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ABSTRACT 

We consider a risk model in which the claim inter-arrivals and amounts depend 
on a markovian environment process. Semi-Markov risk models are so introduced 
in a quite natural way. We derive some quantities of interest for the risk process 
and obtain a necessary and sufficient condition for the fairness of the risk (positive 
asymptotic non-ruin probabilities). These probabilities are explicitly calculated 
in a particular case (two possible states for the environment,  exponential claim 
amounts distributions). 
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1. INTRODUCTION 

Several authors have used the semi-Markov processes in Queuing Theory and 
in Risk Theory [e.g., CINLAR (1967), NEUTS (1966), NEUTS and SHUN-ZER 
CHEN (1972), PURDUE (1974), JANSSEN (1980), REINHARD (1981)]. Besides, 
some duahty results lead to nice connections betweer  the two theories [FELLER 
(1971), JANSSEN and REINHARD (1982)]. 

Semi-Markov risk models may be defined as follows. Consider a risk model 
in continuous time; let B .  (n ~No)* and U, (n eNo) denote respectively the 
amount and the arrival time of the nth claim. Put Ao = Bo = Uo = 0 and define 
A ,  = U. - U , - I  (n eNo). We suppose that the A ,  and B ,  are random variables 
defined on a complete probability space (f~, .s~, P); the variables A .  (n ~ No) are 
a.s. positive. Let now J~ (n e N)  be random variables defined on (fL ,-~, P) and 
taking their values in J = { 1  . . . . .  m} ( m e N o ) .  Suppose finally that 
{(J,, A, ,  B, ) ;  n e N} is a Markov chain with transition probabilities defined by a 
bivariate semi-Markov kernel: 

P[.Z,+~=l",A,+z~<t,B,+l~xlJk, Ak, B k ; k = O  . . . . .  n]=Qj .o(x , t )  a.s. 
(1.1) 

(~e l ,  t~O,  x e R ,  h e N )  

and Q , ( . , t )  are right continuous nondecreasing functions where O,,(x, . ) 
satisfying: 

* No= {1, 2, 3. 

O , ( x , t ) ~ O ,  O,,(oo, 0) = 0 (i, j e J ; t ~ O )  

O,, (co, co) = 1 (i ~ .f) 
I=l 

O,,(-oo, oo) = 0 (i,j ~J).  

}, N={0, 1,2, 3. } 
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Such processes, called (J-Y-X) processes, were studied by JANSSEN and REIN- 
HARD (1982) and REINHARD (1982). In the particular case where 

(1.2) O,,(x, t) = (1 -e-X')O,,(x), it > 0 ,  

the processes {A,} and {(L, B,)} being independent ,  JANSSEN (1980) interpreted 
the variables J ,  as the types of the successive claims. The  next section will show 
that  another  subclass of semi -Markov  kernels appears  if we assume that the risk 
depends  on an env i ronment  process. 

2. RISK PROCESSES IN A M A R K O V I A N  ENVIRONMENT 

Suppose  that  the claim f requency and amounts  depend  on the external environ-  
ment  (economic s i t u a t i o n . . . )  and that the external env i ronment  may be charac-  
terized at any time by one of the m states 1 . . . . .  m (m ~ No). Let  Io denote  the 
state of the env i ronment  at time t = 0 and let I . ,  n = 1 . . . . .  be the state of the 
env i ronment  after its nth transition. Put To = 0 and let T. (n ~ No) be the time 
at which occurs the n th  transit ion of tl-.e env i ronment  process. We suppose that 
[ .  and T. (n ~ N)  are r andom variables defined on (lq,,s~¢, P)  and taking their 
values in J and R ÷ respectively. Define now Y. = T. - T . - i  (n E No), Yo = 0 and 
assume that 

(2.1) P[I,+,=I, r,+,~tl(Ik, rk),k = 0 , . . . , n , I ,  =i]=h,,(1-e -A'') 

(i , f~l; t~>0; neN)  
where the it, are strictly positive real numbers  and H = (h,,) is a transition matrix: 

h,, ~ 0, ~ h,k=l (t,l~J). 

{I , ,n  e N}  is then a Markov  chain with a matrix of transit ion probabilities 
H = (h,/): 

(2.2) h,, = P [ I . + l  =]ltn = / ] .  

Define Ne(t) = sup {n : Tn ~< t} and I(t) = IN.c,) (t ~ 0). The  process {I(t), t ~ 0} is 
a finite-state Markov  process;  it is known that the number  of transitions of the 
env i ronment  process {I(t)} in any finite interval (s, t], i.e., Ne(t)-N,(s), is a.s. 
finite. 

Deno te  now by J ,  the state of the env i ronment  process at the arrival of the 
nth claim: 

(2.3) L = I(U,) (n ~ N). 

We will suppose that the following assumptions are satisfied: 
(H1) The  sequences of r andom variables (A, )  and (B,)  are condit ionally 

independent  given the variables J . .  
(H2) The  distribution of a claim depends  uniquely on the state of the environ-  

ment  at the time of arrival of that claim. Let  

(2.4) F,(x)=P[B,~<xIJn=t] (t~J, n~N, x~R) 



A C L A S S  O F  S E R M I - M A R K O V  R I S K  M O D E L S  25 

(H3) Let N(t) be the number of claims occurring in (0, t]. If I(u) = i for all 
u in some interval (t, t +h] ,  then the number of claims occurring in that interval, 
i.e., N ( t + h ) - N ( t ) ,  has a Poisson distribution with parameter  ~, (a, >0) ;  we 
assume further that given the process {I(t)} the process {N(t)} has independent 
increments. So 

(2.5) P [ N ( t + h ) = n + l l N ( t ) = n , I ( u ) = i  f o r t < u ~ < t + h ] = ~ , h + o ( h ) .  

