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ABSTRACT

We give some actual possibilities for computing numerical values in the classical
risk models both in transient and asymptotical cases by introducing the concept
of normed model. Some recent approximations are tested on numerical examples.

We also emphasize the interest of these methods to compute waiting time
distributions (transient and stationary cases) in queueing theory.

1. MODELS CONSIDERED
1.1. Risk Mode!

We will limit our attention to the classical Cramér-Lundberg model for which
we have the following characteristics:

(1) The claim number process is a Poisson one with parameter A. Let (A, ),
be the sequence of interarrival times between claims so that

(1.1) E(A,)=A"".

Following the current notation, N (¢) (¢ = 0) represents the total number of claim
occurrences on (0, ¢].

(ii)) The process of successive claim amounts is a sequence of non negative
i.i.d. random variables (B,).=; with d.f. B(:) such that

(1.2) E(B.)=8B

and this process is independent of (A, ), 1.
(iii) The premium income process has a constant rate per unit of time: ¢. To
avoid certain ruin on [0, ©), we must have:

A

(1.3) —B< 1.
¢

So, we can define 7, the security loading by

(1.4) c=AB(1+n).
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Every risk model is thus characterized by a triple (A, B(x), n). Now define,

N
(1.5) S(t)= ¥ B,

n=1
with the usual convention that a summation over a void indice set is 0, and
(1.6) R(t)=u+c-t—-8(@)
where u, supposed to be positive, is the initial reserve. Of course, if F{x, ¢) is
the d.f. of S(t), we have

(1.7) F(x,1)= § e'“(;—t)nB"*(x)

n=0 !

where B"* represents the n-fold convolution of B.
If T is the random variable, possibly defective, defined by

(1.8) T =inf {t: R(t) <0}

we have for the probabilities of non-ruin the following definitions:
(a) on a finite horizon time [0, ]

(1.9) ¢ (u, 1) =P[T >1t]
(b) on a finite horizon time [0, o)

(1.10) ¢ (u)=1lim ¢ (u, 1).
For the ruin probabilities, we have, of course
(1.11) Gu, t)=1-cp(u,t)
(1.12) Y)=1-¢u).

1.2. Normed Risk Models
1.2.1. First Semi-Normed Relation

Let Ry and R, be two risk models characterized respectively by (1, B(:), n) and
(A,B(*),m).

If ¢olu, t) and ¢1(u, t) are corresponding non-ruin probabilities, we want to
find a relation between ¢, and ¢ ;. To do so; let us remark that from (1.7)

(1.13) Folt, )= % e_'LHTB(x)
n=0 n:

(1.14) Fi(x, )= § e'“(:—t')B(x)
n=0 .

so that

(1.15) Fi(x, t) = Folx, At)

or S1(¢) has the same distribution as Sg(At).
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Now, from (1.9)
(1.16) &1(u, ) =P[S1(t)su+cy-t', 1" €0, £]]

withcy=A-8:(1+n) by (1.4). For Rg, we have co=(1+7)'1-8. Using (1.15),
we get

¢1(u, t)=P[So(AtY<su+A-co-t',t'€[0, t]]
=P[So(t")su +cot", t"€ [0, At]]
and finally
(1.17) é1(u, )= dolu, At).

1.2.2. Second Semi-Normed Relation

Following Pfenninger (1974), we can also normalize the claim size distribution.
Let us consider the risk model R; and R,, where R, is characterized by (A, B'(-),
n) with

(1.18) B'(x)=B(Bx)
i.e., B'(x) is the d.f. of the random variables B,/8.
We have

@10, ) =P[S1 (1) su+A-B-(L+n)','e[0, ¢]]

= P[Sz(r’) Sl%-ﬁ-/\ (1+q0), ' ef0, r]]
and finally

u
Py

(1.19) ¢1<u,r>=¢2(3 0.

