
Astin Bulletin l l 0980) 77-90 

TWO PRAGMATIC APPROACHES TO 
LOGLINEAR CLAIM COST ANALYSIS 

PETER TER BERG 

Parameter estimation in case of loglinear modelled claim cost distribution 
characteristics is rnathematically tractable, especially with the Inverse Gaussian 
and Lognormal distribution. 

1. INTRODUCTION 

The collecting and presenting of statistical data is often in terms of aggregated 
quantities. In the field of non-life insurance, we can think of total exposure, total 
number of claims and total claim costs. 

Such statistics can be produced for all kinds of more or less homogeneous 
risk groups, insurance lines and for different time periods. 

In order to perform maximum likelihood estimation to such statistics, 
it is necessary to specify the probability distribution governing the stochastic 
process, which generates the data. 

This paper will focus on positive claim cost analysis, conditionally on a 
known, positive, number of claims. Having the specification of the probability 
distribution for the cost of a single claim, there is still the task of deriving the 
n-fold convolution',for this distribution in order to get the probability distribu- 
tion for the aggregate quantity. For most distributions this will lead to in- 
tractable numerical procedures in relation with parameter estimation; the 
Gamma and Inverse Gaussian distribution being exceptions. As the specifica- 
tion of the probability distribution for the cost of a single claim is seldom 
justifiable on axiomatic grounds, it is advisable to use tractable distributions 
such as the Gamma and Inverse Gaussian distribution. This point of view was 
already stressed by HADWlGER (1942). 

Furthermore, the form of the n-fold convolution will approach a Normal 
distribution, a property also shared by the Gamma, Inverse Gaussian and 
Lognormal distribution, being distributions which do not assign any probability 
mass to the negative axis and which are as such preferable on this ground. 

The paper runs as follows. First tractable probability distributions will be 
specified. Then, a loglinear parametrization for the mean and shape parameter 
will be given. The next step is the application of maximum likelihood estima- 
tion, together with the study of the properties of the loglikelihood function 
as well as the derivation of the information matrix, whose inverse is the Rao- 
Cramfr lower bound and which is a tool for analyzing the possible loss of in- 
formation due to aggregation. 
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For the maximum likelihood analysis the Inverse Gaussian and Lognormal 
distribution are singled out, being the two pragmatic approaches. 

The paper closes with final remarks, containing miscellaneous aspects, the 
most important one perhaps being the existence of a consistent estimator, 
which is easy to calculate and which might have good efficiency compared 
with fully efficient estimators. 

2. THE GAMMA AND INVERSE GAUSSIAN DISTRIBUTION 

Consider a sequence of n independent, identically distributed random variables, 
taking on positive, continuous values. 

Which probability distributions have the property that  the sum of these 
random variables will follow the same probability distribution with modified 
parameters depending on n? HADWlGER (1942) addressed himself to this 
question, making a plea for using such distributions for reasons of simplicity 
and lack of guidance to specify the distribution on axiomatic grounds. 

The first distribution, he mentioned, was the Gamma distribution: 

(2.1) f(yI~x, $) = p(~) 

and the second one is now known as the Inverse Gaussian distribution: 

I II (2.2) f(y[~,~)= exp - ½ ~  - + - -  2 . 
Y 

Both distributions are parametrized in such a way that  the mean and vari- 
ance are given by ~ and ~¢-1. 

The parameter ¢ characterizes the shape of the distribution and with in- 
creasing ¢, both (2.1) and (2.2) approach the Normal distribution 1. In case of 
the sum of n random variables, the parameters ~ and ~ are modified into ritz 
and n¢. Taking the sample mean modifies ¢ into n¢ and leaves ~x unaltered. 
The use of (2.1) or (2.2) instead of the correct, in general unknown, distribution 
will imply a specification error for the n-fold convolution, which is mild in 
nature, at least if n or better n¢ is large. Compared with the Gamma distribu- 
tion, the Inverse Gaussian distribution is not well-known, whereas it is full of 
tractable properties. 

For instance, maximum likelihood estimation results in closed form ex- 
pre.ssions whereas this is not possible for the shape parameter of tile Gamma 
distribution, 

1 In the sense of lfq~ (y-V)/V tending to a standard normally distributed random 
variable. 
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Furthermore, (2.2) is flexible in the possibility to take on very skew forms, 
approaching a member of the stable family: 

(2.3) f(ylX) = \ ~ - ~ /  exp{-  ½X/y} 

This density results by defining X= ~ and taking the limit for ~---~oo 
in (2.2). 

