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1.  I N T R O D U C T I O N  

In the present paper  we deal with the problem of calculating a premium for the 
largest claims and E C O M O R  reinsurance treaties. AMMETER derived already 
In 1964 formulas for calculating the premiums of the largest claims and 
E C O M O R  reinsurance treaties (compare also SEAL (1969), TH~PAUT (1950)), 
which we will restate in the followmg Section 2. Lately BENKTANDER (1978) 
has established an interesting connection between the premiums of the largest 
claims and excess of loss reinsurance treaties. He  proved that the net risk premium 
of the largest claims treaty covering the p largest claims is bounded by the risk 
premium of an excess of loss treaty plus p times its priority, which has to be 
determined such that the mean number  of excess claims equals p. Fur thermore  
Benktander  showed in examples that the upper bound is quite good in case of 
the Poisson-Pareto risk process. Nevertheless he did not give a formal proof for 
the quality of the bound m the Poisson-Pareto  case nor for other risk processes. 

In the following note we take up this last point and prove that for general 
risk process Benktander 's  upper  bound is equivalent to the premium of the 
largest claims reinsurance cover when the size of the collective approaches 
infinity. Consequently, for large portfolios the risk premium of the largest claims 
cover may be replaced by the upper  bound, e.i., calculated from the premium 
of the corresponding excess of loss treaty. Moreover  we state a s~milar result 
for the E C O M O R  treaty. 

2. PRELIMINARIES 

Consider a collective K of risks of an Insurance company (resp. of a special 
branch of the company),  producing claims each year. Let N denote the random 
variable of claims number  per year and X,, t = 1 . . . . .  N the claim amounts. We 
arrange the claims in decreasing size: 

XN l~"  " "~XN N. 

In the following we mvesttgate special reinsurance treaties, defining the 
reinsurer 's  claims amount  by: 

N 

R =  E f,(X~,) 
I=1  

where f,, i = 1, 2 . . . .  are real-valued functions with: 

L(x)~<x, Vx, and ~L(x , )~>0 ,  V x l > ~ . . ' ~ > x , > 0 ,  Vn. 
I = l  
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We get with the definition' 

(a) f,(x) = max (x - P ,  0), i = 1, 2 . . . .  

the excess of loss treaty (XL(P)) with priority P, 

(b) f,(x) = x, i = 1 . . . . .  p 

f,(x) = 0, i = p + l , p + 2  . . . .  

the largest claims reinsurance treaty (LC(p)), covering the p largest claims, 

(c) f , (x)=x,  t = l  . . . . .  p - 1  

f p (x )=(1-p )x  

f,(x) = 0, i = p + l , p + 2  . . . .  

the E C O M O R  reinsurance treaty ( E C O M O R  (p)), covering all claims excess 
the pth largest claim. 

In the following we restrict on investigating the net risk premium 

/.z = E ( R )  

and assume X,, being i.i.d, random variables with distribution function F, and 
N independent of all X,, i = 1, 2 . . . . .  Then the net risk premium of the XL(P)- 
treaty is equal to: 

(2.1) ~XL(m = E(N)  [ (x - P )  F(dx). 
J[ P, oo) 

For the LC(p) and E C O M O R  (p) treaty the derivation of formulas for ~ is 
more involved and easy tractable expressions can only be developed with addi- 
tional assumptions on the distributions of N and X,. Assume N being Poisson 
distributed with parameter  h > 0 and F being a Pareto &stribution function with 
parameter  a > 1, e.i., 

(2.2) F(x) = 1 - x - " ,  x -~ 1. 

Then, according to AMMETER (1964) and BERLINER (1972), the net risk premium 
/xLc(p) of the LC(p)-treaty can be approximated from above by 

~cc~,)=v 1/" a F ( p + l - 1 / a )  
a - 1  F(p) 

(2.3) 

where 
a o  

F(y) = Jo uy-I  exp ( - u )  du. 

CIMINELLI (1976) showed that even for negative binomial distributed N 12LC~p) 
is a quite good approximation of/x LC(o). Finally Ammete r  developed under the 
Poisson-Pareto-assumption an approximation for the net risk premium 
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ECOMOR(p) Of the E C O M O R  (p)-  t reaty • 

(2.4) ~'ECOMOR(p) = /pl/t~ 1 
a - 1  

r (p -1 /a )  
F(p - 1) 

(3.1) 

with the abbreviat ion:  

3. RATING FOR L A R G E  PORTFOLIOS 

In order  to derive results on the risk p remium for large portfolios, we investigate 
growing collectives Kk = {R, i = 1 . . . . .  k} of risks R,, e.g., let k ~ oo. We assume 
for claims number  Nk 

x/Var (Nk) 
hm vk = oo, lim = 0 

k ~ o o  k ~ ¢ o  V k  

Uk = E(Nk) .  