1.2.3. Normed Relation

Combining the two preceding steps, we get the so-called normed relation for
the risk models R, and R; respectively characterized by (A, B(-),n) and
(1,B'(),n):

(1.20) b, 1) =¢3(§, A -z)

R is called the normed model.
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This relation gives some simplification for numerical computation, especially
for tabulation purposes. For example, in the M/M/1 model for which

0 x<0
B(x) =
1-e™ x=0

characterized shortly by the triple {A, u, n), the normed model R; is given by
the triple (1, 1, 1) so that we have only one parameter, the security loading.

From the numerical point of view, it suffices to treat this model to obtain
results for any model with triple (A, u, n).

2. THE QUEUEING MODEL

We will only consider the classical M/G/1 model for which A is the rate of
arrivals and B(+) the d.f. of the service time, with mean {?7 IEN()(t=0) represents
the total number of arrivals on [0, t]and W, the waiting time of customer number
n (we suppose that W, =0, i.e., a time 0, a service is just beginning) it can be
shown (Janssen (1977)) that

(2.1) P(Wxo <ul=dlu,1)
(2.2) }Lrg[Wﬁ<r> <ul=¢(u)

where ¢(u 1) and & (1) are the non-ruin probabllltles of a risk model character-
ized by A as claim number process parameter, by B (x) as claim size distribution
and by ¢ =1 as premium rate. The security loading of this corresponding risk
process is, of course, given by

- = 1
2.3) c=1+n)A-B or n=r3——1.

Consequently, to every M/G/1 queueing model, characterized by A and B(x),
corresponds a risk process with parameters (A, B(x), (1/XB)—1). Inversely every
result for the Cramér-Lundberg model (A, B(x), n) can be transposed for a
M/G/1 queueing model with parameters

- 1
A=
(1+n)B

B(x)=B(x).

For a fixed n and a given B (x), we can see the relation between the normed-model
non-ruin probability ¢3(u, t) and the waiting time distribution. We have:

t
2.4) LW niy <ul= (5 T7)
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3. NON-RUIN PROBABILITY IN THE TRANSIENT CASE FOR THE M/G/1 MODEL

Theoretically, two principal methods are used to solve this problem: the first
method is based upon the double Laplace transform of ¢ (u, t) and the second
one upon the previous determination of ¢ (0, ).

3.1. Cramér-Arfwedson-Thorin
The equation of Thorin (1968), valid in the general case GI/G/1 is:

u+c u

(3.1) ¢(u,t)=J‘dK(v)J ¢u+co—x,t—v)dB(x)+1-K(t)
0

where K (t) = 1 —¢ " It gives the double Laplace-Stieltjes transtorm of ¢ (u, t) =
(3.2) (s, 2)=—z(1=5s/51(2))/(1 —cs —z - B(s))

where s,(z) is the only root with a negative real part in the Lundberg equation:
(3.3) 1-z+c-s—B(s)=0,

B(s) being the Laplace-Stieltjes transform of B(x).
For the M/G/1 model, Cramér (1955) and Arfwedson (1950) obtained this
result by using the integro-differential equation

B4 cdlN=2dru0-| dlu-y,0dBY).
u at o

This was also found by Beekman (1966} using results of Donsker and Baxter
(1957) about processes with stationary independent increments.

Theoretically, thus, the problem is worked out, but we have to use twice the
Laplace inversion. However, we dispose of fiable algorithms for this inversion
(Piessens (1969), Stroud and Secrest (1966)), but this needs some care: the
Laplace inversion of a good approximation of a given function is not surely a
good approximation of the Laplace inversion of this function. Some precautions
are thus required if we want to compute ¢ (i, ¢) by means of a double inversion
of §(s, z); probably for this reason, there are few results needing such double
transformation in the risk theory literature.

