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FURTHER RESULTS ON RECURSIVE EVALUATION
OF COMPOUND DISTRIBUTIONS*

Bjeorn Sunprand WiLLiam S. JEWELL

A rccent result by Panjer provides a recursive algonthm for the compound
distribution of aggregate claims when the counting law belongs to a spccial recur-
sive family In the present paper we first give a charactenization of this recursive
family, then describe some gencralizations of Panjer’s result

1 INTRODUCTION

Let p be the Lebesgue or the counting measure on (0, o), and let xi1, Xz, ...
be independent, identically distributed random wvariables (the independent
severities) with cumulative distribution F and generalized density /.

Fo) = [ J0)duly)

Let n be a random variable (the claim number), independent of the xs,
defined on the non-negative integers with probabilities:

pu = Pr(n=mn).
Then the generalized density g of the random sum (the aggregate claims)
s = X X
(we tacitly assume s 1s zero if n is)

has an atom
(1.1) g(o) = #o

at zero, and for s > o the form

(1.2) gls) = I pafr¥(s),

where fm* denotes the n-th convolution of /. This formula is extremely difficult
to compute because of the high-order convolutions; only a few closed-form
solutions arc known.

* Tins research was supported by the Norwegian Research Council for Science and
the Humanities, the Association of Norwegian Insurance Companies, and the Forschungs-
mstitut fur Mathematik, ETH Zurich
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PANJER (1981) has shown that, if there exist constants  and b such that

b
(1-3) Pﬂ = Ppa <(1+;;), (71 =1,2,.. )
then
x
(1.4) e = sl + | @+ﬁ)ﬂﬂﬂvwmmn

{s>0)

The importance of tlus result 1s that, when fis discrete, the successive values
of g can e recursively calculated. We now consider various aspects of the
relation between the recursions (1.3) and (1.4), and then provide a variety of
generalizations.

2. CHARACTERIZATION OF THE COUNTING DISTRIBUTION

The following theorem charactcrizes the class of counting densities p, sat-
isfying (1 3); it is essentially given 1n Jounson & Kotz (196g).

Theorem 1
Assume that (1 3) holds. Then we must have one of the four cases.

So (n = 0)
z.1) P = ? 1 (n > o)
\n
(2-2) f’u = ;,—I e (7\ > O)
(2.3) po= (0N PM1—p)  (x>00<p <)
(2.4) pa= (P 1—pN"  (0o<p<iN=172..)

Proof

To avoid negative probabilities we must have a + b > 0. TFor a+b = 0 we
get the degenerate case (2.1). For the rest of the proof we assumea + & > o
If a=o0, we get the Poisson density (2.2) with A = . For a > o we introduce
o = (a+ b)/a and get from (1 3)

pn = po(**57) am.

In order that £ $, < 1, we must have a < 1. Then we get the negative

binomial (Pascal) density (2.3) with p = a.
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Finally, assume @ < o Then, to avoid negative probabilities, there must
exist a positive integer N such that a + /(N +1) = o, thatis, N = —(a+ b)/a.
With p = —a/(1 —a) we get the binomusal density (2.4).

We have now proved the theorem

Q.ED.

The allowed regions for (a, b) areallustrated in higure 1, which 1s inspired by
Jounson & Kotz (1909, p. 42).

Remark

For the casec a < o Jounson & Kotz (1969, p. 41) also develop a distribution
for the case when — (@ + b)/a 1s not an integer, by letting p, = o when a +
(bjn) < o. However, that distribution does not satisfy (1.4) as we then must
have that (1.3) holds for all n > 0. A modified version of (1.4) allowing such
“generalized binomial’’ distributions will be given in Section 5 However, this
version seems in most cases to be more comphicated than direct computation
of (1.2) For the binomial distribution we have that Pr(n > N) = o, but as
(M} = o for n > N we can let p, be defined by (2.4) for all the non-negative
integers.

3. GENERALIZATIONS

We first imntroduce some notation- if z1, 25, ... are given quantities, then we let

n
n = Xz
i=1

denote the sum of the first 22 elements

Assume there exists a function 2 : {(x, s) 1 0 < x# < s} — IR, satisfying the
condition that

G (h(x1, 8) | Xux = §) = my
are independent of s.

(3 1) (n=23,...)