Deno te  by LCk (Pk) resp. E C O M O R k  (Pk) largest claims resp. E C O M O R  reinsur- 
ance covers for collective Kk and suppose:  

(3.2) lim pk = s ~ (0, 1), 
k ~ o o  P k  

e.i., asymptotical ly our  treaties cover  the SUk largest claims. Now we can state 
our  theorem:  

Theorem 

In addit ion to (3.1), (3.2) assume: 
(1) the claim amounts  X,, t =  1, 2 . . . .  are identically distributed with the 

cont inuous  distribution function F and existing first moment .  
(2) Nk, X,, i = 1, 2 . . . .  are independent  
(3) F ( P , - h ) < F ( P ~ ) < F ( P , + h ) V h  > 0  a t P ,  = F - l ( 1 - s )  and 

Then:  

I[P,.oo) (x - P, )F(dx ) > O. 

(a) l im  IzLC,(pO = 1, 
k ~ o o  [ - L X L k ( P k )  "~- PkPk 

(b) l i m  P'ECOMORk(Pk)-- 1, 
k ~ o o  i & X L ~ ( p k  ) 

where XLk(Pk) denotes  the excess of loss t reaty for collective Kk with 
priority: 

=v-'  
\ Vkl 

(with the usual convent ion .F- l (u)  = inf {x: F(x)  >t u}). 
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Remark 1 

One should notice that the above theorem holds under rather weak assumptions 
on the claims number and claims size distributions. 

Proof 

We restrict ourselves on proving (a), since the proof of (b) is similar. By 
Chebyshev's inequality one has: 

( N k  1 ) Var (Nk) 
P I~k--- ~ e  ~< e2Vk2 , 

where the upper bound converges by (3.1), (3.2) to zero. 
Consequently, 

lim --=Nk 1 in probabihty, 
k ~  Vk 

implying with (3.2): 

lim Pk - - = S  in probability. 
k ~co N k 

According to theorem 19.6 m BAUER (1974), we may assume in our proof: 

(3.3) lim Pk 
k~co N k  ~SS 

and consequently (by (3.1), (3.2)): 

(3.4) lim Nk = oO 
k~oo 

With definitions: 

Tk := mm (Pk, Nk) 

almost surely 

almost surely. 

Ykl := min (Ps, XN~ T~) 

Yk2 := max (Ps, XN~ T~) 

rk := E(, ~,=1 X, stgn (P,-XN~ T~)lry~, y~2)(X,)~/ 

(1M denotes the indicator function of the set M) we can write: 

(3.5) IZLCk(p~)=E(,~lX, ltxN~ T~.o~,(X,)) 

= E(,~ X, a[p,.~,(X,))+rk 

= l.t XL~¢P,) + VkPsS + rk. 
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Obviously for rk holds: 

(3.6) [rk[ < E(v~  1 ~k IX,[ llxNk Tk,e.}) 
t.'k I=  1 

From (3.2)-(3.4) and the strong law of large numbers follows: 

lim v~ 1 ~ IX, I=EIX,  I almost surely. 
k ~ o o  I=1 

Since by (3.3): 

lim Tk k~o~ ~ = S almost surely 

we get from a theorem in SERFLING (1980) (p. 75): 

lim X N~ T~ = P~ almost surely. 
k~oo  

Consequently, the mtegrant in (3.6) converges almost surely to zero, implying 
with the theorem of dominated convergence (in the version as stated in LO~VE 
(1963) on the bottom of page 162): 

(3.7) lim rk = O. 
k o o o  /-"k 

Since llmkooo Pk =Ps, we have by (2.1): 

lim t~XL~(P____~)_ lim ~XL~(P,)_ f ( x -Ps )F(dx ) ,  
k ~ c ~  /.Zk k~oo  /2k J[ p~.co) 

yielding with (3.2), (3.5), (3.7) statement (a). 