Some historical details and references for the Inverse Gaussian distribution 
are in order. 

SCHR6DINGER (1915) derived tlus distribution for the first hitting time in 
Brownian motion, WALl) (1947) derived it in connection with sequential testing 
and TWEEDIE (1957) wrote on it from the viewpoint of mathematical statistics. 
FOLKS and CHHIKARA (1978) have written a review on the Inverse Gaussian 
distribution, clearly being unaware of the pioneering work by HADWIGER 
(I940a, b, 1942 ) and HADWlGER and RUCHTI (1941) who applied this distribu- 
tion to age-specific fertility analysis. 

For this reason (2.2.) is associated in demography with the name of Hadwiger. 
Notwithstanding the plea by HADWlGER (1942) to use (2.2), it has virtually 

remained unnoticed in insurance mathematics; S~AL (1969, 1978 ) is an ex- 
ception. 

3. A NORMALIZING TRANSFORMATION 

Consider again a sequence of n independent, identically distributed random 
variables, taking on positive continuous values with mean and variance equal 
to ~ and ~@-1. 

The arithmetic mean of these random variables has a probability distribution 
with mean ~ and variance ~2/n~. The density function of this sample mean 
may still be skew and a logarithmic transformation will induce a more 
symmetric picture and a density close to the Normal one, at least for n¢ 
sufficiently large. 

The logarithm of the sample mean has asymptotically mean and variance 
equal to log ~ and (n ~)-1. 

However, for n¢ being small, it may be good to refine the expectation of 
the logarithm of the sample mean. 

Denoting the sample mean by 9, we have: 

(3.1) l o g s  =log ~ + l o g  (S/tx) 

= l o g  ~ + log  (1 + [ 2  - ~1/~) 

( S - ~ )  ( S - - ~ )  2 remainder. =log - 7 -  -½ , + 
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Taking expectat ions gives: 

(3.2) E(log Y) ~ log ~ -  (2n~b) -1 

The approximat ion (3.2) is- -as  it should--compat ible  with the asymptot ic  
expansion for the mean of the logari thm of a Gamma distr ibuted random 
variable as well as an Inverse Gaussian distr ibuted random variable, as in- 
vest igated by WmTMORE and YALOVSKY (1978), who state tha t  for n~b __> lo 
this approximation will be satisfactory. 

4. LOGLINEAR PARAMETRIZATION AND MATRIX NOTATION 

The following loglinear parametr izat ions are adopted:  

(4. i) log  V-r = x~ 0 t r = 1 . . . . . . . . .  , R. 

) (4.2) log ~r = z; ~1 

The column vectors Xr and zr characterize a risk group, an insurance line or a 
t ime period, where r is an identifying index. The use of Xr and Zr allows for the 
possibility of different variables explaining the mean and shape parameter.  

The column vectors 0 and v 1 contain the parameters which are subject to 
estimation. The dimension of Xr and 0 is denoted by K and  the dimension of Zr 
and ~1 equals L. In most cases, the elements of Xr and Zr will be d u m m y  variables 
taking on the values o and 1. But  this need not be the case and the mathemat ics  
do not depend on it. 

So, Xr and Zr can also contain variables of economic and demographic nature,  
being measured on a continuous scale. 

I t  is clear tha t  (4.2) is not encouraging in connection with the Gamma 
distr ibution (2.1). 

In case tha t  zr boils down to a scalar, the analysis for the Gamma distribution 
is simple however, as shown in TER BEING (1980). 

So, max imum likelihood analysis with (4.1) and (4.2) will be performed for 
the Inverse Gaussian distribution and the Normal, after logarithmic transfor- 
mation,  distribution. 

These will be the two pragmatic  approaches. 
Pragmatic  in the sense tha t  they  do not depend on a specification for the 

probabil i ty distr ibution of the claim cost for a single claim and tha t  they use 
the smoothing effect of aggregating. 

The use of parametric  forms such as (4.1) and (4.2) is in the spirit of the 
generalized linear model methodology of NELDER and WEOOERBURN (1972). 

Other specifications are possible, such as linear ones: 

(4.3) EXr = Xr0; Cr = z0q" 
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or power t ransformat ions  of (4-3). However ,  (4 .0  and (4.2) have the logical 
p rope r ty  tha t  p-r and ~r are always positive, all advantage  compared  with (4.3). 

