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ON THE LOGLINEAR POISSON AND GAMMA MODEL 

P E T E R  TER B E R G  

IVlaximunl h k e h h o o d  e s t i m a t i o n  in case of a Po~sson or  G a m m a  d i s t r i b u t i o n  w i t h  
l o g h n e a r  p a r a m e t n z a t ~ o n  for  t h e  m e a n  ~s q m t e  ak in .  T h e  a s y m p t o t m  v a n a n c e -  
c o v a n a n c e  m a t r i x  for  t h e  m a x m m m  hl¢ehhood e s t i m a t o r  is de r ived  as  wel l  as  a 
l inear  e s t i m a t o r ,  w h i c h  c a n  se rve  as  a s t a r t i n g  v a l u e  for  t h e  n o n h n e a r  s e a r c h  
p r o c e d u r e  

I .  INTRODUCTION 

The loglinear Poisson model is very useful for the analysis of frequency data. 
The mathematical statistics for this model can be found in HABERMAN (1974) 
as well as ANDERSEN (1977), who refers to actuarial applications by BAILY 
and SIMON (196o), JUNG (1968) and AJNE (1975). The procedure to calculate 
the maximum likelihood estimates of this model remains valid when the discrete 
data are replaced by continuous data, as has been done for the analysis of 
claim costs. However, this procedure does not correspond with maximunl 
likelihood estimation of the parameters of a well-defined stochastic process, 
whereas claim frequency analysis under the Poisson assumption does. 

The more interesting as the fact that  maximum likelihood estimation of tile 
parameters of a Gamma distribution with loglinear mean can be performed with 
the very same nonlinear search procedure as for the loglinear Poisson model. 
The Gamma distribution may be a good description for the fluctuation of mean 
claim costs. For such a claim costs analysis, the only modification we have 
to make is to replace the exposure by the total claim costs, maintaining the 
position of the numl)er of claims. 

In the next paragraph, the loglinear Poisson model will be outlined and an 
easy to calculate estimator to start the search procedure will be derived. 
Then, the loglinear Gamma model will be specified and convenient properties 
as regards estimation and aggregation will be demonstrated. 

2. THE LOGLINEAR POISSON MODEL 

]?or claim frequency analysis, this model can be formulated as follows: 

(2.1) f (nrJmrXr)  = (mrkr) n, exp ( - m r ) , r ) / n r !  n r =  o, 1, 2, 3 . . . .  

(2.2) log (kr) =x~[3 r = l  . . . . . . . . . . . .  R 

where r indexes the riskgroup, nr stands for the number of claims and nZr 
equals exposure. The riskgroup r is characterized by the column vector Xr 
consisting of the dummies 0 and 1. The parameters to estimate are the K 
elements of the colmnn vector [3. What  matters for this model is the linearity 
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in 13 for log (Xr). I t  is assumed tha t  the d u m m y  variable t rap has been taken 
care of such tha t  the R x K matr ix  X = (x~,. . . . . . .  xR)' has full column rank 
implying X 'X to be invertible This avoids a basic indeterminacy on the 
elements of 13. 

For  instance, with two factors, having 2 and 3 levels, X amounts  to a 6 x 4 
matr ix  given by:  

(2.3) X 

-i o o o- 

1 0 1 0 

1 O O 1 

1 1 0 0 

1 1 1 0 

1 1 0 1 

The natural  logari thm of the hkelihood function associated with  (2.1) and 
(2.2) amounts  to l: 

(2.4) log L = const + (~nrXr)'13 - Z m r e X  p (x~13). 

Differentiat ing with respect to the elements of 13 gives: 

b log L 
(2.5) ~13 - E n r x  r - E r a  r exp (x~13) x r. 

Put t ing  (2.5) equal to 0 defines the max imum likelihood est imator  ~ whose 
elements will be finite as soon as ~ n r X r  does not have elements equal to o. 
From (2.5) we can see tha t  the maximum likelihood est imate implies predicted 
marginal totals equal to the observed marginal  totals. 

The loglikelihood function is concave in 13 implying a unique solution for the 
m a x i m u m  likehhood estimate. 

