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SOME T R A N S I E N T  R E S U L T S  ON T H E  M/SM/I S P E C I A L  
SEMI-MARKOV MODEL IN R I S K  AND Q U E U E I N G  T H E O R I E S  
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Universi t6  Libre  de Bruxelles 

We consider  a usual mtuat ion in risk t heo ry  for which the  arr ival  process  is a 
Poisson process and the  claim process a posi t ive  (J - x )  process  inducing a semi- 
Markov process.  The eqlf ivalent  in queueing theory  is the  IX'[/SM/I model in t roduced  
for t he  first  t ime by  Ncuts  (1966) 

Fo r  both  models,  we give an explici t  express ion of the  probabi l i ty  of non-ruin  
on [o, t] s t a r t ing  wi th  u as initial reserve and of the  wai t ing  t ime d is t r ibu t ion  of the  
last  cus tomer  arr ived before t. "Exp l i c i t  express ion"  means  in t e rms  of the  ma t r ix  
of the  aggregate  claims dis t r ibut ions .  

1. THE SPECIAL SEMI-MARKOV MODEL IN" RISK THEORY 

In a usual s i tuat ion of the theory  of risk, let (An ,  n >1 1) be the claim inter-  
arrival  t imes process, (Bn,  n I> t) the claim amounts  process. Moreover, we 
suppose tha t  m " t y p e s "  of claims are possible represented by  the set:  

(1.1) I = {1, 2 . . . . .  m} (with 1 ~< m < oo). 

The process s tar ts  just af ter  p a y m e n t  of an initial claim of type  Jo = i and 
after  this paymen t ,  the for tune  of the company  is supposed to be u (u >/ 0). 
The  process (Jn,  n 1> o) represents  the sequence of the successive types  of 
claims. For  the simplicity of notat ions,  we also in t roduce the r andom variables 

A 0 and B0 such tha t  : 

(1.2) Ao = Bo = 0 a.s. 

If the claim arrivals process is not  explosive, let Nt denote  the total  number  
of claims in (o, t) (thus excluded the initial claim) and define: 

~(,) 
(1.3) X ( t )  = Z B. ,  (total amoun t  of claims paid on (0, t)) 

n . , 0  

(1.4) Zt = JN(t) ( type of the last claim occurred before or at t). 

If  we also suppose tha t  the incomes of the company  occur at  a cons tant  ra te  
c (c > o), then the " f o r t u n e "  Z(t) of the  company  at  t ime t is given by  

(1.5) Z(t )  = u + c t -  X ( t ) .  

The  mat r ix  m x m  .t~ of the "d i s t r ibu t ion"  functions of the aggregate claims 
at t ime t will be, by  defini t ion:  

( , .6 )  .~(x,  t,) = (F,j(~,  ~)) 



4 2 JACQUES JANSSEN 

where 

(1.7) F , j ( x ,  t) = P [ X ( t )  <~ x,  J u ( t )  = j l J o  = *~ 

(i, j = 1 . . . . .  m) .  

Probabilist ic assumpt ions  

We assume tha t  the processes in t roduced  satisfy the following assumptions:  
1. The claim arrivM process is a Poisson process of pa ramete r  ;~. 
2. The process ((Jn, Bn), n i> o) is a posit ive ( J - X )  process (see JANSSEN 
(1970)); this means  tha t  

(1.8) P[Bn  ~< x, J n  = j l ( J k ,  B ~ ) , k  <~ n - l ]  = Q a , _ d ( x ) a . s .  

where the ma t r ix  ~ ,  defined by  O~.(x) = (Q,j(x)) is a mat r ix  of mass funct ions 
such tha t"  

(1.9) i. Qo(x)  = o for all x ~< o for all i, j E I 

m 

(1.1o) ii. Z Q l j ( +  0o) = 1 f o r a l l i ~ I .  
I - I  

F r om the semi-Markov theory  (PYKE (1961)), it is well-known tha t  

1 ° if p, j  = lira Q,j(x) and P = (Pij), then the process (Jn,  n i> o) 
x-'->'~ 

- -  i.e. the process of claim types - - i s  a homogeneous Markov chain 
with P as t ransi t ion matr ix .  