However, if B(x) is an exponential polynomial, i.e., if

m

(3.5) Bx)=1- % b,e™™*  5,>0,8,>0 v=12,...m, Yb,=1

v=1

then the problem can be solved with only one inversion. In this case, &, z),
the Laplace transform of ¢ (u, t), is given by

(3.6) Fu,2)=1- Y goz)e ™=

ve=1

where §,,(z) are the m roots of the Lundberg equation with a positive real part.
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Furthermore, in this case, this equation 1s a polynomial one and the roots are
easily obtained by well-known algorithms (Bairstow, Newton-Raphson) (see
e.g., Wikstad (1977), Stroeymeyt (1977)).

It is also possible to approximate a general claim size distribution by an
exponential polynomial; this was tested by Thorin and Wikstad (1977) for a
lognormal distribution.

3.2. Prabhu-Beries—Seal

The well-known relations of Prabhu (1961) can be used here:

t

3.7) & (u,t)=F(u+ct, t)—cJ‘ ¢0,t—0)(u+co,0)dé

0

1 ("
(3.8) ¢(0,1)=—I F(y,t)dy,
ct Jo

where f(x,t)=9/ox F(x,!).
Although the function F(x,t) is very difficult to handle directly, the use of
the Laplace transform and an integration give the non-ruin probability.

3.3. Direct Results for M/M/1 and M/D/1 Models
M/M/1 model, i.e., the model with the following claim size distribution:
0 x <0,

l1—-e™ x=0

B(x)={

is the really well-known model in risk theory, it has a direct solution in terms
of a modified Bessel function of first class; some subroutines give very accurate
values of this function (see e.g. Stroeymeyt (1977)).

The M/D/1 model with a deterministic claim amount can also be directly
solved (see e.g., Seal (1974)).

4. THE ASYMPTOTIC NON-RUIN PROBABILITY

For a general M/G/1 model, we have:
(4.1) & (u)=1lim & (u, £) = (u, 0)

where

= ]
Fwo)=] et
-
Thus, only one inversion of a Laplace transform is needed and we avoid some
problems raised by the double inversion. Furthermore, in some special cases,
the value is explicitly given. If B (x) is an exponential polynomial (3.5), Cramér
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(1955) gives an explicit formula:
(4.2) pw)=1- % Cee ™"
k=1

where Ry, k=1,2,...m, denote the m roots of the Lundberg equation, a
polynomial one in this case; Cy, k =1,2,... m, are simple functions of those
roots. Especially, if B(x) is an exponential, we have the following expression:

—_1_ 1 -n/(1+n) u
(4.3) du)=1 —1+ne .

For the M/D/1 model, a recursive formula exists to compute ¢ (u).
As pointed out by Bohmam (1971) the computation of asymptotic non-ruin
probabilities is now easy to do even with a common desk computer.

5. SOME NUMERICAL RESULTS IN THE TRANSIENT CASE

We will restrict ourselves to three models already treated in the literature:

Model A or M/M/1 model (see e.g., Seal (1974), Stroeymeyt (1977))
A=1

B(x)= {0 x <0
7 =e™ x20
n=0.1.
Model B or M/D/1 model (see e.g., Seal (1974))
A=1

0 x<0
B“F{l x=1
n=0.
Model C (see e.g., Stroeymeyt (1977))
A=2
0 x <0
1-0.8¢7°™-02e™ x=0

n =0.037234.

Bu)={

These models do not give rise to special computational difficulties, they are
useful to test some approximations and bounds, and to test different methods.

5.1. The Accuracy of the Laplace Inversion Methods

To test the precision of the Laplace inversion methods, we give in Table 1 the
real values of the non-ruin probability computed by means of a Bessel modified
function for the model A (Column 1.1). The same values are computed by the



106 JANSSEN AND DELFOSSE

TABLE 1

MODEL A VALUES OF ¢(0,T)

T an (12) (13)
01 0.90965 090321 0.89887
02 083561 0 82978 082586
03 077429 0 76905 076547
04 072295 071817 071497
0.5 067952 0.67527 0.67230
0.6 0.64242 0.63589 063589
07 061043 0 60688 060453
08 0.58260 0.57942 057726
09 0.55819 055530 055335
10 0.53660 053400 053223
20 040714 040621 0.40554
30 034479 0 34442 0.34421
40 0 30669 0.30656 0.30649
50 028040 0 28035 028034
60 026088 0.26086 0.26086
70 0124566 0 24566 024566
8.0 023337 023337 023337
90 022319 022319 0.22319