The concavity can be demons t ra ted  with the help of the matr ix  of second 
order derivatives:  

b 2 log L 
(2.6) ?13~13, - - 2m r exp (x;13) XrX; = -X 'MAX 

where M and A are R x R diagonal matrices given by  diag (ml . . . . . . . .  mR) and 
diag (Xl . . . . . . .  , Xl~). 

This matr ix  is negative semi-definite and will be negative definite if the 
diagonal mat r ix  M contains K or more positive elements, tha t  is: the presence 
of enough different exposure. If this is the case, the loglikehhood function 
will be concave in 13. 

Minus the expectat ion of this matrix,  which does not contain any  nnr, gives 
the information matr ix  of 13. The inverse of the information mat r ix  gives the 
Rao-Cramgr lower bound for the asymptot ic  variance-covariance matr ix  of ~. 

t A l l  s u m m a t i o n s  r u n  f r o m  r = 1 t o  r = R, u n l e s s  e x p h c t t l y  o t h e r w i s e  s t a t e d .  
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To be complete : the maximum likelihood estimator ~ follows asymptotically 
a multivariate normal distribution with mean 13 and variance-covariance 
matrix (X'MAX) "1. This matrix can be estimated by substituting ~ for 13 
in the diagonal elements of A. 

It is possible to reduce the dlmensionality of the problem by  maximizing 
(2.4) with respect to the parameters of a single factor conditionally on the 
parameters of the other factors. It is of course advisable to choose that  factor 
with the maximum number of levels. In case of the matrix X, given by (2.3) 
this results in a concentrated loglikelihood function with one unknown para- 
meter. 

In case that K is large, a good starting value for the nonlinear search proce- 
dure may be important. In (2.2), a system of R linear equations in K unknowns 
is defined. However, log (Xr) is unknown and should be replaced by an estimate. 
Dropping the index r and adoptiug a Bayesian point of view, utilizing an im- 
proper prior density for X given by p(X) ~ 1/X with (2.1) as likeIihood function 
results in a posterior density for X which is a Gamma density functmn: 

(2.7) p(xln, m) = X "-~ exp (-reX) mn/P(n) 

In order this posterior density function to be proper, n must be positive. 
Calculating the posterior mean and variance of log(h) gives: 

n - t  

(2.8) E(logX) = +(n) - l o g ( m )  = E i -1 - l o g ( m ) - y  

:= log {(n-})/m} 
m - i  

V ( log X) = d / (n)  = =2/6 - E i-2 # ( n -  ~)-i 

where d? and d/ denote the digamma and trigamma function and y = 
o.5772156649.. ; see ABRAbmWlTZ and STEGISN (1970, ch. 6) for the above 
results associated with the gamma function. 

Now we can write: 

(2.9) E(log X) = x'13 + {E (log X) - log X} 

where {E (log X) - log X} is unobservable, having mean o and finite variance 
given by V (log X). Utilizing the approximations for E(log X) and V (log X), 
adding the index r again, assumang nr >~ 1 for simphcity of notation, enables 
us to apply weighted least squares to (2.9). 

This results m a linear estimator for 13 given by:  

(2.1o) ~ = [ X ' ( N -  ½I)X]'* X'(N - {I)v 

where N = dlag (nl . . . . . . . .  n•) and v contains the R values log {(nr-{)/mr}. 
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3. THE LOGLINEAR GAMMA MODEL 

The analysis of claim costs is hampered by the fact tha t  it is difficult to 
specify a probabil i ty distribution which gives a good description of empirical 
reality. However, the total  claim costs for n claims will tend  to have a smooth 
probabil i ty distribution and  will approach the Normal distribution. 

The Gamma distr ibution approaches the Normal  distribution too and assigns 
no probabihty  mass to the negative axis. So, it m a y  be fruitful  to adopt  a 
Gamma distribution for the total  claim costs and act as if the individual  claim 
costs follow a Gamma distribution too. 

The probabl i ty  densi ty function for the Gamma distribution can be writ ten as : 

(3 -1) g(ql~*, q)) = q~-texp (-qoq/bt) q~ bt-~/F(~) 

implying a mean and variance given by u and u2/q0. 
The sum of n of such distr ibuted random varmbles will follow a Gamma 

distr ibution with parameters  nbt and nq~. The sample mean will follow a Gamma 
distr ibution with parameters  ~. and nq~. The sample mean happens to be the 
max imum hkelihood est imator for the populat ion mean g.. 