Then we have the following generalization of Panjer’s result:

T heorem 2
If
(3 2) pn = f)n-l My, (72 = 2,3, .. )

witl the sequence {imny,} satisfying (3.1), then

(33) g(s) = puf(s) + (I)h(x- s) f(x) g(s —x) dufx) - (s > 0)
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Proof
We have fors > o

g6) = = pafrrls) =
pfs) + S-J:a Pr-ama fr*(s) =

AL+ X paa § B 9)J() [0 (5= 3) duls) =

PO+ T ) ST P (50 dula) =
PO+ S 5) [0 g5 ) dulx)

(0. 2}
Q.E.D

It is clear that 1f the functions /i and 7z both satisfy (3 1), then for all
constants ¢; and ¢z the function ¢i /it 4 ¢z /12 satisfies (3 1).

For all constants 4 and b we clearly have

X1 b
(3-4) @(a+b-s—]xnz=s =a+ -, (n 2,3, ...)

n

independent of s. Hence the kernel in (1.3),
¥
hix,s) = a+b T

is a-special case of (3 1) with

b

(3-5) Mp o= a+ (m=2,3,...)

The foliowing example gives a distribution satisfying (3 1) with m, sat-
isfying (3 5), but not covered by Panjer’s result.

Lxample 1
Consider the loganthmic counting density
py =0 {n = o)
(3.6) ‘ (0o <p <)
1 pn

— (n=12...).

[in(t—=p)| n
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Then we have
1
n = Pna (1—;), (n;2,3,...)

thatis, my, = 1 — (1/n); @ = 1; b = —1, and for s > o we obtain

e = 2uf0 + [ (1=2) 769 g6 duto).

(0, )
The difference from Panjer’s result is that (1.3) does not hold for # = 1.

Theorem 3
Assume that (3.1) is satisfied for the distributions given by
Prixg=1) =1 — Pr(xy=2) =p. (0<p <1)

Then there must exist constants a and b such that (3.5) is satisfied.

Proof
Forp = 1 and p = o we get
(3-7) Mn = h(1,n)
(3.8) My = h(2, 2n)
respectively,
Assume pe(0,1); % = 2,3, ...;n = u,u + 1, ..., 2u. Then

n—1 )
fy) foD* (2u—y) (2.“ —y-—n+1
(3.9) ™% (2u) - (,n ) :
2u—n
By using (3.7), (3.8), and (3.9) in
f(1) fOO* (20— 1)

My % (o) h(1, 2%)
f(2) f-V* (2u—2)
+ 7o (o) h(2, 2u)
we obtain
bu
Ma = ay + P
with

Ay = 2May — My, by = 2u(my — may).




32 SUNDT AND JEWELL

As
bu+1 bu.
Myl = Ayqr + = ay + ’
u+ u+ A+ 1 u Wt 1
bu+1 bu
Myse = Ay+l + = ay + ,
U+ U+ U+ 2 u U+ 2

we must have a,41 = a4 and by = by for all «, that is, there exist constants
a and b such that (3 5) 15 satisfied
Q.ED

Theorem 3 says that if (3.1) is to hold for a class of two-point distributions
F, the sequence {my} must satisfy (3 5). This result clearly implics that if
(3 1) 15 to hold for all distributions on {0, o), the sequence {#i,} must satisfy
(3.5). Because of this fact we restatc Theorem 2 for this particular class of
counting distributions

Theorem 2

If
b
(3.10) Pn = Pna (a—f— ;;), n==213...)
then for all severty distributions F we have
Gr) el =ps) + | (a+b§) £(2) (s = %) dulz). (s > o)
(0. 4)

We close this section by comparing the class of counting distributions
defined by (1.3) (that is, the class given in Theorem 1) to the class defined by
(3 10). Clearly the latter class contains the former one. As in the latter class
the recursion may start at one, the restriction a4 + b > o may for a > o be
replaced by the weaker condition a + b/z 2 o. Hence, the permitted para-
meter space is now increased by the dotted region of figure 1

As po may now be chosen (relatively) freely, the counting distribution is no
longer uniquely determined by {a, b). For (a, ) being in the permitted region
for recursion (1.3), excluding the line a + & = o, the permitted class consists

of the distributions given by

a2 , Pl =
12 n =
’ ((1—9)7111, (n=12 ...

where {n,} is a counting distribution satis{ying (1 3), and p 1s chosen such that
p < 1 and po 2 0. p, clearly satisfies (3.10) with the same (a, b) as for =,.
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Fig 1 Pernutted {a, b) parameter space fo1 recursion (1 3) (The dotted areca denotes the
mcerease obtamed by recursion (3 10) )

In the discrete case (3.11) may under the present conditions be written as

gls) = (a+0) oF'(s) + > (a+b§)/(x)g(s—a). (s > 0)

For a + b = o the permitted class of counting distributions is given by
(3.12), with the obvious restrictions on p,and py given by (3 0).