The process { N ( t ) ; t ~ 0 }  appears thus as a Poisson process with parameter  
modified by the transitions of the environment process. 

Under the above assumptions it may be shown that {(./,, A, ,  B,) ,  n ~N} is a 
(J -Y-X)  process with semi-Markov kernel ~ defined by (1.1). {(J,, A, ) ,  n ~ N} 
is a Markov renewal process [see PYKE (1961)]; we denote its kernel by 

= ( v , , ( . ) ) :  

(2.6) V,,( t)=e[J~+l=f,A,  ~t](Jk, A k ) , k = O  . . . . .  n ;Jn=i]  

( i , j ~L  n ~ N ,  t~>O). 
Moreover  it follows from the assumptions that 

(2.7) O,,(x,t)=V,,(t)Fj(x) ( i , j~J,  t~O, x ~ R ) .  

{./n, n ~ N} is a Markov chain with matrix P of transition probabilities defined by 

(2.8) e,, =e[Jn+l =][Jn = i] = O,,(co, oo) = V,,(oo) ( i , /~J) .  

In the next section it will be shown how the semi-Markov kernel .~ (or 
equivalently 7/) can be deduced from the instantaneous rates a,, the transition 
matrix H, the constants A, and the distributions F,( .) .  

3 .  C O M P U T A T I O N  O F  T H E  K E R N E L  

Let us first introduce some notations: for any mass function (i.e., right continuous 
and non-decreasing) G(t) defined on R + let 

cO cO 

provided the above integrals converge. 
The following system of integral equations may be easily deduced from the 

hypothesis 

Io' a' e - (~  +At)t) k ~ 1 (3.1) V , , ( / ) = 6 , , ~ - T ~ ( 1 -  ' +A, ~ h,k e-~'~'+~'~"Vk,(t u)du 

(t ,1~J,  t~O). 

The first term in the right side of (3.1) corresponds to the case where a claim 
occurs before the environment changes, the second term to the case where the 
environment changes before a clatm occurs. 

For s ~> 0, define now the following matrices: 

L(s) = (h,,A,/(a, +s + A,)), E(s) = (8,1~,/(cr, +s + A,)). 
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By taking the Laplace transforms of both sides in (3.1) we obtain 

(3.2) lT',,(s) =8,fs(o~, +X, +s )  + a, +a ,  +s k~  h,kQk~(S) 

or, in matrix notation, 

( i , l¢J;  s > 0 ) ,  

(3.3) [ [ - L ( s ) ]  V(s) = (1/s)E(s) (s > O) 

(we will always use the same symbol for a matrix and its elements whenever 
this causes no ambiguity). As for any s >/0 

L,(s) = ~ L,,(s)= A, < 1, 
j=l oh +A~ + s  

l -L ( s )  is regular for s 3 0  and consequently (3.3) has as unique solution 

(3.4) 

or equivalently 

(3.5) 

V(s) = (1/s)[I -L(s)]- lE(s)  (s > 0), 

v(s) = [I -L(s)]- 'E(s)  (s > 0). 

As P,i = V,j(oo) = lim,~0 v,~(s), the matrix P of the transition probabilities of the 
chain {J,} can be directly deduced from (3.5): 

(3.6) P = [ ! - L ( 0 ) ] - I E ( 0 ) .  

Notice that the semi-Markov kernel ~ is solution of a first order linear 
differential system: by deriving (3.1) with respect to t we obtain 

(3.7) Vi,(t)=a,6,,+ ~ [A,h,k--(a,+A~)6,k]Vk,(t) ( i , / e ] ;  t~O). 
k ~ l  

4. SOME RESULTS ABOUT QUANTITIES RELATED TO THE RISK PROCESS 

In this section we derive some explicit expressions or equations related to the 
semi-Markov risk-process defined in the preceding sections. 

4.1. Stationary Probabilities o[ the Chain {J,} 

From now on we suppose that the chain {./,} is irreducible. As m is finite there 
exists a unique probabili ty distribution -~ = (71 . . . . .  7, ,)  such that 

(4.1) 7, > 0  (i E J) ,  

7,h,, = 7, (J ~ J)- 
~=1 
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We have then: 

T H E O R E M  1 

The Markov chain {J, ; n ~ N} is irreducible and aperiodic (thus ergodic as m < oo). 
Its stationary probabilities are given by 

=a,~l, I ~ a,~,]-' ( i~J) .  (4.2) zr, A, tlTt AI J 

Proof 

(~) > O. Let i, i ~ J- As the chain {/',} is irreducible, there exists n ~ N such that h,j 
It may be easily seen that this implies (L" (0)), l > 0. Now we obtain from (3.6): 

(4.3) p,,= ~ (L"(O)),, a, . 
n =o ~1 + hj 

The probabilities p.  are thus strictly positive for all i, 1" 6J. 
It remains to show that ~-P = ~-. Define the diagonal matrices 

A, ( ° , )  
(4.4) D=~8,,---'~-),, c 6 " ^ , /  A =  8 , , ~ .  

We have then L(0) = DH, E(O) = 1 - D ,  ~ = K ~ A  (where K is the norming factor 
in the right side of (4.2)), A D  = I - D ;  (3.6) may be written as follows: 

(4.5) 

Now 

P = I  - D  +DHP. 

