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ABSTRACT

We consider a risk model in which the claim inter-arrivals and amounts depend
on a markovian environment process. Semi-Markov risk models are so introduced
in a quite natural way. We derive some quantities of interest for the risk process
and obtain a necessary and sufficient condition for the fairness of the risk (positive
asymptotic non-ruin probabilities). These probabilities are explicitly calculated
in a particular case (two possible states for the environment, exponential claim
amounts distributions).
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1. INTRODUCTION

Several authors have used the semi-Markov processes in Queuing Theory and
in Risk Theory [e.g., CINLAR (1967), NeuTs (1966), NEuTs and SHUN-ZER
CHEN (1972), PUrRDUE (1974), JANSSEN (1980), REINHARD (1981)]. Besides,
some duality results lead to nice connections betweer the two theories [FELLER
(1971), JANsseN and REINHARD (1982)).

Semi-Markov risk models may be defined as follows. Consider a risk model
in continuous time; let B, (n € No)* and U, (n€N,) denote respectively the
amount and the arrival time of the nth claim. Put Ag=By=U;=0 and define
A,=U,~U,-, (neNy). We suppose that the A, and B, are random variables
defined on a complete probability space (), ¢, P); the variables A, (n € Ny) are
a.s. positive. Let now J,, (n € N) be random variables defined on (Q, &/, P) and
taking their values in J={1,...,m} (meN,). Suppose finally that
{(Jn, An, Bn); n € N} is a Markov chain with transition probabilities defined by a
bivariate semi-Markov kernel:

P[]n+1 =j) An+l $’, Bn+l Sx'jk’ Aky Bkv k =01 see n]=OJn](xv I) a.s.

(1.1)
(jeJ, t=0, xeR, neN)

where Q,(x,-) and Q,(-,¢) are right continuous nondecreasing functions
satisfying:
Q,x,)=0, Q,(0,0)=0 (i,jel;t=0)

'z": Qu(wam)zl (le.’)
=1
Q, (-0, ) =0 (i,jel).

*No={1,2,3, },N={0,1,2,3, }
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Such processes, called (J-Y-X) processes, were studied by JANSSEN and REIN-
HARD (1982) and REINHARD (1982). In the particular case where

(1.2) Q,(x,)=(1-e™)Q,x), A >0,

the processes {A .} and {(/,,, B.)} being independent, JANssEN (1980) interpreted
the variables J, as the types of the successive claims. The next section will show
that another subclass of semi-Markov kernels appears if we assume that the risk
depends on an environment process.

2. RISK PROCESSES IN A MARKOVIAN ENVIRONMENT

Suppose that the claim frequency and amounts depend on the external environ-
ment (economic situation . . .) and that the external environment may be charac-
terized at any time by one of the m states 1,..., m (m € Ny). Let I denote the
state of the environment at time =0 and let [,, n =1,..., be the state of the
environment after its nth transition. Put Ty =0 and let T,, (n € Ny) be the time
at which occurs the nth transition of the environment process. We suppose that
I, and T, (n€ N) are random variables defined on (Q, &, P) and taking their
values in J and R " respectively. Define now Y, = T,, — Tu_y (n € No), Yo=0 and
assume that

2.1)  Plla=), You<t|(l, Y1), k=0,...,n 1, =i]l=h,(1-e*)

(i,jeJ; t=0; neN)
where the A, are strictly positive real numbers and H = (h,,) is a transition matrix:

h, =0, 2 he=1 (1,1 €J).
K1

{I.,n €N} is then a Markov chain with a matrix of transition probabilities
H=(h,):

(2.2) hy =Pl =71, =1].

Define N, (t) =sup{n: T, <t} and I(t) = Iy, (¢ =0). The process {{(t), =0} 1s
a finite-state Markov process; it is known that the number of transitions of the
environment process {I(¢)} in any finite interval (s, r], i.e., N.{¢t) —N.(s), is a.s.
finite.

Denote now by J, the state of the environment process at the arrival of the
nth claim:

(2.3) J.=1(U,) (neN).

We will suppose that the following assumptions are satisfied:

(H1) The sequences of random variables (A,) and (B,) are conditionally
independent given the variables J,,.

(H2) The distribution of a claim depends uniquely on the state of the environ-
ment at the time of arrival of that claim. Let

2.4) F(x)=P[B,<x|J,=1] (1reJ, neN, xeR)
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(H3) Let N(¢) be the number of claims occurring in (0, ¢]. If I (k) =7 for all
u in some interval (¢, t + h ], then the number of claims occurring in that interval,
i.e.,, N(t+h)—N(t), has a Poisson distribution with parameter «, (a, >0); we
assume further that given the process {I(¢)} the process {N(¢)} has independent
increments. So

(2.5) PIN(t+h)y=n+1|N@)=n1)=ifor t<ust+h]l=ah+o(h).