2 ° The  random variables Bn,  n >1 0 are not independent ,  but  only con- 
di t ionally dependent  given the Markov chain (Jn,  n 1> o) 
- -  often called the  " imbedded  Markov chain" .  

3. The processes (A~, n >i o) and ((Jn,  B,~), n >/ o) are independent .  

The ma in  problem 

The event  " ruin  before t"  occurs if the  t ra jec to ry  of Z(t ')  on (o, t) goes under  
the  t ime axis before t. More precisely, if ~tj(u, t) represents  the  probabi l i ty  of 
nou-ruin on [o, t], s tar t ing M t h  J0 = i and an initial for tune  u, and such that  
J N ( o  = J, we have,  by  defini t ion:  

(1.11) q~ij(U, t) = P[Z(t ' )  >1 0 , 0  <<. t' <<. t, Jzc(t) = j l J o  = ,3 

or equivalent ly  by  (1.5) : 

(1. 12) ~btJ(U, t) = P [  sup (X(,~) - c,r) ~< u, JN( t )  = j ] Jo = *]. 
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If we are not interested by the last type  observed before t, we have enough 
with 

m 

t) = z t) 
J - I  

and if (p, . . . . .  Pro) is an initial distribution on Jo, we have to compute  

m 

The problem solved in this paper is to find an explicit expression of the 
matr ix  ¢, defined by 

+(x ,  t) = t)) 

in terms of the matr ix  J~. 

2. THE ANALOGOUS MODEL IN QUEUEING THEORY: THE M/SM/1 MODEL 

As quoted by several authors  (PRABHO (1961), SEAL (1972), JANSSEN (1977)), 
a risk model can easily be interpreted as a queueing model and vice versa. I t  
suffices to see the process (An, *~ ~> 1) as the one of the interarrival  t imes 
between two successive customers (i.e. customers ( n -  1) and n) in a queueing 
system with one server and as discipline rule F I F O ;  then, the process (Bn, 
n >~ 1) represents the successive service times (i.e. B,~ is the service time of 
the customer number  ( n -  1), n 1> 1). 

We also suppose tha t  at  t = o, the customer number  o just begins his service. 
Moreover, we have m types of customers and J n  represents the type  of cus- 
tomer n. Here Nt gives the "number "  of the last customer arrived before or 
at t. With  the same probabilistic assumptions as those of the preceding para- 
graph, the main problem considered in the queueing optic is to get an explicit 
expression of the distribution of Warct ) where Wn (n >/ o) represents the 
waiting of the n th  customer. More precisely, we must  express the matr ix  W 
ill terms of t r where it is defined by 

(2. I) 

with 

(2.2) 

W ( x ,  t) = (W j(x, t)) 

W~j(x, t) = P[W~,(t) <~ x, Ju( t )  = j l]o = i]. 

This model is noted M/SM/i in the queueing l i tcrature (Poisson arrivals and 
semi-Markov service times) introduced by NEUTS (1966). 

3" THE DISTRIBUTION OF AGGREGATE CLAIMS 

Introduce the usual notat ion in semi-Markov theory:  for any  matr ix  mxm of 

mass functions L, we note by L (;i) the n-fold convolution of the mat r ix  L, 
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tha t  is 

(3.1) L(6)(x) = (Uo(x)), L ( r ) (x )=  (L,~(x)) 

(where Uo(x) is the distribution function with a unit  mass at o) and for L(~) 
we have:  

(3.2) L ~ ) ( x )  = X f L}~-l)(x-y) c l  Lkj(y) ,  n i> 1. 
kR 

If 

(3.3) s .  = B ,  
~ ' , 0  

it is clear, from (1.8), tha t  

(3.4) Q~n)(x) = R[S n ~< x, J n  = j l Jo  = i]. 

