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FINITE SUM EVALUATION OF 
THE NEGATIVE BINOMIAL-EXPONENTIAL MODEL* 

HARRY H. PANJER AND GORDON E. WILLMOT 

Umvermty of Waterloo, Ontario, Canada 

1. INTRODUCTION 

The compound negative binomial distribution with exponential claim amounts 
(severity) d~stribution is shown to be eqmvalent to a compound binomial 
distribution with exponential claim amounts (severity) with a different 
parameter. As a result of this, the distribution function and net stop-loss 
premmms for the Negative Binomial-Exponential model can be calculated 
exactly as finite sums if the negative binomial parameter a is a positive integer. 
The result is a generalization of LUNDBERG 0940). 

2. BINOMIAL-EXPONENTIAL AND NEGATIVE BINOMIAL-EXPONENTIAL MODELS 

Conslder the distribution of 

(1) S = X 1  + X~ + . . .  + X N  

where X1, Xz, X3, . . .  are independently and identically distributed random 
variables with common exponential distribution function 

(2) F x ( X  ) = l - -  d - x z ,  X ~ 0 

and N is an integer valued random variable with probability function 

(3) P n  = P r { N  = n}, n = o, 1, 2, . . . .  

Then the distribution function of S is given by 

(4) F s ( x )  = E priESt? (x) x > o. 
n - o  

If M x ( t ) ,  M N ( t )  and M s ( t )  are the associated moment generating functions, 
then 

(5) M s ( t )  = E 2 v E x [ e t ( X t  + " + x2v) I N = n] 
eo 

= x p ~ { M x ( t ) } ~  
t t - O  

= M2v( ln  M x ( t )  ). 

* This research was supported by the Natural Smences and Engmeering Research 
Council of Canada. 
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The moment generating function of the exponential distnbtltion (2) is 

X 
(6) M x(t) - X -  t" 

First, consider the binormal distribution with probability function 

and moment generating function 

(8) M~(t) = (p + qeOm 

where p + q = 1. Then, for the compound binormal distribution with ex- 
ponential claim amounts (severity), (5) becomes 

Ms(t) = + q 

(9) = / \ |x -p t~  
m 

\ X - t /  

Now consider the negative binomial with probability function 

(]o) Pn = ( ° ~ + n - 1 )  p ~ q n n  

and the moment generating function 

where p + q = 1. Then, for the compound negative binomial with exponential 
claim amounts (severity), (5) becomes 

(12) Ms(t) = ( P-- X I ~ 
1 - eU2. / 

= (PX-PtI~" 
\ p x -  t / 

Comparing (9) and (i2), one notes that they are of identical form provided 
that 0~ is integer valued. Hence, the Negative Binomial - -  Exponential model 
is equivalent ' to  a Binomial--Exponential model. The negative binomial 
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distr ibut ion with integer valued c~ is sometimes called the Pascal dis t r ibut ion 
according to JOHNSON and KOTZ 0969).  ~ 

3- PROBABILITY COMPUTATIONS 

When the claun amounts  (severity) are exponent ia l ly  dis t r ibuted as m (2), 
the stun of n claim amounts  has a gamma distr ibution with dis t r ibut ion 
functions.  

= xx) 

where 

(14) I ( k ,  t) = S s k - t e - 8 / F  (k)ds,  k > o 
0 

is an incomplete gamma funct ion.  I t  is well known (formula (6. 5.13) of ABRAMO- 
WlTZ and STEGV~' (1964)) tha t  for positive integer values of k,  one can evaluate 
the incomplete  g a m m a  funct ion as 

(15) I ( k ,  t) = 1 - X j . l  k 1, 2 ,  3 . . . . .  
J ,0  

Substituting (15) and (13) into (4) results in 

t t - I  

F s ( x )  = Po + Z p n { t -  Z (Xx)~e-x-~ 
. - ,  ~ - o  j~  s 

(16) 
n - i  

=1 Z p,, Z (~x)Je-XZ 
. . . .  , X >  O .  