The process {N(t);¢=0} appears thus as a Poisson process with parameter
modified by the transitions of the environment process.

Under the above assumptions it may be shown that {(J,,, A,, B,),neN}is a
(J-Y=X) process with semi-Markov kernel 2 defined by (1.1). {(J,,, A,),ne N}
is a Markov renewal process [see Pyke (1961)]; we denote its kernel by

V= (Vu(')):
(2.6) V,0)=PlJu1=], A, <t|Ur, AL), k=0,...,n;J,=i]

(i,jeJ, neN, =0).
Moreover it follows from the assumptions that

@7 Q,(x,0)= V,(OFx)  (i,je, (=0, xeR),
{J., n € N} is a Markov chain with matrix P of transition probabilities defined by
(28) P,,=P[f,,+1=]lfn=i]=Q,,(CD,CD)=V,,(CD) ("7]‘6',)'

In the next section it will be shown how the semi-Markov kernel 2 (or
equivalently 7°) can be deduced from the instantaneous rates «,, the transition
matrix H, the constants A, and the distributions F,(-).

3. COMPUTATION OF THE KERNEL

Let us first introduce some notations: for any mass function (i.e., right continuous

and non-decreasing) G(¢) defined on R" let
[o o]

G.(s)=J' e G (f) dt, g(s)=j_e“'da(:)

0
provided the above integrals converge.
The following system of integral equations may be easily deduced from the
hypothesis

(3.1) V,()=86,——(1—e @), ¥ h,kf e TRy (1 —u) du
al+/\l k=1 (4]

(,yed, t1=0).

The first term in the right side of (3.1) corresponds to the case where a claim
occurs before the environment changes, the second term to the case where the
environment changes before a claim occurs.

For s =0, define now the following matrices:

L(s)=(h,A/(a +s+A), E(s)=(8,a/(a, +s+A)).
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By taking the Laplace transforms of both sides in (3.1) we obtain

o, A, m -~
1 + h, Vi, (s
"s(a, + A, +5) a,+A,+s kz'l Vi (5)

(,eJ; s>0),

(32) “/'U(s)za

or, in matrix notation,
(3.3) [[-L$)IV(s)=(1/s)E(s) (s>0)

(we will always use the same symbol for a matrix and its elements whenever
this causes no ambiguity). As for any s =0

Lis)= 3 Ly(s) <1,

1 - a, A, +s
I —L{s) is regular for s = 0 and consequently (3.3) has as unique solution
(3.4) Vis)=(1/s)II-L(s)]'E(s)  (s>0),

or equivalently

(3.5) v(s)=[I-L()]'E(s) (s>0)

As p, = V,,(00) = lims0 v, (s), the matrix P of the transition probabilities of the
chain {J,} can be directly deduced from (3.5):

(3.6) P=[I-L0O)]E(0).

Notice that the semi-Markov kernel ¥ is solution of a first order linear
differential system: by deriving (3.1) with respect to ¢ we obtain

BT Vi) =ad,+ T b —(@+A08a1Vie () G, jel; t=0).
k=1

4. SOME RESULTS ABOUT QUANTITIES RELATED TO THE RISK PROCESS

In this section we derive some explicit expressions or equations related to the
semi-Markov risk-process defined in the preceding sections.

4.1. Stationary Probabilities of the Chain {J,}

From now on we suppose that the chain {J,} is irreducible. As m is finite there
exists a unique probability distribution 7 =(n, ..., nm) such that

4.1) n,>0 (iel),

Z:l nxhu =mn (] EJ)
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We have then:

THEOREM 1
The Markov chain{J,,; n € N}isirreducible and aperiodic (thus ergodic as m < 0).
Its stationary probabilities are given by

-1

_am,[ & am -
(4.2) m =5 {I; A’} Ged).
Proof

Let {,jeJ. As the chain {l,} is irreducible, there exists n € N such that hf,") >0.
It may be easily seen that this implies (L"(0)),;,>0. Now we obtain from (3.6):

a,

(4.3) py= n);O(L"(O)).,al vy

The probabilities p,, are thus strictly positive for all /, jeJ.
It remains to show that 7#P = ., Define the diagonal matrices

p-(aghy) A=)

We have then L(0) = DH, E(0)=1 - D, # = KA (where K is the norming factor
in the right side of (4.2)), AD =1 — D, (3.6) may be written as follows:

4.5) P=1-D+DHP.