Fur the rmore ,  (4.1) is natural  conjugate  for the normalizing t ransformat ion  
(3.1), which forms a reason of simplicity, Final ly  combining a loglinear Poisson 
distr ibution,  with a Gamma or Inverse Gaussian distr ibution with loglinear 
mean, gives a Compound Poisson distr ibution,  also with loglinear mean. 
This forms a reason of mathemat ica l  beauty .  

The following mat r ix-nota t ion  will be used: 

(4.4) N = d i a g  (n~ . . . . . . . .  n~) , RXR 
O = d i a g  ( ~  . . . . . . . .  ¢~,) , RXR 
X =  [x~ . . . . . . . .  x ~ ' ,  R x K  
Z =  [z~ . . . . . . . .  z . ] ' ,  R x L  

where nr denotes the number  of claims indexed r. 
The  first column of X and Z are equal to t, a vector  with all e lements  equal 

to 1 ; this is the so-called constant  term. 
We assume tha t  the K x K mat r ix  X ' N X  and L x L mat r ix  Z ' N Z  are non- 

singular and for asympto t ic  analysis we need tha t  the elements of N, being the  
design of the sample, grow in such a way tha t :  

(4.5) lim N / ( t r N )  = N 

exists, leaving X ' N X  and Z'N,Z non-singular.  
As tr denotes the trace of a matr ix ,  being the sum of the diagonal elements  

and N is diagonal,  we have:  

(4.6) t'Nt = t rN = 1. 

The norming induced by  (4.5) is not essential, however.  

5. LOGLINEAR MODELLING WITH THE INVERSE GAUSSIAN DISTRIBUTION 

The  probabi l i ty  densi ty  function for total  claim costs Yr with nr claims reads 

as follows: 

(5" 1) f ( Y r  I nrtZr, n,-~r) = n,- \2~yar ] exp -- ½nr~r ~ 7 ~  + Y--7 -- 2 . 

Subst i tu t ing  the loglinear parametr iza t ions  given in (4.1) and (4.2) and 
forming the logar i thm of the likelihood function gives~: 

(5.2) log L = const + ½(X 0 + ½t'Z n - ½X;y r exp (z~¥ l - x;0) + 

- ½Enr 2 y,7 t exp(x ;0  + z;vl) + X n r exp (z; ~). 

All summations run from r = t to r = R. 
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Differentiat ion with respect to 0 and ~i gives: 

(5.3) 

(5-4) 

log L 

log L 

0 - ½X't + ½Ey r exp (z~ 1 - Xr0)X r + 

i 
2 -1  (XrO @ Z r ~ ) X  r - nry  r exp 

- ½Z't - ½Zy r exp (z~Y 1 - x;0)z r + 

- ½Sn2rY~ 1 exp (x~.0 + z ~ ) z  r + Sn r exp (z;.q)z r. 

Equat ing  the elements of (5.3) and 5-4) to o defines the maximum likelihood 
equations for 0 and vl. 

The next  step is the derivation of the Hessian of the loglikeiihood function. 

~21°g L (Yr  n2r~r I XrX; 
(5.5) ~0~0" - - ½ x c r  ~r + Yr / 

(5.6) bobs' - ½ g Cr ~r ~r / xrz; 

( 5 . 7 )  - - ½ z C r  + - 

Although (5.5.) and (5.7) are negative definite matrices, the Hessian of the 
loglikelihood function is not negative definite for all values of 0 and 7- This 
implies tha t  the loglikelihood function is not concave in the whole parameter  
space. 

But  it is concave in 0 conditionally on B and concave in B conditionally on 0. 
So, (5.2) is a well-behaved function in 0 and ~1, which can be maximized by  a 

zig-zag i terat ive procedure such as set out in OBERHOFER and KMENTA (1974). 
Tha t  is: maximize (5.2) with respect to 0 conditionally on an initial value of 

7, then maximize with respect to 7 ! conditionally on the maximizing value of 0, 
then maximize with respect to 0 conditionally on the maximizing value of YI, 
etc., until  convergence. 

Minus the expectation of the Hessian gives the information matrix,  whose 
inverse forms the Rao-Cramfr  lower bound for the covariance mat r ix  of the 
ma x i mum likelihood estimators for 0 and 71. 