From assumption (3), it follows then tha t :  

tO (Xt)- 
(3-5) t) = 

n! 
~t . -o  

expression given the matr ix  of distribution of aggregate claims by means of 
the semi-Markov kernel ~ .  

Let  us remark tha t  the assumption (1) gives: 

(3.6) P[X( t+s )  ~< x, J2v(,+s) = j l X ( s ' ) ,  J N ( v ) ,  s' ~< s, X ( s )  = y ,  

JN(s )  = i] = F , j ( x - y ,  t) 

showing tha t  the process ((X(t) ,  J~v(t)), t >/ o) is markovian.  

4. LOADINGS OF PREMIUMS 

To show how the concept of loading of premiums can be introduced in the 
special semi-Markov risk model considered here, let us suppose tha t  the 
quan t i t i e s - -mean  cost of a claim of type  i - -  

(4.1) "~, = Z i x d Q,j(x), i ~  I 
] o 

are finite. Moreover, we suppose tha t  the Markov chain (Jn, n 1> o) is ergodic 
and tha t  (1-I~ . . . . .  lIIm) represents the unique s ta t ionary  probabil i ty distribu- 
tion. Start ing with this distr ibution for Jo, we get, using (3-5) : 

(4.2) P[X(t) ~< x] = Z Z .FIt F,j(x ,  t) 
f I 

n - o  / , . I  J=z 
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so tha t  the mean of the aggregate claims at t ime t is given by 
tO 

(4"4) E[X(t)] = 2 e-zt (Xt)~n! ( ~  2 1]~ f xd  Q~~'(x)). 
n - o  - J - I  

o 

The term under brackets is the expectat ion of Sn or, by (3.3) 
n 

(4.5) Z E(Bk). 
k - I  

As the process (Jn, n >1 o) is s tat ionary,  we have, for all k 
r a  

(4.6) E(Bk) = £ iris -,> 
| - - I  

This gives : 

or  

(4.8) E[X(t)] = Xqot 

with 
m 

b , , (4 .9 )  qo = Z Fit "Oz. 
I - 1  

It  follows tha t  the mean for tune at t ime t is given by:  

t,,) (~ - x~) t  

s is positive if and only if c = Xq~(1 + ~), with ~ > o. The justification 
C')ading v 1 comes also from the fact that ,  except some degenerate cases, 
~"sts a reserve u such tha t  for all i, j,  ~btj(u) is pos i t ive--where  ¢~j(u) 

(u, t ) -- i f  and only if Z? < c (see JANSSE~ (1970)). 

5' EXPRESSION OF ~ij(U, t) 

~ons made - - ( l ) ,  (2), (3)--are such tha t  the method  used by 
~.and later by SEAL (1974) is valid. For  the facility, let us suppose 

Mctions Qtj(x) have densities qi~,(x) on (o, co) ; then the PRABVltI'S 
becomes the integral  sys tem:  

- /  
,~ k - I  0 

i , j  = 1 , . . . , m  
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where 

(5.2) d z F ,  k(u + c'r,'r) = c bx (u + c'r,'r) d'r. 

The system (5.1) gives the ¢,~(u, t) provided we know the values at u = o. 
These can be  computed  using (5.1) with u = o : 

(5.3) ~,j(a, t) = ¢~(o, t) + ~ } ¢~j(o, t -~ )  & r,~(c~, ~) 
k - I  0 

i , j =  1 . . . .  , m .  