Now
#P =#—-#D+aDHP=#%-K[7(I ~D)—7(I -D)HP).
As 7H =7, we obtain

(4.6) #P =7 ~Kqa{(I -D)-(I —-DH)P]=,

the last equality resulting from (4.5).

Note that (4.2) has an immediate intuitive interpretation: =, is the asymptotic
probability of finding the chain {I,; n € N} in state i/, (A)7! is the mean time
spent by the process {I(¢); =0} in state i before its next transition; «; is the
mean number of claims occurring per time unit when the process {I(¢); ¢t =0}
sojourns in state 1; , appears thus well as the asymptotic average number of
claims occurring in environment .

4.2. Number of Claims Occurring in (0, t)

The equations obtained here could be derived from the general theory of
semi-Markov processes. It is, however, interesting to restate them directly as
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the semi-Markov kernel ¥ is itself expressed as the solution of the differential
system (3.7)
Define

N
4.7) N ()= kz| Li=n if N{¢£)>0,
. (6= k=

0 it N(t)=0,

where as previously N (t) is the number of claims occurring in (0, ¢). N,(¢) 1s
clearly the number of claims occurring in environment j before ¢. Let

M, (1) = E[N,(8)|Jo =]

and
MO =EINOo=i1= 3 M,@)  (=0)
The following system of integral equations is easily obtained:
M, (t)=8,e Mas+ Ll Ae "A‘“[S,,a.u +% huM, (t - u)] du
or

(4.8) M, (1) =6,

+ i A,h,k‘[ e_'\'"Mk,(t—u)du (tZO)
k=1 0

Taking the derivatives of both sides with respect to ¢ we obtain
(49) M:)(t)zaial)_AMl)(t)-*_/\l kzl hlkMk)(t) (t?()),
and after summation over j

(4.10) M ()=a, —AM,@)+A, ¥ A M (t) (t=0).
k=1
(4.9) with the boundary condition M,,(0) =0 (i, f € J} has a umque solution.

4.3. Further Properties of the Claim Arrival Process

We extend first to the (J-Y-X) processes a well known property of Markov
chains and (J-X) processes.

THEOREM 2

Let {(J., A,, B,); ne N} be a (J-Y-X) process with state space J X R*X R and
kernel 2 defined by (1.1). Suppose that the Markov chain {J,,} 1s irreducible (and
thus positive recurrent as m s finite). Let Z,(x, t), i, €J, be real measurable
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functions defined on R X R™ such that the integrals

[ [ 1z olo@xan  Gien

are finite. Let

7, = ZJ J Z,(x,0Q,(dx, d) = E(Z,,_,5,(Bn, An)|Ju-1 =)
— J0

1=1

Define then n,o=0, n,, =inf {n >n,,_: J, =1} for k € Ny (recurrence indices of
state i) and let

;._,=E( Y Z (B Ao) (ied, reN).
k=n, +1
The random variables ¢,,, r=1,2,..., are i.i.d. and we have
1nm .
4.11) E{()=— 1% mz, (e, reNp)
Ty =1

where the m, are the stationary probabilities of the chain {J,}.

Proof
Define

PP =P, =j, Jc#ifork=1,...,n—1|Jo=i]  (i,je]J; neNo).
We have then

E({l.l)= Z Z :Pf:)2k+21 (ie-,, rGN())-

k#tn=1

(4.11) follows since we know from Markov chain theory that )::°=1 PR =m)m.

Mean Recurrence Time of Claims Occurring in a Given Environment

We return now to the risk model. Define
(4.12) G,(t)=P[N,(t)>0|Jo=i]  G,jeT; t=0).

G,(+) is the distribution function of the first time at which a claim occurs in
environment j given that the initial environment is /. Let

(4.13) Yy =J‘ajfdGu(f) (t,jed).