Remark 2 

Defining the expected total claims amount of collective g k  : 

~k = vkE(X1), 

the statement of the theorem can be formulated equivalently for the premium 
rates as: 

k~oo ([d, LCk(pk) " XLR ( P k ) P k P k ) =  0 
(a') lim \ ~k /.tk P.k / 

(b') lim, ~ ~ ,=0' 

According to this theorem, the net risk premium (more exactly the net premium 
rate) of the LC( p )  and E C O M O R ( p )  treaties may be calculated from the 
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premium of the XL(P)  treaty with 

p = F - ' ( l _  P _ _ ' ~  
\ E ( N ) ] '  

if the expected claim number  E ( N )  is large. In practice one has to estimate P. 
Assume one can get information about the largest claims of the past years 
i = 1 . . . . .  [ and that in the year i the claims number  has been equal to rn,. If 
for the quotation year the expected claims number  is estimated as being 9, then 
set: 

and estimate P by: 

1 ! 
x" '  +FI I t l+  

y ( t )  
where ..,~, j denotes t h e / t h  largest claim of the accident year i (assuming all 
claims being inflation- and IBNER-corrected) .  

Now let us compare  our result with BENKTANDER (1978). Define Hk(x), being 
the expected number  of excess claims for the XLk (x) treaty in the collective Kk. 
For a solution Jfk of'  

(3.8) Hk (ilk) = Pk, 

Benktander  showed for a general risk process: 

(3.9) tz LC~(pk) ~< Ix XL~@~) + Pk fik. 

Since under our conditions: 

Hk(x) = uk(1 - F ( x ) )  

holds, a special solution of (3.8) is 

which is by (3.2) and condition (3) of our theorem even the unique solution for 
sufficiently large k. 

Consequently,  Benktander ' s  upper  bound (see (3.9)) is identical with the 
denominator  of the ratio in part  (a) of our theorem. So we have gwen a general 
proof that for large portfolio Benktander ' s  bound is a good approximation to 
the pure risk pi:emium. 

4. ASYMPTOTIC PREMI U M RATES FOR SPECIAL RISK PROCESSES 

Our theorem of Section 3 was derived under quite general assumptions on the 
claim size distribution F and the claim number  distribution. Completing our 
investigation, we now consider two special models for the risk process. 
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Example 1 

Assume F being a Pareto distribution function with parameter a > 1 (see (2.2)). 
Then one  has with the notations of Sections 2 and 3: 

Ps = S -11~ 

1 a-lie 
XLW,) = E ( N )  s 

oL - -  I 

D e n o t e  by tz the expected total claims amount of colletive K, e.i.,  

= E ( N )  a - 1 "  

N o w  one easily derives with remark 2 the handy approximations.  

(4.1) tZLC,o) ( P ~I-a/ .  
tz \E----~] 

(4.2) /'L ECOMOR(p) ~ 1 ( E ~ N ) )  1-1/" ~ - -  

for large E(N).  In addition assume, N being Poisson (or negahve binomial) 
distributed. Then we can calculate the premium rates IxLc(o)/tx, /.LECOMOR~,)/IZ 
with formulas (2.3), (2.4). The fol lowing tables contain the resulting values for 
various a and s = p / E ( N ) .  The approximaUons (4.1), (4.2) are written in the 
last column. 

(1) LC(p)- treaty .  

E(N)  

a = 1 5 100 200 400 oo 

s = 0 ' 0 1  19 2% 20.4% 21 0% 21 5% 
0 02 25 7% 26 4% 26 8% 27 1% 
0 03 29 9% 30.5% 30 8% 31 1% 
0 04 33 2% 33 7% 34.0% 34 2% 
0 05 36 0% 36 4% 36 6% 36 8% 

E(N)  

a = 2 0 100 200 400 co 

s = 0  O1 8 7% 9 4% 9 7% 10 0% 
0 02 13 3% 13.7% 13 9% 14.1% 
0 03 16.6% 17.0% 17 1% 17 3% 
0 04 19.4% 19.7% 19 8% 20 0% 
0 05 21 8% 22 I% 22 2% 22 4% 
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E(N) 

a = 2 5 100 200 400 co 

s = 0 0 1  5 6 %  5 9 %  6 1 %  6 3 %  
0 02 9 0% 9 3% 9 4% 9 6% 
0 0 3  11 7% 1 2 0 %  12 1% 1 2 2 %  
0 04 14 1% 14.3% 14.4% 14.5% 
0 05 16 2% 16 4% 16 5% 16 6% 