To write this sys tem of Volterra integral equat ions in a more concise way, 
let us introduce the following matr ices '  

(5.4) +(t) = (¢,j(o, t)) = (¢(o, t)) 

(5.5) F(t) = (F~j(ct, t)) = ( f f (c t ,  t)) 

(~F,, ) 
(5.6) G(t) = c \ ~ - -  (ct, t) 

ra t 

(5.7) ( a  * B) (t) = ( X / A , e ( t -  v) Be l ( v )av )  
k , . 1  0 

(with A and B m x m  matrices) 

(5.8) £(~) = (~ ~-,, A,j(t)dt) 
o 

(Laplace t ransform for matrices). 

The sys tem (5.3) takes the matr ix  form: 

(5.9) F(t) = , ( t )  + G *  +(t) 

and using Laplace t ransforms,  we get 

~(s) = (i + G(s))~e(s) (5.1o) 

and consequent ly :  

(5.11) ¢(s) = (I + G(s)) -1 F(s) 

provided the inverse mat r ix  of I + G(s) exists. 

We can llOXV showy the main result and for simplicity, we suppo: 
der ivat ives  q~j(x) of Ql~(x) exist for all i and j. 
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Proposition 

If  the quan t i t y  M defined by  

(5.12) M = sup {q~j(x), i, j e I ,  x >1 o} 

is finite, 

(5.13) 

(5.14) 

then  

qb(t) = ~ (-- 1) n G(n) • F(t) 
t t - o  

¢(u,t)  = F(u  + ct, t) - Gu * Z ( - 1 )  n G (n) ~) 
n - 0  

• F(t) 

where 

(5.15) 
~F,j (u 

Gu(t) = c + ct, t )) .  

Proof:  F r om (3.5), we deduce tha t  

(5.16) ~F, (x, t) = 2 e-it (~)~ q~n)(x) 
?x n! 

t a - i  

where 

(5.17) 

and  

x 

(5.18) q~jn)(x) = Z f q }~ - l ) ( x - y )  qkj(y)dy, n > 1. 
0 

From (5.12), (5.18), it is clear tha t ,  for all n /> 1 

(5.19) q~n)(%) ~< ~ 

so tha t  f rom (5.15)" 

(5.2o) bF,j (x,t) ~< M(1 - e -xt) ~< M. 
bx 

F rom the definit ion (5.6), we get 

G~;(s) ~< c ; M e TM dt = - -  

0 

cM 

s 

From now, this symbol means the n-fold convolution product for the definition (5.7). 
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c2M ~ 
dR(s) = x ~  (s) d~j(s) ~ ~ s ~ 

~ cnM n 
d~(s)  = z a~-~(s) ~.j(~) ~ , ,~-~  - -  

S~Z 

Consequently, the matrix series ~ Gn(s) converges for all s > m c M. 

A well-known consequence of this fact is that the matrix (I + (~(s))-~ is 
invertible and 

(I + G(s)) -I = ~ (-I) ~ Gn(s) 
tI~O 

of course on (m c M, oo). 

Using the matrix version of a theorem of DOETSCH (1974) and (5.11), we 
get (5.13). 

The result (5.14) follows then from the relations (5.1) written under the 
matrix form and where +(t) is under the form (5.I3). 

6. RESULTS FOR THE ACTUAL WAITING TIME AT TIME t OF THE M/SM/I 

QUEUEING MODEL 

The probabilistic assumptions made in the paragraph 1 imply that the process 
((Jn, An,  Bn), n >~ o) is a two-dimensional ( J - X )  process (JANSSEN, 1979) 
with kernel (Q,j(t, x)) given by: 

Q~j(t, x) = E(t)  • Q,j(x) (6.1) 

where 

(6.2) E(t) = t °  , t <  o 

i 1 - -e  -xt, t >1 O. 

If we suppose that  the matrix P (=  ~ ( +  oo)) is ergodic with a stationary 

probability distribution (Hi, . . . ,  lIIm), the dual kernel (Q,j(t, x)) of (Qlj(t, x)) is 
given by (see JANSSEN (1979}): 

IIj 
(6.3) 0,1(t, x) = ~ Q,~(t, x) 

I I  1 
(6.4) - II~ E(~) Q~,(x). 
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Let us now consider the M/SM/1 queueing model whose kernel is given by 
(6.4). The asymptotical study has been done for the first time by NEUTS (1966). 