This information matr ix  can be writ ten as: 

FXNOX+ XX 1 ( 5 . 8 )  - E  = 
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Applying a well-known inversion formula for partitioned matrices--see 
for instance THEIL (1971, p. 18) or RAO (1973, p. 33)--we get for the inverse of 

(5.80" _?xz,z?, ] 
. . . . . . . .  

where V(0) is given by: 

(5' 10) V(0) = (X'NcI~X + ½X'[I - Z (Z 'Z)  -1 Z'~ X) -1. 

It is interesting and important to s tudy the loss of information due to aggre- 
gation in the estimation of 0; the elements of B being nuisance parameters. 
Forming the likelihood function for the original data shows that  we only need 
one additional aggregate: the sum of the reciprocals of the claim costs. 

Without aggregation the information matrix results in a' 

(5 .1 l )  - E  , 

The covariance matrix for 0 becomes now" 

(5-12) V(0) = (X'NOX + }X'[N - NZ (Z'NZ) -1 Z'N]X) -1. 

So, we should compare (5.1o) and (5.12). 
First of all, we see that in case X = Z or even more general, in case that  the 

column(s) of X can be written as a linear combination of the columns of Z" 

(5.13) x = z c ,  

both (5.1o) and (5.12) boil down to: 

(5-14) V(0) = (X'NOX) -~ 

implying no loss of efficiency in the estimation of 0. 

But if (5.13) is not valid, there will be a loss of efficiency, even asymptotically. 
To see this, consider the asymptotic forms of (5.1o) and (5.12)' 

(5-15) lim (trN) (X'NOX + {X' [I - Z (Z'Z) "~ Z']X) -~ = (X'N@X) -t 

(5.16) lira (/rN) (X'NOX + ½X' iN - NZ (Z'NZ)-t Z'N] X) -~ = 

(X'N@X + ½X' [ N -  NZ(Z'~lZ) -a Z'~I]X) ~. 

This is most easily seen by putt ing N = I in (5.8), changing the interpretation of X 
and Z accordingly, taldng similar rows of X and Z together and introducing N again, 
resulting in (5.11). 
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The difference between the inverses of (5.16) and (5.15) is equal to: 

½X' [N-  NZ(Z'NZ) -1 Z'N]X 

a positive semidefinite matrix. This implies the difference between (5.15) and 
(5.16) also to be positive semidefinite, implying the loss of efficiency. 

A very popular choice for Z will be Z = t. For this case, the loss of efficiency 
is most easily studied by calculating the ratio of the generalized variances of 
(5.15) and (5.16). The generalized variance is equal to the determinant of the 
covariance matrix and this is equal to the product of its latent roots. Substituting 

Z = t, • = 4 I  and using t 'Nt = I and the fact that the first column of X equals t, 
tlfis ratio results in: 

(5.~7) 14X'NXl I ( 4 + ½ ) X ' N X - ½ X ' N t  CNXI -~= 

4 K (4+  ½)-K [ I - (24+ l) -1 (X'NX) -L X'N, It t 'NX ]-1 = 

4 n (4+½) -K {1 - ( 2 4 +  l ) - l t  'NX (X'NX)-i X'Nt} -1 = k ~ - ~ ]  

This efficiency ratio depends on the dimensionality K. 
Calculating the ratio of the traces of 5.15) and (5. 16) does not depend on 

this dimensionality. The trace of a matrix is equal to the sum of its latent 
roots. So, for efficiency purposes, we can consider the arithmetic mean of these 
latent roots. Applying this line of reasoning to (5.17) implies the geometric 
mean of the latent roots and the efficiency ratio is transformed into: 

( 4 4 for large. (5'18) \~-~-~] ~ 4 +------~ 

The larger the coefficient of variation, given by 4 -'A, the smaller (5.18) will 
be, implying a large loss of efficiency due to aggregation. 

6. LINEAR MODELS WITH LOGLINEAR HETEROSCEDASTICITY 

Now we will consider the logarithmic transformation of section 3 in relation 
with the parametrizations (4-0 and (4.2). 

Denoting w r =log(yr /nr) ,  we have approximately: 

(6.1) E(wr) = x~.0 - (2nrbr) -1 

(6.2) V(wr) = (nr¢r)- ' .  

If the second term in (6.1) is deleted a, we have the model as analyzed by 
HARVEY (1976) . 