~'P = ~ - ~ ' D  + ~ D H P  = ~ - K [ ~ ( 1 - D ) - ~ ( I - D ) H P ] .  

As ffH = fi, we obtain 

(4.6) ~'P = ~" - Kfifi[ ([ - D ) - (I - DH)P]  = ~', 

the last equality resulting from (4.5). 
Note that (4.2) has an immediate intuitive interpretation: 7, is the asymptotic 

probability of finding the chain {I,; n ~N} in state i; (A,) -1 is the mean time 
spent by the process {l(t); t ~ 0 }  in state i before its next transition; a, is the 
mean number of claims occurring per time unit when the process {I(t); t ~ 0 }  
sojourns in state t; 7r, appears thus well as the asymptotic average number of 
claims occurring in environment i. 

4.2. Number of Claims Occurring in (0, t) 

The equations obtained here could be derived from the general theory of 
semi-Markov processes. It is, however, interesting to restate them directly as 
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the semi-Markov kernel ~ is itself expressed as the solution of the differential 
system (3.7) 

Define 

(4.7) Nj(t) = =l ltsk~d if N(t)  >0 ,  

l ;  if N(t)  = 0, 

where as previously N(t) is the number of claims occurring in (0, t). Nj(t) ts 
clearly the number of claims occurring in environment / before t. Let 

M,,(t) = E[N~(t)IJo = i] 

and 

M,(t)=E[N(t)lJo=i]= ~ M,j(t) (t~O). 
I~l 

The following system of integral equations is easily obtained: 

M,,(t)=8,,e-X"ct,t+Io'A,e-X'~[6,~,U+~kh,kMk,(t-u)]du 

o r  

(4.8) M.  (t) = 6,~, ~ .  

1 - e --A~t 

A, frO 
+ ~ A,h,k e-X'"Mk,(t-u)du 

k=l  
(t ~ 0). 

Taking the derivatives of both sides with respect to t we obtain 

(4.9) MI,(t)=c~,,-A,Mi,(t)+A, ~ h,kMk,(t) (t~O), 
k-1 

and after summation over j 

(4.10) M~(t)=cg-Ad~l,(t)+A, ~. h,kMk(t) (t>~O). 
k=l 

(4.9) with the boundary condition M,  (0)= 0 (i, j ~ J )  has a umque solution. 

4.3. Further Properties of the Claim Arrival Process 

We extend first to the (J-Y-X) processes a well known property of Markov 
chains and (J-X) processes. 

T H E O R E M  2 

Let {(Jn, An, B,) ;  n ~ N} be a ( J -Y -X)  process with state space J x R + × R and 
kernel ~ defined by (1.1). Suppose that the Markov chain {J,} is irreducible (and 
thus positive recurrent as m is finite). Let Z,(x, t), i,l eJ, be real measurable 
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functions defined on R x R + such that the integrals 

oo oo 

are finite. Let 
O0 O0 

I ~ !  O0 

Define then n,.o = 0, n,.k = inf {n ~> n,.k-i: .in = I} for k ENo (recurrence indices of 
state i) and let 

~ , . r=E ~ Zj,_~j~(Bk, Ak) (ieJ, rsN).  
k = r l ~ r + l  

The random variables ~,.,, r = 1, 2 . . . . .  are i.i.d, and we have 

(4.11) E(( , . , )=  -~- ~ 7r, z, (i~J, reNo) 
7'l'l I = 1  

where the 7r, are the stationary probabilities of the chain {J.}. 

Proof 
Define 

,p(,~)=P[J.=j, J k ~ i f o r k = l  . . . . .  n - l l J o = i ]  ( i , / ~ . / ;  neNo). 

We have then 

E(( , . , )=  ~ ~ p(")zk ~+z, (i~J, r~No). 
k ~ l  n = l  

(4.11) follows since we know from Markov chain theory that ~,~--t ,P}~) = 7rk/Tr,. 

Mean Recurrence Time of Claims Occurring in a Given Environment 

We return now to the risk model. Define 

(4.12) G,,(t)=P[N,(t)>O[Jo=i] (i,j~J; t~O). 

G , ( . )  is the distribution function of the first time at which a claim occurs in 
environment  ./given that the initial environment  is i. Let 

(4.13) %, = tdG,,(t) (i,/eJ). 

We could obtain a system of integral equations for the distributions G , ( . )  and 
derive from it after passage to the Laplace-Stiel t jes transforms a linear system 
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for the 3% We may, however, proceed more directly as follows: 

Io [ ] (4.14) 'y,1=o',1 e -<~'+~'~' a~t+a, h,k(t+Tk~) dt 
k = l  

+ (l-Su) I?  e-(~'+x')t[ot,(t + %l) + A, k~=l h,k(t + TTkl)] dt; 

we thus get a linear system: 

(4.15) A, +8,~,  1 A, + ~ h,,yk, ( i , /~ f ) .  
Oil + A - m -  T'/  = 

The diagonal elements y .  (mean recurrence time of claims occurring in state i) 
may be explicitly expressed by using Theorem 2. Define Z,,(x, t) = t; then z, = 
E(A~lJo=i). We have 