100 021457 021457 021457
100 0.11001 011001 0.11002
200 0.09902 0.09902 009897

(1.1) Direct computation
(1 2) Stroud and Secrest method
(1 3) Pressens method

Stroud and Secrest method (Column 1.2) and by the Piessens method (Column
1.3) for the model A, for different values of ¢ and for u = 0.

To obtain those values, the Prabhu-Benes-Seal relations (3.7) and (3.8),
were used. It can be pointed out that the non-ruin probabilities obtained by
Laplace inversion are quite similar to the non-ruin probabilities ‘‘directly”
computed, except for small values of ¢.

In Table 2, we give the non-ruin probabilities for the model C obtained by
the Stroud and Secrest method (2.1) and by the Piessens method (2.2), for u = 0.

Here also, it can be remarked that those methods give nearly the same values
except for small values of ¢.

5.2. Approximations of F(x, t) by Means of Normal Power Approximation
and T'-function

The form of the Prabhu-Benes—Seal relations suggests that an approximation
of F(x,t) can provide a good approximation of the non-ruin probability. But
those approximations of F(x, t) are only valid for large ¢, and thus they bring a
lot of imprecision in the integral

J‘lf(co +u,8)$(0,t—0)ds in(3.7).
(4]
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TABLE 2
MopEL C VALUES OF ¢(0,1)

t @2n (22)
01 0.82524 0.82914
02 071305 071638
0.3 063429 063511
04 057240 057458
0.5 0.52601 0.52779
0.6 048913 049057
0.7 045904 046020
08 043396 0.43489
09 0.41267 0.41347
1 039432 039496
2 029016 0.29023
3 024180 0124180
4 021252 021251
5 019239 019239
6 017748 017748
7 0.16586 016586
8 015648 0.15648
9 0.14871 014871

10 014213 014213

(2 1) Stroud and Secrest method
(2 2) Pressens method

However, some of those methods will provide an acceptable approximation of
¢ (0, t), when ¢ is not too small.

Bohman and Esscher (1963) and Cramér (1955) give approximations of F(x, t)
in terms of ®(x). the reduced normal distribution function. Normal Power
approximations are proposed by Pesonen (1975) and by Taylor (1978). A
I'-function was also proposed by Seal (1978).

In our examples, the best method to calculate ¢ (0, ¢) seems to be the Normal
Power approximation from Taylor (1978).

Table 3 contains some values of ¢ (0, ¢) and of this approximation for the
M/M/1 model. The method of Taylor consisting of an approach of ¢ (u, t) by
means of ¢ (0, £)+(1-¢(0, 1)) G(w, t) involves some numerical complications:
for one certain value of the security loading, n, negative numbers are obtained
for a variance. Furthermore, this method occasionally involves some surprising
results: an approximation for ¢(1, 10) is smaller than the approximation for
@ (1,100). Taylor thinks that the consideration of higher order moments could
give more accuracy but, of course, this will lead to complications from the
numerical point of view.

5.3. The De Vylder Approximation

De Vylder (1978) proposed to approach the asymptotic non-ruin probability of a
M/G/1 model by non-tuin probability of a M/M/1 model with such parameters
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TABLE 3

Model A Model C
T (1) (2) (3) 4) T (1) (2) (3) (4)

0.1 0.46003 155294 090136 090965 0.1 044025 120985 085731 082914
02 0.44370 1.19918 086913 0.83561 02 041618 093522 075184 071638
03 043134 103439 081417 0.77429 0.3 0.39816 0.80241 0.65527 063511
04 042104 093164 075267 0.72295 04 038333 0.71731 058645 057458
05 041208 0.85861 070029 067952 0.5 037057 0.65557 0.53537 052779
06 040408 0.80266 065686 064242 0.6 0.35930 0.60755 049576 049057