* And both sides are multiplied by Vnr. 
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In t roduc ing  a d u m m y  variable d, taking on the values o and l, bo th  models 
can be represented by  replacing (6.1): 

(6.3) E(wr)  = x;0 - d(2nr¢r)-1 .  

This will enable us to see more clearly the effect of adopt ing the model 
induced by  d = o against d = 1. 

Assuming Wr to be (approximately)  normal ly  distr ibuted,  the loglikelihood 
funct ion results in: 

(6.4) log L = const + ½ t'Z~ - ½E n r exp (z) ~) [w r - x~0] 2 + 

+ {dr 'X0-~r  dE n,71 exp ( - z ; ~ )  

Different ia t ing with respect to 0 and ~ gives: 

log L 

log L 

(6.5) - -  - Z n r e x  p (z;~l) [w r - X;0] x r + ½ d X' t  

(6.6) ~ vl - } Z ' t -  ½Z n r exp (Zr~l) [w r -  Xr0] 2 z r + 

{, d Z n r  I exp ( - z~ ~1) zr. 

Equa t ing  the elements of (6.5) and (6.6) equal to o defines the max imum 
likelihood equations.  Condit ionally on ~1, the solution for 0 exists in closed 
form • 

(6.7) 0 = [Y~n r exp (z r vl) XrXr] -1 [ £ n  r exp (z r ~1) WrXr + ½d X't] = 

= (X'NOX) -1 IX'NOw + ½dX' t] 

where w = (w i . . . . . . .  Wr)'. 

The submatr ices  of the Hessian are as follows: 

~2 log L 
(6.8) 3030' - -  X 'N@X 

~2 log L 
(6.9) ~O~v 1, --  Znrq~r[W r -  x~0] XrZ ~ 

~2 log L 
(6.1o) ~ ,  ~ - -½Xnrq~r[W r - - X ; 0 ]  2 ZrZ; --~ d Z ' ( N * ) - t Z .  

The matr ices  (6.8) and 6.1o) are negative definite, whereas the Hessian is 
not. So, the ve ry  same si tuat ion applies as in case of the Inverse Gaussian 
dis tr ibut ion in section 5. 

Due to the fact of a closed form expression for 0, given by  (6.7), the zig-zag 
i tera t ive  maximizing procedure  is even more simple in this case, however.  
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The information matrix takes the following form: 

rx,  x ............. .......................... 1 (6. I 0 - E  ~ - ~ - ~ ;  = 

Applying partitioned matrix invertation gives: 

(6.12) V(0) = (X'N¢I,X- dX'ZE2Z'Z+ dZ' (NO)-IZ] -1 Z'X) -1 

and the asymptotic form of (6.12) results in: 

(6.t3) lira (trN) g (0 )=  (X'NOX) -1. 

Whether d = o or d = 1 does not matter for large N, which does not surprise 
us, as both models converge to each other for growing N. 

For the model induced by d =  o, HARVEY (1976) contains an analysis of a 
two-step and three-step estimator for 0 and ~1, which are asymptotically effi- 
cient and which result in an economy of computational effort. 

7. F INAL  R E MARKS 

7.1. A Simple Estimator 

Consider again (6.3) with d = o, multiplied by n~ 2 and rewritten in the follow- 
ing form: 

(7.1) N~6w = NV2X0 + c 

whe re ,  is a disturbance term, approximately normally distributed with mean 0 
and covariance matrix ~-1.  

Estimating 0 by ordinary least squares, results in the following estimator 
for 0: 

(7.2) 6 = (X' NX) -1 X' Nw. 

This estimator is approximately normally distributed with mean and 
covariance matrix given by : 

(7.3) E(0) .----" 0 

v(6) ~ (X'NX)-I  X ' N O - '  X(X'NX)-I .  

If the elements of N grow large, the approximate nature disappears. The 

asymptotic covariance matrix for 0 becomes (X'~IX)-I X,~TO-iX(X,~iX)-i, 

which we should compare with (X'NOX) -1, given by (6.13). 
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The difference of these asymptotic matrices can be written as: 

(7.4) (X'NX) -1 X'N'ID-~ X(X'NX) - 1 -  (X'NOX) -1=  

(X'NX) -~ A'O -~ [ I - A ( A ' A )  -1 A'] ¢ - i A ( X ' N X ) - ' ,  

where A =  (NO)V~X. The matrix between brackets is idempotent with rank 

(R-X). So, (7.4) is positive semidefinite, making 0 an inefficient estimator. 
WATSON (1967, pp. 1684-1687) compares such matrices by  deriving a lower 

bound for the ratio of the generalized variances. 
Making use of the inequality of Hadamard as well as applying the inequality 

of Kantorovich, he finds a lower bound for this efficiency ratio, which can be 
written as" 

(7.5) {4p(1 + p) 

where p ~ I denotes the ratio of the largest to the smallest latent root of ~ .  
As • is diagonal, the latent roots are given by the diagonal elements. 