A counting distribution {$;,} of the form (3.12) may be interpreted as a weight-
ed (in a general sense, as p may be negative) distribution of the distribution {r,}
and a distribution concentrated at zero. Then the aggregate claims distribution
must be the analogous weighted distribution of aggregate claims distributions,
and if the aggiegate claims distnibution g, cornresponding to =, is known, we

3
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may find the aggregate claims distribution gp corresponding to p, by

g(s)_ﬁp+(1—9)gn(0) (s = o)
T - p) gals) (s > o)

4 RESULTS ON SPLECIFIC SEVERITY DISTRIBUTIONS

Trom (3 4) and Theorem 3 we see that if (3.1) is going 1o be satisfied for all F,
then the sequence {my,} must satisfy (3 5). However, for specific classes of I
there may exist other m,

The following obvious result is interesting in this connection.

Theorem 4

Let v be a function such that v(Xi, Xpz) 15 independent of Xy for all n. Then
(3 1) holds for any i that can be writien h(a,s) = k(v (x, 5)) with () (X1, Xng))
existing for n = 2, 3,

Example 2

Assume that Xi, Xz, .. arc gamma-distributed with parameters («, v) Then
X1/X 3 is mdependent of X,y and beta-cdistributed with parameters (v, (7= 1)v).
Hence, by Theorem g4, all 2i(x, s) = k(x/s) with €(k (X1/X,1)) existing for all »
satisfy (3 1) In particular, if

we get

L(nv) T(v+) D{(n—=1) v +_12
D{n—=1) v) I'y) Plnv+ 1+ 0)

My =

For » = o and u positive integer this gives

l
v+ ag
My = | =
v+ 1 -’-—4nv+1

for somce a,, ..., 2y independent of # Hence, for any positive integer u
there exist constants ¢y, ..., cy+1 such that

w4l

k(z) = X ¢52t

§=1

gives
1
My =

ny 1
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Lxample 3
Assume that the counting density is hypergeometric

1L M~

(11) ( N - 7L>

(4-1) R
()

where the positive integer parameters (m, A7, V) satisfy N < M, m < M - N.
T'or 2 > 0 we have

(m—=n+1) (N=n+1)
Pu = Pu n(M —m~ N+ n)

which may be written

< b c >
Pu = Pn-r\a + n T n+M-—m—-N/

with
a =1,
{ (m+1) (N +1)
’= T N—-M+m
(M —m+1) (N=M-1)
€=- N —~ M +m

Now, assume that the x;s are gamma-distributed with parameters (o, v),
where v 1s a positive integer As we may write

c Ccv
n4+M—m—N " v+ (M—m—N)y’

by Example 2 we can lind a function /7 such that Theorem 2 is satisfied.
b ]

The extension to the eccentnic hypergeometne distnibution (sce SVERDRUP
(1970), with counting density

, P A,

ﬁn=m» (A >o0)

where py s grven by (4 1), 1s obvious

Similar approaches are possible for the following counting distributions,
described i Jouxson & Kotz (196g)  the displaced Poisson distribution
(p. 113), and the Yule distribution with generalizations (pp. 244-251)
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5. RECURSION ON A LIMITLD RANGE

In the previous cases we have assumed that the p, can be computed recur-
sively for # > 1. The following Theorem 5 extends this to the case when the
recurston holds only for n > K with K > 1.

Let
gils) = I pufm™ (5).
Then
G = T pufv () + gxls)

Theorem 5
Assume that
Pn = Pu-1 iy, n=K+1,K+2,...)

with 1, grven as wn (3.1). Then

(5.1) grls) = pr fE*(s) + (I) h(x, s) [(x) gr(s — %) du(x)

(The proof goes as in Theorem 2 and 1s omitted.)