07 039681 0.75765 062056 061043 0.7 0.34918 056851 046396 046020
0.8 039013 072021 058981 0.58260 08 033998 053578 0.43772 043489
0.9 038394 0.68828 056340 055819 09 033154 0.50774 041561 041347
10 037814 066052 0.54043 053660 1.0 0.32373 048330 039665 0.39496
20 033420 049466 0.40750 040714 20 0.26745 033895 0.29046 029023
30 030422 0.41030 0.34484 034479 3.0 023245 027019 024185 024180
40 028162 035665 030668 030669 40 020804 022980 0.21253 021251
50 026372 0.31910 028038 0.28040 50 018993 020341 019239 019239
60 024910 029131 0.26086 026088 6.0 0.17590 0.18488 017748 017748
7.0 0.23690 0126995 024564 0.24566 70 016470 017112 016586 016586
8.0 022655 0.25306 023335 023337 80 015553 016045 015648 015648
90 021764 023941 022317 022319 9.0 0.14785 0.15187 0.14871 0 14871
100 020989 0.22815 021455 021457 10.0 0.14133 0.14477 0.14213 014213

20,0 016577 017309 016815 016816 20.0 0 10583 0.10785 0 10648 010649
400 013453 013913 013621 013621 400 008092 008233 008143 0.08143

(1) Normal-Power Approxtmations of ¢ (0, r) (two terms)
(2) Normal-Power Approximations of ¢(0, t) (one term)
(3) G. C Taylor Approximation of ¢ (0, ¢).

(4)$(0,1).

that the two reserve processes R(¢) have the same first moments. De Vylder
emphasized the fact that the initial reserve must be large and supposed that this
approximation can also be used for transient probabilities. In Table 4, we compare
some results of this approximation for the model B and the model C. If this
approximation is not good for small values of u, this very simple method gives
acceptable values for important values of u (u = 10).

5.4. Some Easily Computable Bounds in Transient Case

We found it interesting to examine some easily computable bounds, to test
approximations or calculations by means of Laplace inversion and to eliminate
some aberrant results.

(1) Gerber Minoration: Gerber (1973) gives a minoration based upon marting-
ales. It can be improved for the M/M/1 model. This minoration cannot be used
with a null initial reserve except for the M/M/1 model. For the M/M/1 normed
model, the Gerber minoration takes the following form:

