risks 

(34.1%), PI  mixing the strategies " re jec t"  and "follow detector"  with respect- 
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F i g .  1o 

Fig. 1 1 
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lye probabili t ies .208 and .792 Fig. 11 shows tha t  this s t ra tegy  is too "s low",  
tha t  too m a n y  risks are accepted.  

On the other  hand,  a detec tor  w~th a .4 critical value is too nervous:  too 
many  risks are re jected The  value is 5.975, P2's opt imal  s t ra tegy  is to present  
74.7% of good risks, while Pa should accept 29.7% of the tmle and t rus t  the 
de tec tor  otherwise. 

To find the opt imum,  we read the intersection of the efficiency line with 

equat ion (1), in this case 

5 
~ F  = 2 - - P s  

2 

We find 

PF = .425 

Ps = .63 

with a critical value of .475. Then  

E = lOX.63  + o x . 3 7  = . 4 2 5 x 4  + - 5 7 5 x 8  = 6.3. 

if the insurer adopts  the ptu'e s t ra tegy  of always accept ing the adwce  of the 
medical  information,  he can guarantee  himself a value of 6. 3 irrespective of 

his opponent ' s  s t ra tegy.  
Le t  us now a t t e mp t  to improve the me&cal  examinat ion  by  ad&ng a new 

variable xT, the blood pressure of the proposer  Because of the high positive 
correlat ion between xt and xv, the selection procedure only retains as signi- 
f icant  the variables x.% xe and x7 Fig. 9 shows tha t  the distr ibutions are more 
separated.  In  fact, the group centroids are now .4172 and .5828 and the 
multiple correlat ion between xo and the selected variables rises to .407. The  
efficiency hne (fig IO) is uni formly to the right of the former  one. The inter-  
sect ion with (1) is 

PF = 37 

P,s = .652 

wi th  a critical value of approxunatxvely  .45. The value of the game rises to 
6.52, an improvement  of 22 for the insurer at the cost of controll ing the blood 
pressure of each proposer (see fig. 1~). 

3 '  T H E  B A Y E S  C R I T E R I O N  

Ins tead  of playing as if the proposer 's  sole object ive were to ou t smar t  him, 
the insurer can apply  the Bares  crlter~on, i.e. assume tha t  P2 has adop ted  a 
f ixed a priori s t ra tegy  He can suppose (from past experience o1" from the 
results of a sample survey performed with a maxnna i  me&cal  examinat ion)  
tha t  a p ropor t ion  Pn of the proposers is heal thy.  The analysis is easier m this 
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case, since P2's mixed s t ra tegy is now assumed to be known P t  only faces a 
one-dimensional p rob lem'  he must  maximize his ut i l i ty  on the dot ted  vert ical  
line of fig. 12. 

Pc/Of f to p~ 
JD 

A 
t 

B, 

N 

C 

ol 

heall hy non heol l  hy 

1 - PH PH 

Fig 12 

One notices from fig. 12 tha t  a medical examinat ion is sometimes useless, 
especially if PH is near  1. In this case, P t ' s  opt imal  s t ra tegy  is to accept all 
the proposers. In the general case, P t  should maxmnze  the linear funct ion of 

PF and  PH 

[~5FB + (1 - -  pF)A]~SH + [paD + (I - ps)c] (1 - PH), 

under  the condit ion tha t  PF and Ps are l inked b y  the efficiency curve of fig. 4. 
As far as the example  is concerned,  this economic funct ion (represented in 

fig lo) becomes 

6.8 + 1.5Ps - 3 4PF 

if one supposes tha t  p2's mixed s t ra tegy  is to present  15% of bad risks. 

For  the first set of medical informat ion (xl, x2, x6), tile m a x i m u m  is reached 
at  the point  Ps = .28, PF = .09. Since PH is ra ther  tngh, this is a ve ry  slow 
detector ,  yielding a fmal u td l t y  of 6.914. Comparing to the optimal  nnxed 
s t ra tegy,  this represents  an increase in ut i l i ty  of .614, due to tlie exploi tat ion 
of .P2's poor play. Of course, tliis de tec tor  is only good as long as P2 sticks to 
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his mixed strategy. It is uneffective against a change in the proposers' behav- 
iour: if for instance PH suddenly drops below .725, P~'s utlhty decreases 
under 6.3, the guaranteed payoff with the mlmmax strategy In this aspect, 
the Bayes criterion implies a more optimistic at t i tute of P1. 

For the second set of medical information (x2, m, xT), the opblnal detector 
(Ps = .45, ~bF = o9) grants a utility of 7. t69 if PH = .85, an improvement 
of .649 colnparing to the ininimax strategy (see fig. 11). 