The parametr izat ion : 

(3.2) log (Per) = x~0 r = l, . . . . . . . . .  R 

results in a loghkelihood function:  

(3 3) log L = const + q~ E nr log(yr) - ~ log {P(cpnr)} + q0 log (q0) X nr + 

+ q~ { - (EnrXr) 'O - E y  r exp (-x;0)} 

where Yr stands for the total  claim costs for the nr claims in nskgroup r. 
The form between curls in (3.3) is equivalent with the crucial part  of (2 4) if 
we subst i tu te  [3 for - 0  and mr  for yr.  This gives the possibility to calculate 
the ma x i mum hkelihood est imator  for 0 in the same way as m case of the 
loglinear Poisson model. 

I t  is interesting to observe tha t  aggregation of the mdixddual claim costs to 
tota l  claim costs does not  have any imphcations for the max imum likelihood 
est imate of 0. This remains valid for arbi t rary  specifications for g.r, as long as 
these do not depend on q~. The aggregation does have implications for the 
est imation of % however. 

Differentiat ing (3.3) with respect to 0 and q~ gives: 

(3.4) 
log L 

3 0  

log L 

3q0 

- ~ - E n r X  r + Ey r exp ( -x~0)  xr} 

- E {n r log ( Y r )  - n r X ' r O  - Y r  exp (-x~.0) + nr} + 

+ log (~) E nr - E nr~ (q~nr). 
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(3.5 

The second order derivates amount to: 

~2 log L 
bO~O" - - ~ Z Yr exp ( - x~,O) XrX; 

b2 log L 
- - ~ n r X r  + ~ y r e x p ( - x ' r O  ) x  r 

b2 log L 
- q~-~ X n~ - ~ n~ (~pn~). q~2 

Minus the expectation of these second order derivatives gives: 

[7 2 log L]  
(3.6) - E k ~0~0' .l = q~X'NX 

[72 log L] 
(3.7) - E L  ~0~q~ J = 0 

The vanishing of (3.7) implies a blockdiagonal information matrix for 0 and 
% This implies that the maximum likehhood estimator for 0 follows asymptoti- 
cally a multivariate normal distribution with mean 0 and variance-covariance 
matrix given by q0 -1 (X'NX)-L This matrix can be estimated by substituting the 
maximum likelihood estimate for % 

[~21og L]  
( 3 . 8 )  - E t-Y -J = x [+' - 

,,, ~ ½q~_2 = ½Rq~-2, for large nrqx 

So, the asymptotic variance of the maximum likelihood estimator for qp 
equals 2qp°-[I~, which goes to o when I~ goes to infinity. R can be large, but  is 
fixed, contrary to the number of claims. In order to improve the estimation of 
9, aggregation of claim costs should not take place blindly. Risk groups with 
many claims should form separate totals such that R increases. 

As the sample mean yr/nr  follows a Gamma distribution with mean tXr and 
variance ~2r/nrq P, the mean and variance of log(yr[nr) are given and approxi- 
mated by:  

(3.9) E[log (yr/nr)] = x;O + +(nrq~ ) - log (nr~?) 

x;0 - (2nr~)-i r = 1 . . . . . .  R 

V[log (Yr/nr)] = d/ (nrq~ ) # (nrtP)'~ 

Utilizing the approximations and adding the normality assumption, enables 
us to apply the maximum likelihood method to (3.9), resulting in closed form 
estimators for 0 and c? given by:  
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(3.1 o) 

(3.11) 

= (X'NX) "~ [ X ' N w  + (2~)-~ X't]  

R + {R 2 + w ' [ N - N X ( X ' N X ) - t X ' N ] w . t ' [ N - ~ - X ( X ' N X ) ' ~ X ' ] t }  ½ 

2 w ' [ N  - N X ( X ' N X ) - ~ X ' N ] w  

where t is a vector  with all element equal to 1 and w contains the R values 
log (yr/nr) .  When the diagonal elements of N grow large (3.1 o) will approach 
(X 'NX) '~X 'Nw,  being independent  of ¢p. This furnishes a convenient  s tar t ing 
value for 0. 
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