E(N) 

o~ = 3 0 100 200 400 co 

s = 0 01 4 2% 4 4% 4 5% 4 6% 
0 02 7 0% 7 2% 7 3% 7 4% 
0.03 9.3% 9 5% 9 6% 9 7% 
0 0 4  11.4% 11 5% 11 6% 11 7% 
0 05 13 3% 13 4% 13 5% 13.6% 

(2)  E C O M O R  (p )-treaty : 

U(N) 

a = 1 5 100 200 400 co 

s = 0  02 12.8% 15 8% 17.0% 18 1% 
0 03 17.1% 19 1% 19 9% 20 7% 
0 04 20 0% 21 5% 22 2% 22 8% 
0 05 22 2% 23 4% 24 0% 24 6% 
0 06 24 0% 25 1% 25 7% 26.1% 

E(N) 

a = 2 0 100 200 400 co 

s = 0 0 2  4 4 %  5 9 %  6 5 %  7 1% 
0 03 6 7% 7 7% 8 2% 8 7% 
0 04 8 3% 9 2% 9 6% 10 0% 
0 0 5  9 7 %  1 0 5 %  1 0 8 %  11 2% 
0 06 10 9% 11 6% 11 9% 12.2% 

E(N) 

= 2 5 i00  200 400 co 

s =0 .02  2.3% 3 1% 3 5% 3.8% 
0 03 3 6% 4 3% 4 6% 4 9% 
0 04 4.7% 5 3% 5.5% 5 8% 
0 0 5  5 6 %  6 1 %  6 4 %  6 6 %  
0 06 6.5% 6 9% 7 2% 7 4% 
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E(N)  

a =3 0 100 200 400 

s =0 02 1 4% 2 0% 2 2% 2 5% 
0 03 2.3% 2 8% 3 0% 3 2% 
0 04 3 1% 3 5% 3.7% 3.9% 
0 05 3 8% 4 2% 4 3% 4 5% 
0 06 4 4% 4.8% 4 9% 5 1% 

R e m a r k  3 

A referee pointed out  that  the formulas  (4.1), (4.2) could also be derived directly 
with the Stirling approximat ion  f rom (2.3), (2.4). This conjecture  is only partly 
true, since (2.3), (2.4) were deduced  with the assumption of Poisson (or negative 
binomial) distributed claim numbers ,  whereas  with our  general  theorem (4.1), 
(4.2) easily follows for arbitrary claim number  processes which only 
satisfy (3.1). 

Example  2. 

Now assume F being an exponential  distribution function. For  compar ison with 
example 1, we choose F such that its range and its mean  value are identical 
with those of the Pare to  distribution, e.i., 

We get: 

F ( x ) = l - e x p ( - ( a - 1 ) ( x - 1 ) ) ,  x~>l .  

1 
Ps = 1 - In (s) 

o e - 1  

S 
ix XL(P,) = E ( N )  - -  

or- -1  

and the expected total claims amount :  

ot 
= E ( N )  - -  

yielding with our  remark  2 the approximat ions:  

(4.3) ~ L C ( p )  P ( I _ I i n ( E @ N ) ) ) _  
tx E ( N )  ce 

(4.4) IXECOMOR(p) 1 p 
ix C~ E ( N )  

for large E ( N ) .  Values for the approximat ions  (4.3), (4.4) are given m the 
following tables (with s = p / E ( N ) ) :  
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L C ( p )-treaty 

K R E M E R  

a = 1 5  2 0  2.5 3 0  

s = 0 0 1  4 1 %  3 3 %  2 8 %  2 5 %  
0 0 2  7 2 %  5 9 %  5.1% 4 6 %  
0 0 3  10.0% 8 3 %  7 2 %  6.5% 
0.04 1 1 6 %  1 0 4 %  9 2 %  8 3 %  
0 0 5  15.0% 1 2 5 %  1 1 0 %  1 0 0 %  

ECOMOR (p )-treaty 

a = 1 5  2 0  2 5  3 0  

S = 0 02 1 3% 1.0% 0 8% 0.7% 
0 03 2.0% 1 5% 1 2% 1 0% 
0 04 2.7% 2 0% 1 6% 1 3% 
0 05 3 3% 2 5% 2 0% 1.7% 
0.06 4 0% 3 0% 2 4% 2 0% 

Obviously for small a and small s, the asymptotic premium rates are much smaller 
than in the Pareto case (compare last columns of the tables in example 1), a 
result which has already been mentioned by KUPPER (1971) for the LC(p)-cover 
with p = 1, E(N) = 100. 
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