~o [ct,t+A, ~ h,t(t+z,)] z, = f e -(~'+x')' dt (i ~3.). 
Jo 1=1 

Hence 

1 AI m 

= - - .  i~lh,,zj z,  ct~ + A ,  "I-OQ + A ,  = 

or, if ~ =(zl . . . . .  Zm)' and ~ = ( a T 1 , . . . , a ~ l )  ', 

= (I -L (0 ) ) -~E(0 )y  = P~; 

we have thus 

(4.16) 
1 

z ,=E(Ai IJo=i)  = ~ P,,-- 
1=1 0t' I 

and consequently 

(4.17) 

(i ~ J) ,  

(i ~ J )  

mz, =E~(A1)  = ~ 1 7 T i - - .  
:=1 I~1  O/I 

Using finally theorem 2 we have: 

THEOREM 3 

For any i~3": 

(4.18) 'Yu = -  71"1--" 
7rt i = 1 O~ I 

Renewal Theorem---Stationary Probabilities 

Given that 3"0 = i, the times at which claims occur in environment ] form a pure 
renewal process if i = /  and a delayed renewal process if i # / .  We have the 
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classical renewal equations: 

(4.19) M , ( t ) =  [ l + M , , ( t - u ) ] d G , ( u )  (i, j e J ;  t ~ O ) .  

As the distribution functions (3,1(.) are clearly not arithmetic, the expected 
number of claims occurring in environment j within (t, t + h )  tends to h(3,1j) -~ 
when t ~ co whatever the initial environment i, i.e., 

h 
(4.20) lim [ M ~ ( t + h ) - M , ( t ) ] = - -  ( i , l 'EJ;  h >!0). 

[see FELLER (1971), Chapt. XI]. From (4.20) it follows that 

lim M,( t )= .~_  ( i , ] e J ) .  (4.21) 

Define now 

(4.22) F,,(t) = (p,,)-I V,,(t) 

R(') (u, t) = P[JN(,) = /, JNU)+I = k, UN(,)+i ~ t + u I Jo = i]; Ik 

the last quantity is thus the probability, given that Jo =i ,  that the last claim 
before t occurred in environment / and that the next claim will occur in environ- 
ment k before time t + u. We deduce immediately from Theorem 7.1 of PVKE 
(1961b) that 

, ,  
(4.23) !ira R,k (u, t) = pjk [1 -F~k (y)] dy, 

which limit is independent of i; we denote it by R~°k(u). Let now 

V~ (u) -, o = y,,z, R , ,  (u) 

and define a chain {(J,, A, ,  B , ) ;  n ~ N} as follows: 

fi, o = B o =  0 a.s. 

~P[L =j, ,41 ~- u, ti~ ~ x  IAo, Bo; Jo = i] = V~ (u)F,(x)  
(4.24) / P [ . ~  = Y , ~ . ~ - u , B . ~ x l , ~ k , B ~ , L ( k  = 0  . . . . .  n -  1 ) ; L - 1  

= i] = V,,(u)F,(x) 

( i , ] ~ J ;  u ~ R  +, x ~ R ,  n~>2). 

where z, is defined by (4.16). 
We define for that chain the same quantities and adopt the same notations as 

for the chain {(J., A. ,  B . ) ;  n ~N}. The risk processes associated with the two 
chains are identical except that for the second one the time of occurrence of the 
first claim is distributed according to the semi-Markov kernel (V,* (.)) instead 
of (V.( . )) .  Suppose now that 

(4.25) a, = P[Jo = i] = z-A- (i ~ J).  
~u 
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Then [see PYKE (1961b)]: 

(4.26) P[,f~(t) =/ ,  f~(,)+l = k, U/Q(i)+I ~ t + u] = Rj°k(u). 

5 .  P R E M I U M  I N C O M E - - R U I N  P R O B A B I L I T I E S  

We assume that the company managing the risk receives premiums at a constant 
rate c, > 0 during any time interval the environment process remains in state t. 
The premium income process is thus characterized by a vector (cl . . . . .  Cm) with 
positive entries. Denote by At(t) the aggregate premium received during (0, t): 

N,(t) 

(5.1) At( t )  = ~ c,~_l(Tk-Tk-i)+ctr~,,,(t--TN.(,)) 
k = l  

and by B (t) the aggregate amount of the claims occurring in (0, t): 

N(t) 
(5.2) B ( t ) =  E Bk (t~O). 

k = 0  

Assume now that the initial amount of free assets of the company is u ~ 0. The 
amount of free assets at time t is then 

(5.3) 

where 

(5.4) 

Define then 

(5.5) 

Z,(t) = u +S(t) 

S(t) =AC(t)-B(t). 

R,(u,t)=P[Z,(v)~O for O~<v~tlJo=i] (i~J; u, t~>O), 

(5.6)R,(u)=R,(u, oo)=P[Z,(v)~Oforallv~O]Yo=i] (i~J, u~O). 

We will refer to the probabilities (5.5) as to the finite time non-ruin probabilities 
and to the probabilities (5.6) as to the asymptotic non-ruin probabilities. 

5.1. Random Walk of the Free Assets 

Denote by A,~ the premium received between the occurrences of the (n - 1)th 
and nth claims (n/> 1). Define then 

(5.7) S k = A ~ - B k  ( k = 1 , 2  . . . .  ); X o = 0  a.s., 

(5.8) S, = ~ Xk (n ~N) .  
k=O 

Clearly the chain {(Yk, Xk) ;k~N}  is a (J-X) process, {S,} is a random walk 
defined on the finite Markov chain {J,,} [see JANSSEN (1970); MILLER (1962); 
NEWBOULD (1973)]. The amount of free assets just after the occurrence of the 
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nth  claim is given by 

and clearly 

(5.10) 

and 

Z , ( A o + ' "  + A , ) = u + S ~  

(5.9) R,(u ) = P[ inkf Sk ~ - U  lJo= t ]. 