du,)=<1— min (1-7) exp(—ru —crt+t—r—).
(e ~1)/ec—r<i 1 -r
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TABLE 4
Model B
u=0 wu=1 u=2
t (1) 2) ‘ (1) . @ t (1) (2)
1 073576 026218 1 091970 075288 1 098101 093381
2 060901 018674 2 083457 061680 2 0.94171 084879
3 0.,53106 015284 3 076548 0.,53420 3 089866 077767
4 047697 013252 4 070988 047763 4 085758 072010
5 043662 0.11861 5 066437 0.43584 S5 0.82000 067297
6 040503 010833 6 062638 040337 6 078607 0.63369
7 037944 0.10032 7 059411 037721 7 075552 060040
8 (035815 009387 8 056630 035554 8 072796 057176
9 034008 008852 9 054201 033722 9 070300 054680
10 032450 008399 10 0.52057 032147 10 068031 052481
u=3 u=4 u=5 u=6
t ) (2) t (n 2 ' (1) (2) t (1) (2)
1 099634 098491 1 099941 0.99695 1 099992 0.99944 1 099999 099991
2 098231 094840 2 0.99528 098438 2 099888 099573 2 099976 099893
3 096124 090623 3 098669 096449 3 099586 0.98776 3 099883 099612
4 093698 086513 4 097461 094094 4 099063 097627 4 099681 0.99118
5 091181 082717 5 096024 091613 5 0.98342 096237 S 099358 0.98428
6 0.88695 079275 6 0.94455 0.89139 6 097466 094701 6 0.98917 097581
7 086298 076168 7 092822 086741 7 096475 093091 7 0.98372 0.96615
8 084016 073363 8 091171 0.84449 8 095405 091453 8 097741 0.95564
9 081859 070822 9 0.89533 0.82278 9 094283 089822 9 097039 094458
10 079827 068513 10 087925 080230 10 0.93132 0.88216 10 0.96283 0.93319
u=7 u=28 u=9 u=10
4 (1) (2) t (1) (2) ! (1) (2) t (1) (2)
11 0.99999 1 1 1 1 1 1 1 1 1
2 099995 099975 2 099999 099995 2 1 0.99999 2 1 1
3 099969 099886 3 099993 099968 3 (99998 099992 3 1 099998
4 099899 099694 4 099970 0.99901 4 0.99992 099969 4 099998 0.99991
5 099768 099386 5 0.99921 099774 5 0.99975 099921 S 099993 0.99974
6 099566 098962 6 099836 0.99579 6 0.99942 099838 6 0.99980 099941
7 099291 098434 7 099708 099314 7 099886 099714 7 099958 0.99887
8 098948 097819 8 099535 098981 8 099805 099546 8 0.99922 099807
9 098543 097132 9 099317 0.98586 9 099695 099334 9 0.99870 099700
10 098082 096389 10 099055 098136 10 099555 0.99078 10 0.99799 099563
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TABLE 4 (continued)

Model C
t (1) 2) 4 (1) (2)
1 099164 099166 21 0 66608 0.66583
2 0.97316 0.97313 22 0.65748 065724
3 0.95019 0.95009 23 0.64930 0 64905
4 0.92596 0.92581 24 064150 064125
5 090206 0.90187 25 0.63405 0.63380
6 0.87917 0.87895 26 0.62693 0.62668
7 085758 085734 27 0.62012 061987
8 0.83735 0.83711 28 061359 061334
9 081847 081821 29 060733 0 60708
10 0 80084 0.80059 30 060132 0 60106
11 0 78440 0 78413 31 0 59554 0 59528
12 0 76902 076876 32 0 58998 0.58972
13 075463 0.75437 33 0 58463 0 58437
14 074115 0 74089 34 057947 0.57921
15 0.72848 0.72821 35 057450 0.57423
16 0 71655 0.71629 36 056970 0 56942
17 070531 0 70505 37 0.56506 056478
18 0 69469 069443 38 0.56058 0.56029
19 0.68464 0 68439 39 0 55624 055595
20 067512 067487 40 0.55204 0.55174
(1) ¢(10,1).

(2) De Vylder approximation of ¢ (10, 1)

Taking the derivative, it can be easily proved that the minimum is attained for

_ 1+4(u+ct)—1
2(u +ct)

(2) Gerber Majoration: when the initial reserve is null, Gerber (1979) gives

a majoration of ¢ (0, 1)
AB) 1 Ao?
s(1-—|+— .
¢(0’t)<( c ct c—AB8

(3) Beekman—Bowers Minoration: Beekman and Bowers (1972) proposed a
very simple minoration of ¢ (u, )

1-2 < g, 1),
17

Of course, for large values of ¢, this minoration becomes negative.

(4) Bounds based upon the asymptotic non-ruin probability: The asymptotic
non-ruin probability is generally easy to compute: either explicit formula exist
or only one Laplace inversion provides it. With these probabilities, it is possible
to construct bounds for small values of ¢, bearing in mind that, especially in this
case, different values were observed for Laplace inversion (see Delfosse 1980).
(4a) Minoration:

¢ (u)

Saten W)
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BOUNDS AND APPROXIMATIONS DESCRIBED IN 5 4