We could obtain a system of integral equations for the distributions G, () and
derive from it after passage to the Laplace-Stieltjes transforms a linear system
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for the y,. We may, however, proceed more directly as follows:

(4.14) Yy =0y L e""‘-“"‘[a,t+,\, ki h.k(t+yk,)] dt

=1

@©

+(1—6,,)I

m
e““‘“‘”[a.(t +yy) A, kZ R (t + 'Yk/)] de,
1] =1

we thus get a linear system:

+ m
At 1 A, Y vy G jel)

4.15 1y
( ) a; +A,; Y a,+A, a tA k=1

The diagonal elements vy, (mean recurrence time of claims occurring in state i)
may be explicitly expressed by using Theorem 2. Define Z,(x, t)=¢; then z, =
E(A]I.’o_—'l) We have

Z =-[ e—("‘“‘)'[a;t+}\, y h,,(t+z,)] dt (iel).
o

1=1

Hence
1 A m ,
z'—a."'/\. +m,§1h”z, (iel),
or,if Z=(z1,...,zs) and 7 =(ai’,..., a.}),
7= —-L(0)"'E(0)y =Py;
we have thus
. i 1 .
(4.16) z.=EA|Jo=i)= % p,— (iel)
=1
and consequently
(4.17) z 7T12|=E17(A1)= Z 7TI_1—'
=1 j=1 a;

Using finally theorem 2 we have:

THEOREM 3
ForanyielJ:
1 = 1
(4.18) Yo=— ) m—.
=1 Q

Renewal Theorem—Stationary Probabilities

Given that J, =1, the times at which claims occur in environment j form a pure
renewal process if i = and a delayed renewal process if { #j. We have the
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classical renewal equations:
@19) M= [1+M0-01d6,@  Gjel; 1=0)
(V]

As the distribution functions G, (-) are clearly not arithmetic, the expected
number of claims occurring in environment j within (¢, t +4) tends to h(-y,,)_1
when ¢ » 00 whatever the initial environment §, i.e.,

(4.20) lim (M, 1+ h)-M,()]="-  Gjet; h=0).

I

[see FELLER (1971), Chapt. XI]. From (4.20) it follows that

4.21) lim %;(—t)=i (i, je).
Define now
4.22) F,(6)=(p,)" "V, (1)

RY (u, ) =PlUnw =], Inw+1 =k, Unwr1 st +ulJo=il;

the last quantity is thus the probability, given that Jo=/, that the last claim
before ¢ occurred in environment j and that the next claim will occur in environ-
ment k before time ¢ +u. We deduce immediately from Theorem 7.1 of PYKE
(1961b) that

. ' ("
(4.23) lim R, )= [ [1=Fu()dy,
f+ Yu 4o
which limit is independent of i; we denote it by R%(u). Let now
Vi) =vuz; 'Ry(u)
and define a chain {(J,, A,, B.); n € N} as follows:
14_0 = .B-o =0 as.
PlJi=j,A\<u,Bi<x|Ao, Bo; Jo=i]= V¥ u)F,(x)
PlJ.=jAssu,B,<x|Aw B, Ik =0,...,n=1); ],
=i]=V,(u)F(x)
(i,jeJ; ueR™, xeR, n=2).
where z, is defined by (4.16).
We define for that chain the same quantities and adopt the same notations as
for the chain {(J,, A, B,); n € N}. The risk processes associated with the two
chains are identical except that for the second one the time of occurrence of the

first claim is distributed according to the semi-Markov kernel (V¥ (-)) instead
of (V,(*)). Suppose now that

(4.24)

(4.25) a,=Pll,=il=2  (e)).
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Then [see PYKE (1961b)]:
(4.26) PlTrw =i Trws =k U <t +ul=R%u).

5. PREMIUM INCOME—RUIN PROBABILITIES

We assume that the company managing the risk receives premiums at a constant
rate ¢, >0 during any time interval the environment process remains in state .

The premium income process is thus characterized by a vector (¢, .. ., c,) with

positive entries. Denote by A°(t) the aggregate premium received during (0, t):
N()

(5.1) AS(r)= kZ_jl et (T ~ Tei) + € ry (1= Trvio))

and by B(t) the aggregate amount of the claims occurring in (0, t):

N (1)
(5.2) B(1) =k§0 B, (t=0).

Assume now that the initial amount of free assets of the company is u 0. The
amount of free assets at time ¢ 1s then

(5.3) Z,(t)=u+S(@)
where

(5.4) S{t)y=A°(t)-B().
Define then

(5.5) R.(u,t)=P[Z.(v)=0for0sv<t|Jo=i] (ie]; ut=0),
(5.6) R,(u)=R,(u,0)=P[Z,(v) =0 foralt v=0|Jo=i] (ie], u=0).

We will refer to the probabilities (5.5) as to the finite time non-ruin probabilities
and to the probabilities (5.6) as to the asymptotic non-ruin probabilities.