F r o m  now on we assume that  the d.f. F , ( . )  has a finite expec ta t ion /z ,  (i ~./) .  
We  get then 

b,=E[BklJk- l=i]  = ~ p,,tz, 
I=1 

f c E[A~I.Ik-i l ] = j o  e-("'+x')'a,c,t+h, h,,(c,t+z~) dt 
I~1 

so that,  concluding as to obta in  (4.16), 

(5.11) z~ = ~ c, p , - -  (i ~ .jr). 
1=1 O1~ I 

If the p r e m i u m  rates are cons tant  wha tever  the state of the env i ronmen t ,  i.e., 
if g = (c . . . . .  c), we obtain  natural ly  z ~ = cz,. W e  conclude f rom (5.10) and (5.11) 
that  

(5.12) p , ,  - . ,  • 

Notice  that  we would obtain  the s ame  result  for a s e m i - M a r k o v  risk mode l  with 
kernel  ..~* defined by 

ON(x,  t ) = p 0 ( 1 -  e - '~ / )~  (x). (5.13) 

Def ine  now 

nl,k~l 

D , . , =  ~ Xk (i~J, r~No) 
k = n l r + l  

where  the n,.r are the recur rence  indices of claims occurr ing in e n v i r o n m e n t  i as 
def ined in section 4.3; for i fixed the var iables  D,., (r = 1, 2 . . . .  ) are i.i.d.; D,., 
is clearly the var ia t ion of the free assets be tween  the r th  and (r + 1)th claims 
occurr ing in e n v i r o n m e n t  i. We  obta in  f rom theo rem 2 

= - -  ¢rj - tz I (i ~ J, r ~ No). (5.14) E(D,.,) ¢r, ,~1 

As the var iables  A~ are absolute ly  cont inuous  and condi t ional ly  (given the Jk) 
i ndependen t  of the var iables  Bk, the process  {(J,, S , ) ;  n ~ N }  is not  degene ra t e  
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[see NEWBOULD (1973)],  i.e., there  exist no constants  w~ . . . . .  w~ such that  
P[X,  = w~-w,  lJ,_l = i , J ,  = j ] =  1, or  equivalent ly  there  exists no i such that  
Dz., = 0 a.s. (NEwBOULD (1973),  l e m m a  2). Us ing  Propos i t ion  3A of JANSSEN 
(1970) we obta in  then 

THEOREM 4 

Le t  

) (5.15) d = ¢r i - ~ 1  • 
i=1 

Then  (i) If d > 0 ,  the r a n d o m  walk {S,} drifts to +oo, i.e. lim,_,~oS, = o o  a.s.; 
R , ( u ) > 0 ,  Vu >~0, i~J .  (ii) If d < 0 ,  the r a n d o m  walk {S,} drifts to - co ,  i.e. 
lim,_,oo S,  = - c o  a.s.: R , (u )  = 0, Vu >~0, i ~J .  (iii) If d = 0 ,  the r a n d o m  walk {S,} 
is oscillating, i.e. lim sup S,  = +co a.s. and iim inf S,  = - c o  a.s.; R,(u) = O, Vu !> O, 
i~J .  

Notice  that  when m = 1 t h e o r e m  4 reduces  evident ly  to the classical result  for 
the Poisson model .  

5.2. Distribution of the Aggregate Net Pay-out m (0, t) 

F r o m  now on we suppose  that  the claim amoun t s  are a.s. positive: 

(5.16) F , ( 0 - )  = 0, E ( 0 ) < I  Vi~J .  

Recall  that  At ( t )  and B(t)  deno te  respect ively  the aggregate  p r e m i u m  received 
and the aggrega te  a m o u n t  of claims occurred  dur ing (0, t). Then  deno te  by C(t) 
the net pay-ou t  of the c o m p a n y  in (0, t): 

C ( t ) = B ( t ) - A C ( t ) = - S ( t )  ( t~O) 

Let  then 

(5.17) 

Def ine  now 

Co = max  {c, ; i e J}, 

It is easy  to p rove  the fol lowing 

LEMMA 

(i) W,j(x, t) = 0 for  i , ] ~ J  and x < -Cot; 
(ii) W,~(x, t ) > 0  for  i , ]EJ  and x > - c 0 t ;  

(iii) 

W , , ( x , t ) = P [ C ( t ) ~ x , I ( t ) = j l I ( O ) = i ]  ( i , j~Y;  t~O).  

Jo={i 6J:  c, =Co}. 

W,j(-c0t,  t ) > O if i, j ~ Jo and either i = j or there exist r E No and i l . . . . .  i, 6 Jo 
such that  h,,h,,,2.., h , a > 0 ;  W,j(-Cot, t ) = 0  otherwise.  
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Let now 
c o  

I~',, (s,/) = I_ e - ~ W , , ( x , t )  dx; 
c o  t 

c o  

w,,(s, t )= I_ e -~x dxW,,(x, t) = sl,~I,,(s, t); 
cot -- 

co 

~o,(s) = Io_ e-~XdF,(x) ( s~O) .  

l~(s, t)=(l~/,,(s, t)) (s>0),  

w (s, t) = (w,, (s, t)) (s > 0), 

The following theorem gives an explicit expression for the transform matrix 
I,~" (s, t). 