Adopting the geometric mean latent root criterion instead of the generalized 
variance, the lowerbound is obtained by deleting the exponent K in (7'5)" 

This gives a more scalar interpretable idea about the possible loss of effi- 
ciency for various values of p. Besides the fact that  (7.2) can be a good estima- 
tor in practice, it will also serve as a CO.lvenient starting value for the more 
complex approaches, given by maximizing (5.2) and (6.4). 

7.2. A S i m p l e  Tes t  

It is also possible to test whether • =¢ I  or not. For the loglinear specifica- 
tion of Cr, GODFREY (1978) derived a L~grange multiplier test, which only 
depends on the least squares residuals and which is asymptotically equivalent 
to the likelihood ratio test. 

This test runs as follows. Returning to (7.1) and (7.2), e can be estimated by  

(7.6) ? = N ~4 w -  N yz X(X NX)-1 X'Nw. 

The variance of the elements of e, which is equal to ¢-1, can be estimated by 

~'~ w' [N - N X ( X ' N X ) -  1X'N]w 
(7.7) R R 

The next step is to form the vector q with typical element given by  the 
square of the typical element of (7.6), divided by (7.7) and subtracting t • 

(7.8) qr = \ ~ ~ - 1]. 
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The test statistic can now be written as: 

(7.9) T = ½-q'Z(Z'Z) -1 Z'q.  

and has a Chi-square distribution with (L-l) degrees of freedom as limiting 
distribution under the hypothesis that ~ is a scalar matrix, making (7.2) an 
efficient estimator. 

7.3. Outliers. 

What about the practice of giving observations, taking on large values, 
a special treatment by putting them apart ? I think that we should not do this. 
Outlying observations should be identified with the help of the model. 

Now, by forming sample means, we construct aggregate observations, 
perhaps outlying, but less outlying than the constituting parts. Adopting the 
Inverse Gaussian distribution, which can be very skew, or applying the loga- 
rithmic transformation, there is room for the data to be "outlying" in the 
sense that  they are not distributed symmetrically around the central tendency. 
In order to identify outliers, we should apply maximum likelihood estimation 
and form standardized residuals and study these. 

The outlying nature of these standardized residuals depends also on N, X 
and Z and not only on the value of the observations itself. 

For the framework of the standard linear model induced by (6.3) with d = o 
and • a scalar matrix, the analysis of residuals is set out in THEIL (1971, 
ch. 5). 

The probability distribution for the standardized residuals was derived by 
ELLENBERG (1973) and shown to be the Inverted-Student distribution. This 
supplies us with sound methods to analyze outliers at least for the standard 
linear model. 

7.4. Bayesian Estimation and Inequality Restrictions. 

As regards estimation, this paper was written around the maximum likeli- 
hood method. Bayesian estimation is possible too, however. Bayesian inference 
is easy if integration can be performed analytically. If this is not possible, 
numerical procedures are called for, which are cumbersome, especially for 
large parameter dimensions. 

Monte Carlo integration appears to be feasable, however, as set out in a 
clear way by KLOEK and VAN DIJK (1978) in the context of Bayesian estima- 
tion. 

The use of numerical integration creates the freedom to specify prior distribu- 
tions without forcing these to take oll forms which facilitate analytical inte- 
gration. 

Consider now homogeneous risk groups in a certain line of insurance, for 
instance automobile insurance. In this field it may be possible to specify a 
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lower bound for the population mean of the claim cost distribution for the best 
risk group as well as an upper bound in case of the worst risk group. Further- 
more, it may be possible to rank certain elements of 0 in size 5. This a 13riori 
knowledge can be formalized as a set of linear inequality restrictions on 0, 
forming a convex subset of the natural parameter space. Adopting a uniform 
prior distribution on this convex subset completes the specification of an in- 
formative prior distribution, which easily can be used in a Monte Carlo inte- 
gration. The incorporation of such a pr ior i  knowledge may guide parameter 
estimation and shrink the highest posterior density intervals. 