The dfference from the underlying assumptions of Theorem 2 1s that (3.1)
and (3 2) do not need to hold forn < K. 1i (3.1) holds forall # > 2, msertion of

¢x(s) = gs) - z P S (s) (s > o)

in {5 1) grves the final recursion.
(52 §6) = PLSO) + I (pupuor ) 223

+ 1 e 3) S0 gls = ) du). (s > o)
(s, ¢
(The summation is zero 1f X = 1) Compared to (3.3} we have now got the
summation as a correction term, since this would be zero if py — pac1min = 0
forn=2 .. K .

TFor the special case of Theorem 5 with po = p1 = ... = pya = 0 (trun-
cation from below) gr(s) = g(s), and (5 1) gives
(53) g(s) = pr M) + [ hx, s) () gls =) du(a).

(0, 9)
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We shall now see what happens if the counting distribution is truncated
from above Assume

Pu =0 (n=o0 ..., =1)
= pp-1iy . (n=K+1,...,L)
= 0 (n="L+1,...).

Then for s > o we get
(54) g(s) = prfEY () — prmpy ftlt* (s)

+ (f) h(x, s) f(x) g(s — %) du(x).

Unfortunately, in this formula wc necd high-order convolutions of f. These
can be rather comphcated to compute, except for some cascs where we have
simple closed-form expressions (gamma, Poisson, binonial, negative binomial
distributions). In some cases the factor p mr41 makes the correction term
negligible. Another possibility is for large L to approximate f(Z+1)* by a (pos-
sibly discretized) normal density Otherwise 1t is probably more efficient to
compute g from the basic definition (1.1).

6 EXTENSION TO NON-POSITIVE DISCRETE VALUES

We now leave the assumption that the x;s are distributed on (o, o) and as-
sume that they are distributed on the set of all integers.

f(x) = Pr(x=x). x=... -2 —1,01,2,...)

Then (1.1) must be replaced by

(6.1) g0) = po + I pusm™ (0).

n=1

We further assume that the counting distribution satisfies the recursion
(1.3), and analogously to Theorem 2 we obtain

(6.2) sgls) = T (as+bx) f(x) gls— )

I=-o

If x; only takes on zero plus positive valucs, so does s, then f#*(0) = [ f(0)]~?,
and the sum in (6 1) can be carried out explicitly (sce the probability generating
function for the counting distribution in Jounson & Kotz (1969)). We then
get the recursive system
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—a o] 5D
2]

= g-bl1-fl0)], (@ = o)

1 < a
g(s) = <T—Tf(o}> Z (ﬂ + 0;) f(x) g(s — )
) (s> 1)
The case where the a, can take on negative values is difficult because one
cannot, in general, find switable starting values for s in (6.2).
However, in the case where py, 15 Poisson with parameter 2 (z.2), the density
g can be computed by fwo apphications of (b 3) plus a convolution Let

X, = maxn (0, X,)

(6 4) G =12, ..)
X, = max (0, —X,)
and we have
n n
st = ¥ x/ sT = X X~

(65)

André Dubey has pomnted out to us that when n1s Poisson distributed, then
s*ands” arcindependent Let x;” and x; havedensities f* and /7, respectively,
and s* and s™ have densities g* and g7, respectively Then g* and g= are
computed independently, using (6 3). with @ =0, b = %, and the corre-
sponding /* or /7. Then g for the total sum 1s computed by the convolution

@

(66) g = T gegle=s)
(6.2) can, in princple, also be solved for p, inomal, if f(x) 15 defined over
(=K, — K+ 1, ...), for in that case theie 15 a largest negative value of the
sum, s = — NI, and (6.2) can be rcarranged mto a true recursive form.

Remembering that p = —af/{1 —a) and N = — (a + l)/a, we get the recur-
sive system:

(6.7) gls) = o (s < — NK)
= [pf(= K)]¥ (s = —NK)

(1—p) s—-K)g(s—K) + '+£'- N+1)x=NEK—5] f(x-K) g(s—x)

=1

(s+ NK) f(= IV

(s > - NK)
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Of course, if K{ is very large, there arc obvious problems with round-off crror
accumulation, especially if f(— K) and the ncarby values are very small. We
remind the reader that this problem can occur with any recursive scheme
described in this paper where the range of discrete severities is large

There remains the case of p, negative binomial (2 3) for which it doces not
scem possible to give a sunple procedure for negative x;s. Of course, in this and
m the other cases, onc can think of various #erative schemes for (6.2) which
would converge to the correct density.
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