THEOREM 5 

For s > 0  and t 30 ,  

(5.18) 

where 

(5.19) 

l,~'(s, t) = 1/s exp { - T ( s ) t }  

T,, (s) = 6,, (c~, + A, - c~,~o, (s) - c,s ) - A,h,,. 

Proof 

For x >i -Cot, t I> 0 and h > 0 we obtain easily 

(5.20) W , , ( x , t + h ) = ( 1 - ( a , + A , ) h ) W , , ( x  +c,h, t )  

f g+Clh+COI 
+a,h W,l(x +c,h - y ,  t) dE(y) 

a 0 -- 

+A,h ~ h,kWk,(x +cih, t )+o(h) .  
Ik=l 

Dividing (5.20) by h and letting h tend to 0, we get 

(5.21) ~ W , , ( x ,  t ) - c , z  ~- W,,(x, t) = - (a ,  +A,)W,,(x, t) 
dt dx 

fO x+cOt +c~, Wo(x - y ,  t) dF,(y) 

+A, ~ h,kWk,(x, t) 
k - - I  

(x ~ -Cot, t ~ 0). 
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We multiply now each term in (5.21) by e -~x and integrate from -Cot to co. We 
obtain so 

(5.22) -~l~/,(s,t)+ ~ [8,k(ct,+A,--a,¢,(S)--C,S)--A,h,k]l~/k,(s,t) 
at k=~ 

=(co-c,)eSC°'W,l(-cot, t) ( s > 0 ,  t ~ 0 ) .  

According to the above lemma the right side of (5.22) is always zero. In matrix 
notation, the solution of (5.22) is then easily seen to be 

(5.23) W(s, t) = exp {-T(s)t}K 

where 

K=lg/(s,O)=(1/s)w(s,O)=(1/s)I (s >0) .  

The proof is complete. 
Notice that when m = 1 (5.18) reduces to the known result for the classical 

Poisson model. 

5.3. Seal's Integral Equation for the Finite Time non-ruin Probabilities 

We show in this subsection that the SEAL'S integral equation (1974) may be 
extended to the here considered semi-Markov model. We still assume that the 
claim amounts are a.s. positive. 

Define for u, t I> 0 and i, ! ~ J 

(5.24) R,(u, t)=P[Z,(v)~>O for O~<v ~<t,I(t)=jlI(O)=i]; 

we have clearly 

R,(u,t)= ~ R,,(u,t) (i~J; 
s=l  

Define further for s > 0 and t t> 0 

co 

l~,,(s,t)= fo e-'"R,,(u,t) du; 

oo 

= I e-S"d~R"(u' t)=sl~,,(s, t); rll (s~ u )  
ao 

We obtain easily for u, t 1> 0 and h > 0 

(5.25) 

u, t ~ 0 ) .  

I~ (s, t) = (l~,,(s, t)), 

r(s, t) = (r,,(s, t)). 

R.(u, t + h )  = [1 - (a, +A,)h]R.(u +c,h, t) 

f u +¢lh +a,h R,,(u +c,h -y,  t) d E ( y )  
JO-- 

+X,h ~ h,kRk~(u+c,h,t)+o(h). 
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Dividing (5.25) by h and letting h tend to 0, we find 

(5.26) ~tR,,(u, t)-c, ~uR,,(u, t )=  - (a ,  +A,)R,,(u, t) 

+a, R,,(u-y,t)dF,(y) 

+X, ~ h,kRkj(u,t) (u,t~O). 
k ~ l  

Taking the Laplace transform of each term ir (5.26), we obtain 

(5.27) O~t~,,(s, t)+ ~ [6,k(a, +X, -c , s  -ct.q,,(s))--h,h,k]l~k,(s, t) 
k = l  

+c,R,,(O,t)=O ( s > 0 ,  t ~ 0 ) .  

The solution of the differential system (5.27) is easily seen to be 

I0' (5.28) t~(s,t)=exp{-T(s)t}K- exp{-r(s)(t-u)}CR(O,u)du 

( s > 0 ,  t>--0) 

where C = (6,jc,); the constant matrix K is determined by the boundary condition 
r(s, O) = sit(s, O)= sL Thus K = s-lL Using finally (5.18), (5.28) may be written 
as follows 

fo' (5.29) l~,,(s,t)=Ig,',(s,t)-s ~ Ig,',k(s,t-u)ckRkj(O,u)du ( s > 0 ,  t ~ 0 ) .  
k = l .  

Suppose now that the distributions F,( .)  are absolutely continuous and denote 
their densities by[,(-). The mass functions W, (.,  t) are then absolutely continuous 
too; we denote their densities by Wi~(', t) (t >t0). Taking the inverse Laplace 
transforms in (5.29) we obtain then 

t 

(5.30) R,~(x,t)=W,(x,t)-k=l ~ ck lo W~k(x'u)Rk1(O't-u)du (x,t~-O). 

The unknown constants (with respect to x) Rkj(O, u) are solutions of the Volterra 
type integral system obtained by putting x = 0 in (5.30): 

Io' (5.31) R,(O,t)=W,i(O,t)- ~ ck Wik(O,u)Rk~(O,t-u)du (t~O). 
k - 1  

Define now 

S,,(x,t)=P[B(t)~<x,I(t)=iJI(O)=l] (x,t~O) 

and denote the corresponding densities by Sis(x, t). In the particular case where 
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c, = c (i ~ J )  we have clearly W,j(x, t) = S,1(x +ct, t); (5.30) and (5.31) become then 

Io' (5.32) R,(x,t)=S,(x +ct, t )-c  ~ $1k(x +cu, u)Rk,(O,t-u)du (x,t~O), 
k = l  

t 

(5.33) R's(O't)=S"(ct't)-c k=l ~ .[o S~k(cu'u)Rk'(O't-u)du (t~O). 