4. T OW AR DS  MORE REALISM 

4.1. Surcharges 

Conceptually, the introduction of the possibility of accepting a proposer with 
a surcharge presents little difficulty: it amounts to introduce one more pure 
strategy for the insurer. 

Payoll to 
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A detector could then be defined by two critical values C1 and C2 enveloping 
an mcemtude or surcharge zone. 

The two critical limits would detelmme 4 probabihtles 

fl~ = probability of accepting a bad risk 
f12 = probabihty of surcharging a bad risk 
p8 = probability of rejecting a good risk 
p4 = probability of surcharging a good risk 
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C 1 C 2 

and two efficiency curves. A necessary condition for a detector to be optimal 
is that  the corresponding payoff hne is horizontal, i.e. that  

(2) (1--p3-~@A + 7b,G + p3B = ( 1 - p ~ - p 2 ) D  + P2H + P~C. 

The two efficiency curves and (2) determine 3 relations between the prob- 
abilities. One more degree of freedom is thus available to maximize the payoff. 

4 . 2 .  Increaszng the Number of Strategies of P2 

In order to practically implement the preceding theory one should subdivide 
P2's strategy "present a non healthy proposer" according to the various 
classes of diseases. P1 should then have as pure strategaes: reject, accept, a 
set of surcharges, and follow detector's advice, and P2 as many pure strategms 
as the number of health classes. The graphical interpretation of the game is 
lost, but linear programming fan be used in order to determine its value and 
optimal strategies. 

Appendix: The Likehhood Ratio Method 

Let 
- -  x be the value of tlle discriminant variable, 
- -  p(H) and p(NH) the a priori probabihties of being healthy or non 

healthy, 
- -  f (x  I H) and f (x  ] NH) the conditional distributions of x. 

We can then compute the a posterior1 probability of being non healthy, given 
the value of the discriminant variable 

f (x  l N H ) p ( g g )  
(1) p = p ( N g  ix) = f(x l gH)p(NH)  + f ( x  l H)p(H)" 
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Similarly p(H I x) = l - p. 
The  expected  payoffs for the two decisions are 

EPA = ( 1 - p ) A  + pC 

EPR = ( 1 - p ) B  + p o .  

Define D* to be 

D *  = E P A  - -  E P n  = [ ( A - B ) + ( D - C ) ] p  - ( A - B ) .  

Consequently,  D* is a linear funct ion of p, with a posit ive slope.There exists 
a crit ical ~b, ~b,, for which D* = o '  

(A - B )  
Pc = ( A - B ) + ( D - C )  

and the opt imal  decision rule is to 

- -  reject  if p > Pc ( t h e n D * > o )  a n d t o  
- -  accept if p < Pc (then D * < o ) .  

If f ( x [  H) and f(x I N H )  are normal densities with equal variances, there is 
a one-to-one monotonic  relat ionship between p and x, and thus the crttmal 

p robab lh ty  Pc induces a critical value xe. 
In general, however,  the cutoff  point  is not unique. There  m ay  be two 

or more critical values. 
In tha t  case, we define the likelihood rat io of x for hypothesis  N H  over 

hypothes is  H as 

f ( x  [ N H )  

f(x I H) 

1 

P = 1 

L(x) p ( N H )  + 1 
o r  

p(H)  p 
(2) L(x) - p ( N H )  l - p "  

For  constant  a priori probabilit ies,  there  is a monotone  relat ionship between 
p and L(x); L(x) goes from o to oo as p goes from o to 1. Therefore,  a unique 
critical likelihood rat io Lc(x) exists and can be obta ined b y  replacing Pc for p 
in (2) 

p(H) A - B 
(3) Lc(x) - p ( N H )  D -  C" 

L(x) - 

O f  c o u r s e o  _-< L(x) =< oo. 

Subst i tu t ing  L(x) in (1) gives 



] 6 JEAN LEMAIRE 
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~-Pc = 0 5  
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The opt imal  decision rule reads 

if L(x) > Lc(x) ,  reject;  

if L(x )  < Lc(x ) ,  accept.  

Notice that ,  i f A - B  = D - C ,  pc = 

I 
I I 

I_ J_ 
-~-  NH 
X¢I X¢2 

H - -  

1/2 The decision rule is equivalent  to 
maximizing the expected  number  of correct  classifications. F rom (3) 

p(H) 
L e(x) - # ( N H ) "  

If, fur thermore ,  the prior probabii]ties are equal, Lc(x)  = 1. 
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