TABLE 5

Model A u=0
! (1) (4a) {0, 1) {4b) 2
01 077724 0.90950 0.90965 090992 1
02 062707 083472 0 83561 083727 1
03 052256 077188 077429 077857
0.4 0.44734 071834 0.72295 073076
05 0.39140 067218 0.67952 069139
06 034857 063197 0.64242 065855
07 0.31491 0.59664 061043 0.63079
08 028788 0.56534 0.58260 0.60699
09 026576 053744 055819 0 58635
10 024736 051239 053660 056822
2.0 015722 0.35553 0.40714 0.45858
3.0 012549 0.27841 034479 040224
40 011015 023273 030669 036567
50 0.10166 0.20265 028040 0.33926
60 0 09666 018143 0.26088 0.31894
70 0.09369 0.16572 024566 030263
80 009199 0.15369 0.23337 0.28915
9.0 0.09115 014421 022319 027775
10 009091 013659 0.21457 0.26794 1
100 0.09091 0 09091 011001 0.13061 0.18181
200 009091 009091 0.09902 011145 013636
Model A+ 4« =10
t (4a) (3) §Y) ¢(10,n {4b)
0.1 0.99423 0 99800 0.99998 099999 099999
02 098869 099600 099994 099998 0.99998
03 0.98321 0 99400 0.99988 0.99997 099997
04 097784 099200 099980 0 99995 0 99995
05 097259 099000 0.99969 099992 0.99993
0.6 0.96744 0 98800 099956 0.99989 0.99990
07 096420 0 98600 0.99941 0.99985 0.99987
0.8 095746 098400 0.99923 099980 099983
09 0.95261 098200 099902 0.99975 0.99979
1 0.94787 0 98000 0 99879 099969 0.99974
2 090517 096000 0.99483 0.99865 099895
3 0.86972 0 94000 0 98833 099677 0.99757
4 0.83996 0 92000 0.97965 099410 0 99566
5 081473 0.90000 096942 099077 099332
6 0.79317 0 88000 0.95816 0 98689 099061
7 077463 0 86000 094629 0.98258 0.98761
8 0 75858 0 84000 093413 0.97796 0.98440
9 074462 0 82000 092190 097311 0.98103
10 073242 0.80000 090978 096810 097754
100 063375 0 063374 0.73947 078760
200 0.63374 0 067334 068217 072116
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(4b) Majoration.
1
(¢ * F(X, t)lx»—u+cl)

In Table 5, we present these bounds for the model A for ¥« =0 and for 4 = 10;
in Table 6, the same bounds for the model C, for u =10.

du,t)sdu)-Flu-+ct t): (when t=<u/c).

TABLE 6
BOUNDS AND APPROXIMATIONS DESCRIBED IN 54

ModelC u =10

! (4a) 3) 2) &(10,1) (4b)
1 0 83201 0 89871 093398 099164 099346
2 071966 0.79741 085465 097316 098010
3 0.63941 069612 0 78205 095019 096382
4 057937 0.59482 071969 092596 094665
S 053287 049353 066688 090206 0.92956
[ 0.49588 039223 062208 087917 091300
7 046582 029094 058387 085758 089715
8 0.44098 0.18964 055101 083735 088210
9 042016 0 08835 052254 081847 0.86784
10 040250 0 049767 0 80084 085436
20 0.31268 0 035744 067512 075213
30 028239 0 0.29932 060132 068634
40 026982 0 026935 055204 063950
COMMENTS

These bounds are rather crude for certain values, but a package of these
majorations and minorations does not take much computer time and allows to
eliminate some inexact values. Our minoration ¢ (u)/¢(u +ct) shows that
¢(0,0.1) and ¢(0,0.2) are too small in Model A and in Model C; for those
values, the obtained non-ruin probabilities were the most different.

These minorations and majorations are also interesting to limit the use of
precise but time-consuming methods: those bounds can be used to restrain the
area of possible computations, if we allow some parameters of the model to
vary. For example, the calculation of the bounds (4a), (4b) takes 16 times less
calculation time than the computation of an exact value by the Laplace inversion.
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