If N is binomial,  (16) becomes 

(17) F s ( x )  = l - Z qnpm-r~ Z , x > o 
. - ~  j - o  J/ 

whach is easily evalua ted  since it is a flmte sum. If N is negative binonfial 
(16) will become the  infinite sum 

(18) F S ( X  ) = 1 - -  X o r + n - - I  po~q n Z , x > 0 
, - t  $2, 1..o ~ t  

which is computatlonally inconvenient. 

i I t  should  be no ted  t h a t  th i s  co r respondence  is d i f fe rent  f rom tile usual  co r respondence  
be tween  t h e  nega t ive  b inomia l  d i s t r i bu t i on  and  t he  b inomia l  d i s t r i b u t i o n  o b t a i n e d  b y  
c o m p a r i n g  (8) a n d  (t L). 
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However ,  since (12) is of the same form as (9), one can use (17) to evaluate  
the distr ibution of S for the negative binomial when e is an integer;  i.e. 

o~ qnp~-n Z j l  ' (19) FS(x)  = 1 -- X > 0 

The result (19) is a generahzat ion of the Geometr ic -Exponent ia l  model 
studied by  LUNDBERG (1940) since the geonletrlc distr ibution is a special 
case of the negative binomial distribution (lO) with o~ = 1. For  the Geometr ic-  
Exponent ia l  model, (19) reduces to 

(20) F s ( x )  = 1 -  qe -pxz  

which is the result of LUNDBERG (1940). 
When 0¢ is an integer, formula (19) makes the exact  computa t ion  of the 

dis tr ibut ion funct ion for the Negative Binomial -Exponent ia l  model easy to 
ca r ry  out.  When 0¢ is not an integer, it is suggested tha t  the computa t ion  be 
done for several adjacent  integer values so tha t  an interpolat ion can be carried 
out  to obtain the value at 0¢ In order to assess the error involved in the inter- 
polat ion,  one can resort  to the s tandard  methods  of numerical  analysis For  
example,  the error in approximat ing  F s ( x ) ,  now denoted F s ( x  [ ~), by  hnear ly  
interpolat ing between F s ( x  [ [0¢]) and F s ( x  [o~ + l]) is exact ly  

- -  + i ]  - ( x  I 4) 

where F "  (x I 4) is the second der ivat ive  with respect to 0~ of F ( x  I ~) evalua ted  
at  the point  c~ = ~ where [0~] < ~ < [0¢+ 1] The unknown der ivat ive  can be 
approx imated  by  a second difference such as A 2 F s ( x l [ o ~ -  1]) or A ~ F s ( x l  [0¢]) 
or, be t te r  yet,  the average of these two values. These methods  are found in 
most  s tandard  tex ts  on numerical analysis. B y  carrying out  the calculat ion 
for several integral values, interpolat ion can be carried out and es t imates  
of the  error  can be calculated. 

Ra ther  than provide extensive tables for possible combinat ions of ~, p, 
and x, the authors  leave to the reader the evaluat ion of the error for the specific 
s i tuat ions m which the reader may  be interested. 

4. STOP-LOSS COMPUTATIONS 

For  a stop-loss level of x, the net stop-loss p remium is given by 

m 

(21) R(x )  = J" (y  - x ) d F s ( y ) ,  
~t 

which can be rewri t ten as 

x 

(22) R(x)  = E[S] - f {1 - F s ( y ) } d y ,  
0 

x >  O 

X >  0 
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Upon substi tut ion of (19) into (22), the net stop-loss premium for the 
Negative Binomlal-Exponentaal model becomes 

; (:) . . . .  o~q Z qnp~-n Z (PXY)Je ~Xy 
R(x) = p--~- . - ,  ,..o J~ dy 

( : )  ' f: Z qnp~, - n = - - _ _  px . . . .  j.t (pXy)Je -~xv dy 

( )  . ~q Z ~ ~np~-n Z I(y + l, pXx) 
- p x  n q px M - t  J~O 

1 qnp~-n X { t -  (pXx)ke ~x 
- p x  [ ~ q  - - k ~  ~ . - 1  J - o  7 r = o  

": ,  (pXx)%-2~xz 1 
px [ ~  - eq + 

,~ ,  \ n ]  ,Z o k l  

- q ~ P ~  ~ ( p x x ) ~  
(23) _ P , -  \ / -,, ,_Zo ( n - k ) - - ~ - - J  

which is a finite sum consisting of ~(e + 1) / 2 terms. 
When 0~ = l, the net stop-loss prcmium for the Geometric-Exponential  

model becomes 

qe- ~xz 
(24) R(x) - px 

whmh can also be obtained darectly from (20). 
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