5.1. Random Walk of the Free Assets

Denote by A, the premium received between the occurrences of the (n —1)th
and nth claims (n =1). Define then

(5.7) X.=Ai;-B, (k=1,2,..); Xo=0 as,
(5.8) S.= Y X. (neN).
k=0

Clearly the chain {(Ji, Xi); k€ N} is a (J-X) process, {S,} is a random walk
defined on the finite Markov chain {J,} [see JANSSEN (1970); MILLER (1962);
NewsouLD (1973)]. The amount of free assets just after the occurrence of the
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nth claim is given by
Z Ao+ +A)=u+S,

and clearly
(5.9) R,(u)=P[infSk>—u|JU=t].
k

From now on we assume that the d.f. F,(-) has a finite expectation u«, (i €J).
We get then

(5.10) b, =E[Bk|]k—l=i]= 21 Pytt,
)=
and
z5 =E[Ai|jk—l =l]=J e—(a‘ﬂ')‘[a.cuf'*‘ks ) h,,(C.l+Zf)] dt
0 =1

so that, concluding as to obtain (4.16),

C

(5.11) =13 p, (el

it
=1 Q,

1f the premium rates are constant whatever the state of the environment, i.e.,
ifé=(c,...,c), weobtain naturally z; = cz,. We conclude from (5.10) and (5.11)
that

(5.12) =Bl =11= £ pu(2-).

Notice that we would obtain the same result for a semi-Markov risk model with
kernel 2* defined by

(5.13) Qi (x, 1)=py(1—e "")F,(x).
Define now
D.,= Y X. (ieJ, reNo
k=n;,+1

where the n,, are the recurrence indices of claims occurring in environment i as
defined in section 4.3; for i fixed the variables D,, (r=1,2,...) are i.i.d.; D,,
is clearly the variation of the free assets between the rth and (r+ 1)th claims
occurring in environment /. We obtain from theorem 2

(5.14) 15(D,_,)=1Ti§1 ﬂ,(%—p,,) (e, reNy).

As the variables A} are absolutely continuous and conditionally (given the Ji)
independent of the variables By, the process {(J., S.); n € N} is not degenerate
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[see NEwWBOULD (1973)}, i.e., there exist no constants wy, ..., w, such that
P[X,=w,—w,|J..1=i,J, =j]=1, or equivalently there exists no i such that
D,, =0 as. (NEwBoULD (1973), lemma 2). Using Proposition 3A of JANSSEN
(1970) we obtain then

THEOREM 4

Let

(5.15) d=Y ﬂ,(ﬁ—#,).
1=1 a,

Then (i) If d >0, the random walk {S,} drifts to +00, i.e. lim, .o S, = as.;
R, (u)>0, Yu=0, iel. (ii) If d <0, the random walk {S,} drifts to —oo, i.e.
lim, .0 S, =—00 as.: R{u)=0, Yu=0,iel. (iii) If d =0, the random walk {S,}
is oscillating, i.e. lim sup §,, = +00 a.s. and liminf §, = -0 as.; R,(4)=0,Vu =0,
iel.

Notice that when m =1 theorem 4 reduces evidently to the classical result for
the Poisson model.

5.2. Distribution of the Aggregate Net Pay-out in (0, t)
From now on we suppose that the claim amounts are a.s. positive:

(5.16) F.(0-)=0, F(0)<1 Viel.

Recall that A°(¢) and B(r) denote respectively the aggregate premium received
and the aggregate amount of claims occurred during (0, f). Then denote by C(¢)
the net pay-out of the company in (0, ¢):

Ct)=B@)-A‘({t)=-S(t) (t=0)
Let then
(5.17) W, (x, ) =P[C(1)sx,I(t) =j]1(0)=1] (h,jed; t=0).

Define now

co=max{c;iel}, Jo={ieJ:c,=cq}

It is easy to prove the following

LEMMA

(i) Wy{x,t)=0fori,jeJ and x <—cgt;
(i) Wy(x,t)>0fori,jeJ and x > —cof;
(ifi) W, (—cot, t)>0ifi,je Joandeitheri = j orthere existr e Noandiy,...,i,€Jo
such that h, h, ,,... h,>0; W,{(—col, 1) =0 otherwise.
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Let now

W,,(s,t)=J eI W,(x, t)dx;  W(s,0)=(W,(s,1) (s>0),

—cof

w.,(s,t)=_[°° e AW, (x, t)=sW,(s,0);  wis, t)=(wy(5,1)  (s>0),

@

@)= e ™dF(x) (s=0).

0-

The following theorem gives an explicit expression for the transform matrix
Wi(s, 1).