When m = 1 (5.32) and (5.33) reduce exactly to Seal's system. 

5.4. Asymptotic Non-ruin Probabilittes 

We suppose here that the number d defined by (5.15) is strictly positive; then 
for all i e J and u ~ 0, R,(u) > 0 and R,(.) is a probability distribution. After 
summation over j (5.26) gives for t = oo: 

(5.34) ciR[(u)=(ol,+A,)R,(u)-o~, R , (u -y )dE(y ) -L  ~ h,kRk(U) 
- k = !  

(ieJ; u~O). 

It can be shown that (5.34) has a unique solution such that R,(oo)= 1, Vi s J .  
Integrating (5.34) from 0 to t we get 

(5.35) c,R,(t)=c,R,(O)+~, R,(t-y)[1-E(y)]dy 

Io'[ ] +Al R , ( u ) -  h,kRk(u) du (icY, t~O). 
k=!  

For m = 1 (5.35) is the well known defective renewal equation from which the 
famous Cramer estimate may be derived (see FELLER, Chapter XI). For m > 1, 
(5.35) is unfortunately not more a renewal type equation. Letting t tend to eo 
in (5.35) does not give an explicit value for the probabilities R,(0) as is the case 
when m = 1: 

If[ ] (5.36) R , ( 0 ) = I  tx,tx, A, R,(u)- h,kRk(u) du. 
Cl Cl k = l  

However,  when the claim amounts distributions are exponential, 

E ( x )  = 1 - e  -x/"' (x ~ 0), 

a further differentiation of both sides of (5.34) shows that the asymptotic non-ruin 
probabilities are solution of the differential system 

(5.37) R,  ( u )=  x ~ R~(U)-c-~,=l c,tz, 

A, 
h,R,(u) (ieJ, u~O) 

c d z l  i~1  
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with the boundary conditions 

(5.38) g , ( ~ ) =  1; Ri(o)=Ct'+h'g,(o) --~ ~ h,,R,(0) 
Cl Cl I ~ 1 

(i e J). 
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Assume that 

6. EXAMPLE 

(6.1) m =2,  hx2=h21= 1, hll =h22= 0 ;  

there are thus two possible states for the environment, the sojourn times in each 
state being exponentially distributed. 

The solution of system (3.7) is then 

(6.2) 

] Vi i ( t )= 

V ~ z ( t )  = 

[ V~(t) = - 

V21(t) = 

Otl(txz+A2+r2)(1 a l ( a l  +X2+&) (1 --e':)4 --er:t), 
rl(rl-r2) r2(rl-r2) 

Riot2 XlO/2 
rl(rl--r2) (1-erlt) 4 r2(rl -- r2) (1 -- e'~t)' 

32(~1 +AI +r l )  a2(~l "t- A 1 +r2) 
(1 - e"')+ (1 - e ' 2 ' ) ,  

rl(& -r2)  r2(rl-r2) 

A2o¢1 A2~1 
( 1 - e q ' ) +  ( 1 - e  '2') ( t~0) ,  ra(rl-r2) r2(&-r2) 

where r~ and r 2 are the solutions (always distinct and negative as or,, A, > 0) of 

(6.3) (31 + a l  +r)(az+A2+r) = A~A2. 

The stationary probabilities for the chain {J,} are given by (4.2) which becomes 
here 

~1A2 0t2Al 
(6.4) ¢ r l  a1A2 +of2A i, '77"2 Ot IA2 + ot2A 1 

Expectations of the number of claims occurring in environment t (i = 1,2) 
before t are obtained by solving system (4.9) with the boundary conditions 
Mi,(O) = O: 

(6 .5)  Ma~(t)  = 0f 1'~ 2 - - t - I -  
A1+A2 

otXhl (1 - e-(Xl+x:)'), 
(,h, 1 + ~ 2) 2 

ot 2A____L (x2Al _(xl+x:),). 
M12(t)=A1+AEt (Ai +A2)2 ( 1 - e  

M22(/) and M21(t) are obtained by replacing in the expressions of Mll(t) and 
M12(t) respectively 31(2) by a2(l) and Ai(2) by A2(1). 
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The mean recurrence time of claims occurring in environment i (t = 1,2) is 
given by (4.18). 

A i + A 2  A 1 + A 2  
(6.6) Y l l =  tX lA  2 •22  = Of2A 1 

We obtain then from (4.15) 

O~2 --t- A 1 -I- A 2 O~ 1 -4- A l -'t- A 2 
(6.7) V12 - , V21 = 

aZAl  a l A 2  

The characteristic number d defined by (5.15) takes the following form: 

~ 2 ( C 1 -  Ot I P- l) -t- A 1 (¢ 2 --  a 2/A,2) (6.8) d = 
~ iA2-1- ot2A 1 

From now on we assume that d > 0 and that the claim amount distributions F,(.  ) 
are exponential, i.e., 

(6.9) F,(x) = 1 - e  -x/"' (x :~0; i = 1,2). 