Now the transient behaviour of Iil,j(x,-:)--defined by (2.2)--can be easily 
deduced from the last paragraph and our duality results (JANSSEN, 1979). 
From the proposition 4 of this last reference, we get, for all x > o and all 
t > 0:  

(6.51 

so that  

(6.6) 

n, i e~, 6',j(x. d . / =  nj ~ e~, ,~j,(x. d':/ 
0 0 

I I j  
Gj(x ,  *) = ~ Sj,(x, ":). 

If fie represents the mxm diagonal matrix whose ith element on the principal 
diagonal is I-I,, (6.6) takes the form 

(6.7) 

with 

w(~,  ~) = n,; ~ ¢~(x, ~) n~ 

W(x, .) = ( # . ( x ,  ~)). 

(6.7) with the aid of (5.14) gives an explicit expression of the distribution of 
the actual waiting time in a M/SM/I model. 

7. COMMENTS 

a) For m = 1, the model considered becomes the classical Cram6r's model of 
risk theory and the M/G/1 queueing model for which it is known (see PRABHU 
(1961), SEAL (1972)) that:  

( F(x, t) dx. 1 
(7.1) 4(0,  t) = 7 

0 

Using successive integrations by parts, it is possible to show--in this case--  
the equivalence of (7.1) and (5.13). It does not seem possible to have an analo- 
gous result for m > 1, in particular an extension of the analytically proof of 
DE VYLDER (1977) cannot be used as the variables (Bn) are no more exchange- 
able. 

b) The effect of a suppression of the k* type of claim is theoretically possible 
by comparing ~(u, t) and $k(u, t), representing the non-ruin probability with 
( m -  1) types of claims, k being excluded. 

4* 
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c) The main result can be ex tended  to the non-Poisson case if we suppose 
tha t  the process (Jn, A n) is a semi-Markov process of kernel 

(PO E,(t)) 

where 

E , ( t )  = t o , t  < o 

( 1 - -  e -)~*t, t >t 0 

tha t  is a regular cont inuous Markov process with a finite number  of states. 
d) The following remarks  may  be useful for numerical  computa t ion .  

I t  is easy to show tha t  

Mnl n 
(7.2) G(,,) • F(t) .< 

so tha t  approximat ing  $(t) by  the first ( N -  1) terms of (5.13), we have for the 
absolue value of the error Riv(t), the  following upper  bound:  

(mMt) N 
(7-3) [ RN(t) ] ~< N---~. emMt" 

For  m = 1, we can say more. Indeed,  let us suppose, wi thout  loss of gen- 
erality,  t ha t  c = 1 and M ~< 1. For  c, tha t  is well-known in risk theory ;  
if M > x, it suffices to in t roduce the random variables (B~), (A~) defined by  
B~ = 3I  -1 B n and A~ = M -1 A n so tha t  the process (A~) induces a Poisson 
one of pa ramete r  k' = M - i x .  Then,  if ~'(u', t') is the probabi l i ty  of non-ruin 
for this model:  4(u, t) = $ ' (Mu,  Mt). (7.4) 

In this case, we have 

(7.5) G ( n ) , F ( t )  - G ( n + l ) , F ( t )  = G( n ) , ( U o  - G ) * F ( t )  

which is a non-negat ive  quan t i t y  as G(t) ~< 1 (Uo is the Heaviside function 
with a unit  mass at o). 

Consequently,  the series (5.13) is a l ternat ing so tha t  the sign of the error 
Rzv is this of ( - 1) N and 

(7.6) I RN(t) I ~< G (iv) * FF(t). 

F r om (7.2), it follows tha t  

(7.7) 
lN 
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