THEOREM 5

Fors>0and t=0,

(5.18) Wis, t)=1/s exp {~T(s)t}
where

(519) 'Tu(s)=8u(at+A|—alfpl(s)_cls)_/\|hu-
Proof

For x =—cot, t 20 and & > 0 we obtain easily
(5.20) Wy, t+h)=0—(a. +A)R)W, (x +ch, t)

x+ch+cyt

+a,hj W, (x +ch—y, t)dF,(y)
0_
+Ah Y hyWi(x +cih, t)+o(h).
k=1

Dividing (5.20) by 4 and letting A tend to 0, we get

0 0
(5'21) _Wll(x,t)_cl_“/l](xr t)=_(al+'\l)vvl](x’ f)

at dx

+a.f W, (x -y, 1) dF,(y)

+Al Z hlkwkl(x) t)
k=1

(x = —cot, t =0).
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5.

We multiply now each term in (5.21) by ¢ ~** and integrate from —~cot to 00. We

obtain so
(5.22) aa—tW.xs, 0+ T [Bular + A —arls) ~ €)= A Wi (5, 0)
k=1

=(co—c) e 'Wy(—cot,t)  (s>0,1=0).

According to the above lemma the right side of (5.22) is always zero. In matrix
notation, the solution of (5.22) is then easily seen to be

(5.23) Wis,t)=exp {-T(s)}K
where
K=W(, 0=(1/s)w(s, 0)=(1/s)[ (s >0).

The proof is complete.
Notice that when m =1 (5.18) reduces to the known result for the classical
Poisson model.

5.3. Seal’s Integral Equation for the Finite Time non-ruin Probabilities

We show in this subsection that the SEAL’s integral equation (1974) may be
extended to the here considered semi-Markov model. We still assume that the
claim amounts are a.s. positive.

Define foru,t=0and i, jeJ

(5.24) R,(u, t)=P[Z,(v)=0for 0<sv=<¢, I(t)=j|I(0)=i];

we have clearly
R/(u,t)=Y R,(u,t) (ieJ; ut=0).
=1

Define further for s >0 and t =0

[co]

R..,(s,t)=J e ™R, u,t)du;  R(s,t)=(R,(s, 1),

0
r.,(s,u)=f e d R, (u, 1) =5sR,(s,1); r(s, t)=(r,(s, ).

We obtain easily for u, t=0and h >0

(5.25) Ry(u, t+h)=[1—(a, +A )RR, (u +ch, t)
u+ch

+alhj R.,(U'*'th_y, t)dF:()’)
0

+A|h z hlkRkl(u +Clh) t)+0(h)-
k=1
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Dividing (5.25) by A and letting 4 tend to 0, we find

a d
(526) a_t'Rl](u’ t)—cl ERu(uy t) - —(al +AI)R,,(u, ')

ta, L Ry(u—y, 1) dF.(y)

+/\x z hkakl(uv t) (uy IZO)-
k=1

Taking the Laplace transform of each term ir (5.26), we obtain
d

(5.27) Py

Ii,,(S, t) + kz [8xk (ax +A| —CS _a'(}'l(s)) —/\lhxk ]R'k;(s; t)
=1
+c¢.R,;(0,1)=0 (s>0, t=0).
The solution of the differential system (5.27) is easily seen to be

(5.28) R (s, =exp{-T(s)t}K - J-’ exp{—T(s)(t —u)}CR(0, u)du
0

(s>0, t=0)

where C =_(6,,c,); the constant matrix K is determined by the boundary condition
r(s,0)=sR(s,0)=sI. Thus K =s'I. Using finally (5.18), (5.28) may be written
as follows

m f -
(5.29) R,(s, )= W, (s,t)=s T | Wuls,t—u)ciRy(O,u)du  (s>0, t=0).
k=1Jo
Suppose now that the distributions F,(-) are absolutely continuous and denote
their densities by f,(-). The mass functions W,, (-, ¢) are then absolutely continuous

too; we denote their densities by W, (-, ) (t =0). Taking the inverse Laplace
transforms in (5.29) we obtain then

(5.30) Ry(x,1)=W,(x,0)— % ckJ' W (x, )R (0, t—u)du  (x,1=0).
k=1 0

The unknown constants (with respect to x) Ry;(0, u) are solutions of the Volterra
type integral system obtained by putting x =0 in (5.30):

(5.31) R, (0, )= Wy(0, t)— Zm: C"I Wi (0, u)Ry, (0, t —u) du (r=0).
k=1 Jo

Define now

S,(x, )=P[B(t)<x,I(t)=7]1(0)=1] (x,t=0)

and denote the corresponding densities by S (x, ¢). In the particular case where
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¢, = ¢ (i e J)we have clearly W, (x, 1) = S,,{x +ct, t); (5.30) and (5.31) become then

k=l

(5.32) R,(x,t)=S,(x +ct,t)—¢ i I Swlx+cu, u)Ry, (0, t—u)du (x,t=0),

m t
(5.33) R,(0,0)=S,(ct,ty—c Y, | Si(cu,u)R:,(0,t—u)du (r=0).
k=1Jo

When m =1 (5.32) and (5.33) reduce exactly to Seal’s system.