This will especially apply to multicollinear situations, making matrices such 
as (5.8) and (6.11) ill-conditioned, resulting in likelihood functions which are 
relatively flat in certain directions. 

REFERI~NCES 

BERG, P. TEN (1980). On the Loglinear Poisson and Gamma Model, Ast inBul le t in  11, 
35-4 ° . 

ELLENBERG, J. H. (1973). The Joint Distribution o1 the Standardized Least Squares 
Residuals from a General linear Regression, Journal of the American Statistical 
Association 68, 941-943. 

FOLKS, J. L., and R. S. CHHIKARA (1978). The Inverse Gaussian Distribution andi t s  
Statistical Application--A l~_eview (with Discussion), Journal of the Royal Statistical 
Society B 40, 263-289. 

GODFREY, L. G. (1978). Testing :for Multiplicative Heteroscedasticity, Journal of Econo- 
metrics 8, 227-236. 

HADWIGER, ]7I. (194oa). Natiirliche Ausscheidefunktionen fiir Gesanltheiten und die 
L6sung der Erneuerungsgleichung, Milteilungen der Vereinigung schweizerischer 
Versicherungsmathematiker 40, 31-39. 

HADWIGER, H. (194ob). Eine analytische Reproduktionsfunktion flit biologische Ge- 
samtheiten, Skandinavisk A htuarietidskrift 23, 1ol- x 13. 

HADWIGER, H. (1942). Wahl einer NRherungsfunktion fiir Verteilungen au:f Grund einer 
Funktionalgleichung, Bldtter f i ir  Versicherungsmathematik 5, 345-352. 

HADWIGER, H., and •V. RUCHTt (1941). Darstellung der Fruchtbarkeit  durch eine bio- 
logische Reproduktionsformel, Archiv f i ir  mathematische [,Virlschafls- und Sozial- 
forschung 7, 30-34 . 

HARVEY, A. C. (1976). Estimating Regression Models with Multiplicative Heterosce- 
dasticity, Econometrica 44, 461-465. 

I{.LOEK, T., and H. K. VAN ~)[JK (1978). Bayesian Estimates of Equation System Para- 
meters: An Application of Integration by Monte Carlo, Econometrica 46, 1-19. 
Reprinted in A. ZELLNER, ed. (1980). Bayesian Analysis in Econometrics and Statistics. 
Amsterdam: North-Holland Publishing Company. 

NELDER, J. A., and R. \¥. M. WEDI)ERBURN (1972). Generalized Linear Models, Journal 
of the Royal Statistical Society d 135, 37o-384. 

OBY:t~HOFER, W., and J. KMENTA (1974). A General Procedure for Obtaining Maxirnum 
Likelihood Estimates in Generalized Regression Models, Econometrica 42, 579-59o. 

RAo, C. R. (1973), Linear Statistical Inference and its Applications. New York: John 
Wiley & Sons, Inc. 

SCHRODINGER, E. (19J5). Zur Theorie der Fall- und Steigversuche an Teilchen nlit 
Brownscher Bewegung, Physikalische Zeitschrift 16, 289-295. 

5 Similar restrictions may apply to claim frequencies in relation to the loglinear Poisson 
model. 



9 ° PETER TER BERG 

SEAL, H. L. (1969). Stochastic Theory of a Risk Business. New York: John Wiley & Sons, 
Inc. 

SEAL, H. L. (1978). From Aggregate Claims Distr ibution to Probabi l i ty  of Ruin, Astin 
Bulletin 10, 47-53. 

THEIL, H. (1971). Principles of Econometrics. New York: John Wiley & Sons, Inc. 
TWEEDIE, M. C. I<. (1957). Statist ical  Properties of Inverse Gaussian Distributions, 

Annals of Mathematical Statistics 28, 362-377 and 696-7o 5. 
WALD, A. (1947)- Sequential Analysis. New York: John Wiley & Sons, Inc. 
WATSON, G. S. (1967). Linear Least  Squares Regression, Annals off Mathematical Statistics 

38, 1679-1699. 
WHITMORE, G. A., and M. YALOVSKI (1978)- A Normalizing Logarithmic Transforma- 

tion ~for Inverse Gaussian Random Variables, Technometrics 20, 2o7-2o8. 