From (5.37) and (5.38) we obtain that the asymptotic non-ruin probabilities are 
solution of the following differential system 

l c , )  R'i (u )+  AI R , ( u ) - ~ L R 2 ( u ) -  A ,R~(u) c,R'[(u)=(a, + A , - ~  Iz, ~, 

(6.10) 

[czR~(u)= (Ctz+Az -cz]  R~(u)+AZ R2(u)-A2 R,(u)-A2R ',(u) 
#2/ #2 #2 

(u >I O) 

with the boundary conditions 

(6.11) 

Rl(oo) = R2(oo) = 1 

clR'i ( 0 ) - ( a ,  + A 0Rt(0)  +AiR2(0) = c2R ~ (0) 

-(ot2+ A2)R2(O)+ AzRi(O) =0.  

Define 

(6.12) p, =----- (t = 1,2) 
/,z~ C~ 

and assume without restriction that p~ ~P2. 
The condition d > 0 is then equivalent to the following 

( 6 . 1 3 )  h.2 - - p l +  Ai p 2 > 0 "  
C 2~.1, 2 C 1~./~ 1 
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As pt ~P2, then p~ is clearly strictly positive. We obtain then that the general 
solution of (6.10) takes the form 

(6.14) 

where 

(6.15) 

k2u __ ~ k~u R l ( u ) = A o + A : e k ~ " + , , 1 2 e  t , , t 3 e  - , 

R2(u) = A o -  D ( k l ) A l  e k ~ ' -  D ( k 2 ) A 2  e k2~ 

- D ( k 3 ) A 3  k.~. e - , 

c t t z l k ,  2 + ( c l - a t ~ t - Z l / x l ) k , - A t  
D ( k , )  = 

A ffztk, +A1 

A 2/-t,2k, - t -A2 

= c 2 ~ 2 k ~  2 + (C2 - -  ~ 211..6 2 - -  X2/Z 2)k~ - A 2 '  

and where k~, k2, k3 are the roots of the characteristic equation 

At A2]k2 
(6.16) P ( k ) = k 3 +  p t + p 2  c~ c2/  

[( " /  ' '  ' '  '"'lk 
+ P] c 1 1 \  p2 C2/ C 21./, 2 c 11,£ t c t c 2 J  

_ (  A2 pt+ A~ p2/=O. 
\C2/ ,£2 C t$/., 1 / 

From (6.13) we see that k t k 2 k a  > 0. It is easily verified that 

o~tht a2A2 
P(-p~):---~--Do~-p2)>~O; P(-p2):-.-~-Co2-p~)~<O; 

C1 C2 

P(O) < O. 

From this we may deduce that P ( k )  has a negative root, say k2, between - p l  
and -p2.  As the product of the three roots is positive we deduce further that 
the two other roots, k~ and k3, are real (if k~ and k3 were complex conjugate 
roots, their product would be positive; we would then have k l k 2 k 3 < O ) .  As 
P(+oo) = + ~  and p ( - o o )  = -00, we conclude finally that when p~ >p2  one of the 
roots, say k~, is strictly less than - p l  and that the other, k3, is positive. When 
p, = p2 = p  (we have then k2 = - p ) ,  we obtain the same conclusions by verifying 
that P ' ( - p ) <  0. We summarize this as follows: 

k l < - p l < k 2 < m i n { O , - p 2 } ,  k 3 > 0  if pl >p2,  
(6.17) 

kt < k 2  = - p  < 0 < k 3  i fpt  =p2 =p .  

From the boundary conditions (6.11) we obtain that 

(6.18) A o = l ,  A3=0  
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and that A1 and A2 are the solutions of 

[clkx - o r 1 -  A 1 -  h ~D(kl)]A l +[c~k2-c t l  - h i - A iD(k2)]A2=ot l  

[ ( -c2kl  + a2 + a2)D(kl )  + A2]A 1 + [(-c2k2 + a2 + X2)D(k2) + A2]A2 = a2 

or, which is equivalent in view of (6.15), 

(6.19) 

A l  A2  
- - - I  - - - - - 1  
/ z l k l  + 1 /.L lk2 + 1 

D(k'----~-A14 D(k2) i  A 2 =  1. 
~ 2 k 1 +  1 /.a2k2 + 

We can obtain a lower bound for kt. Verify first that P ( ~ ~ ) < 0  if p.~ ~-/-/-2 and 
that P (~  ~ ) <  0 if p.2 ~< ~1. We can then easily conclude that 

(6.20) - m i n  {/.I.1,/z2} -1 < k l .  

We summarize the above results in 

THEOREM 6 

If m = 2, h12 = h21 = 1, d > 0  and if the claim amount  distributions are exponen-  
tial, the asymptotic non-ruin probabilities are given by 

R l(u ) = I + A i e k'" + A 2 e k2u, 

R2(u) = 1 - D ( k l ) A x  e k'" - D ( k 2 ) A 2  e ~" (u ~0 ) ,  

where kl and k2 are the two negative roots of (6.16), where the constants D(k~) 
are given by (6.15) and where Ai  and A2 are solutions of (6.19). 

When a~ = a2 = a, ~ = P.2 = ~, cl = c2 = c and ira i and A2 are arbitrary positive 
numbers,  then k2 = - p  and kl is the negative root of 

(6.21) k 2 + ( O  h~+h2~ . ]k  Ax+h-----~=0.c/.t 

When obtain then D (k2) = - 1 ,  D (k l) = it 2/A1 and the solution of (6.19) is A1 = 0, 
A2 = -a t z / c .  As expected the ruin probabilities R t ( u )  and R2(u) are in this case 
identical and equal to the ruin probabilities obtained for the classical Poisson 
model with exponentially distributed claim amounts:  

(6.22) R i ( u )  = R 2 ( u )  = 1 _a/.t  e_p." 
c 
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