5.4. Asymptotic Non-ruin Probabilities

We suppose here that the number d defined by (5.15) is strictly positive; then
for allieJ and u =0, R,(u)>0 and R,(-) is a probability distribution. After
summation over j (5.26) gives for ¢ = c0:

u

(5.34) cR/(u)=(a,+A)R,(u)—a, | R, (u—y)dF.(y)—A, f huR(u)
k=1

0—
(ieJ; u=0).

It can be shown that (5.34) has a unique solution such that R,(0)=1, VieJ.
Integrating (5.34) from 0 to ¢ we get

(5.35) CR(1) = c.R.(0)+a, j Rt —y)[1-F.(y)]dy

+AILI[R,(u)—§I h.kRk(u)] du  Giel t=0).

For m =1 (5.35) is the well known defective renewal equation from which the
famous Cramer estimate may be derived (see FELLER, Chapter XI). For m > 1,
(5.35) is unfortunately not more a renewal type equation. Letting ¢ tend to co
in (5.35) does not give an explicit value for the probabilities R,{0) as is the case
when m = 1:

=]

(5.36) R,(0)=1—°"—‘“—ﬁj

m
(R~ 3 huRelw)] du
C ¢ Jo k=1
However, when the claim amounts distributions are exponential,
Fx)=1—e™**  (x=0),

afurther differentiation of both sides of (5.34) shows that the asymptotic non-ruin
probabilities are solution of the differential system

(5.37) R."(u)=(‘%*'—f)k:(u)—ﬁ 5 h.,R:(u)+C—%R.(u)

i Ci =1

A, I )
- Z hllRl(u) (fed, u=0)
Cdi j=1
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with the boundary conditions

a,+A,

(538) RJo)=1; R ©0)=2Fhg -4 > hyR,(0)  (ie]).

i [
6. EXAMPLE

Assume that

(6.1) m=2, hi2=hy1 =1, hi1=hyn=0;

there are thus two possible states for the environment, the sojourn times in each
state being exponentially distributed.
The solution of system (3.7) is then

Vi) = _al(ax+/\2+r1)( _ ,l,)+a1(a2+)¢2+r2)( —e™),
riri—ra) ra(ri~r2)
—_& — Nt __M}__ ot
O L A N
©2 A+ FAL+
V22(1)=_a2(a1 1 fl)( _ ,l,)+a2(al 1 1’2)( _e,z,)’
ri(ri—ra) ra(ri—ra)
A Aj
Va(t) = ____za;( - ')+$(l—e'2') (t=0),
\ ri(ri—rz) ra(ri—ra)

where r, and r, are the solutions (always distinct and negative as a,, A, >0) of

(63) (a1+)\1+r)(a2+,\2+r)=/\1,\z.

The stationary probabilities for the chain {J,,} are given by (4.2) which becomes
here

aA, azA
6.4 = =—
( ) a1,\2+a2/\1 m2 al/\2+a2A,
Expectations of the number of claims occurring in environment i (i =1,2)
before ¢ are obtained by solving system (4.9) with the boundary conditions
M/ =0

QA2 aid;

(6.5) M“(t)=A1+/\2 (A +A,)

=(A +A)
(1-e )

»

a2Ay a2y (A AN
M (t)— - (1—e M7,
12 Ai+Az (A +Ay)°

M:(t) and M, (t) are obtained by replacing in the expressions of M;;(r) and
Mlz(f) respectively a1(2) by a1 and A 1(2) by /\2(1).
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The mean recurrence time of claims occurring in environment i (1 =1,2) is
given by (4.18).

Ai+A Ai+A
(6.6) yn=——"",  yp=—
(11/\2 az/\1
We obtain then from (4.15)
+A+ +A,+
(6.7) ‘)’12=a————'2 A /\2, )’21:-(1-—“‘—1 all A2-
QA ajAz

The characteristic number d defined by (5.15) takes the following form:

(6.8) g =raleiam) +Ailea—aaps)
‘ 01A2+112/\1 )

From now on we assume that d > 0 and that the claim amount distributions F,(-)
are exponential, i.e.,

(6.9) F(x)=1-e™™  (x=0; i=12).

From (5.37) and (5.38) we obtain that the asymptotic non-ruin probabilities are
solution of the following differential system

C A A
qR«w=wﬁwr;ﬂRuw+ijm—ijw—mew
(6.10) ' ' :
" ' A A ,
quw=Mﬁ¢rﬁ%Rﬂw+inw—iRaw—anm
u2 K2 M2

with the boundary conditions

R)(00) = R;y(0) =1
(6.11) ¢1R1(0) = (a1 +A1)R1(0) + A1 R2(0) = c2R5(0)
—(a2+A2)R2(0)+ AR 1(0)=0.

Define

6.12) b=t =12
M C

and assume without restriction that p, =p..
The condition d >0 is then equivalent to the following

A A
2 L+ 1

Capt2 Ciits

(6.13) p2>0.
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As p;=p,, then p; is clearly strictly positive. We obtain then that the general
solution of (6.10) takes the form

Riw)=Ao+A e +A,e" " + A ",
(6.14) R,(u)=Ao—D(k\)A, e““—D(k,)A, e**
~D(k3)A; ",
where

Cl#xk?'*‘(Cl“alﬂ-x—Alll-l)k.—l\l
Ak, + Ay

(6.15) D(k,) =

_ Aapiak, + A,
Czl-l-zk.z +(ca—arpa— A )k, — XS’

and where k,, k3, k3 are the roots of the characteristic equation

(6.16) P(k)=k3+(pl+p2_ﬂ_'\_2)k2

Cy Cz

Ay Ay Az Al AA,
(o1 ) (pa-22) - A A,
Ci C2 Coitz Cip1 Ci1C2

Az A
"( p1t Pz)=0-
Cop2 Cii1

From (6.13) we see that k1k,k+>0. It is easily verified that

@A alA
clzl(px—pz)ao; P(—p2)= szz(Pz—pn)<0;
1 2

P(—P1)=

P(0)<0.

From this we may deduce that P(k) has a negative root, say k,, between —p,
and —p;. As the product of the three roots is positive we deduce further that
the two other roots, k; and k., are real (if k, and ki were complex conjugate
roots, their product would be positive; we would then have kk,k;<0). As
P(+00) = +00 and P(—00) = —00, we conclude finally that when p, >p, one of the
roots, say k,, is strictly less than —p, and that the other, k3, is positive. When
p1=p2=p (we have then k, = —p), we obtain the same conclusions by verifying
that P'(—p) <0. We summarize this as follows:

ki<—-pi<k<min{0, —p2}, k3>0  ifp;>p,
(6.17) i

k1<k2=—p<0<k3 lfp1=p2=p.
From the boundary conditions (6.11) we obtain that

(6.18) Ag=1, A;=0
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and that A, and A, are the solutions of
[ciki—a1—A A D&)A +Hc1kz—a1—A1—A 1D (k2)]A =a;
[(—ec2ki+az+A2)D (k) +A2JA 1+ [(—e2katay +A2)D (k) +A]A, =y
or, which is equivalent in view of (6.15),
A, N Ar
pwiki+1 uika+1

Dky) + D (k)
[J.zk]'f‘]. ! “2k2+1

-1
(6.19)
A2= 1.

We can obtain a lower bound for k,. Verify first that P(x7') <0 if g, < p, and
that 2(u3') <0 if wo<p;. We can then easily conclude that

(6.20) —min {g1, wo} ' <k

We summarize the above results in

THEOREM 6

Ifm=2,hj=hy=1,d >0 and if the claim amount distributions are exponen-
tial, the asymptotic non-ruin probabilities are given by

Riu)=1+A,e“ " +A,e"",
Ry(u)=1-D(k)A, e ~D(k)A, e (u=0),

where &k and k, are the two negative roots of (6.16), where the constants D (k)
are given by (6.15) and where A, and A, are solutions of (6.19).

Whenay=az=a,u1=p2=u,c; =c2=c andif A, and A, are arbitrary positive
numbers, then £, = —p and k, is the negative root of

(6.21) k2+(p—"‘+“)k—"‘+“=o.

c cu
When obtain then D (k,) = —1, D (k) = A2/A, and the solution of (6.19)is A; =0,
Ay =—au/c. As expected the ruin probabilities R(«) and R,(u) are in this case
identical and equal to the ruin probabilities obtained for the classical Poisson
model with exponentially distributed claim amounts:

(6.22) Ry(u)=Ry(u)= 1—"‘0—“("“.
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