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ABSTRACT 

A premium calculation principle zr is called positively homogeneous if 7r(cX) = 
c~-(X) for all c > 0  and all random variables X. For all known principles it is 
shown that this condition is fulfilled if it is satisfied for two specific values of c 
only, say c =2  and c = 3, and for only all two point random variables X. In the 
case of the Esscher principle one value of c suffices. In short this means that 
local homogeneity implies global homogeneity. From this it follows that in the 
case of the zero utility principle or Swiss premium calculation principle, the 
underlying utility function is of a very specific type. 

A very general theorem on premium calculation principles which satisfy a weak 
continuity condition, is added. Among others the proof uses Kroneckers Theorem 
on Diophantine Approximations. 
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I. INTRODUCTION 

In actuarial practice one generally uses only three premium calculation principles, 
namely the expected value principle, the variance principle and the standard 
deviation principle. Apart from these there are many other principles for determin- 
ing a premium for a risk: all these are examined in the new textbook by 
GOOVAERTS, DEVYLDER and HAEZENDONCK (1984). A central theme is the 
analysis of the principles which fulfil some desirable properties such as translation 
invariance, (sub-)addltivlty, iterativity, homogeneity etc. For example the expec- 
ted value prinople is always additive and homogeneous, but it is iterative or 
translation invariant only in the case of a vanishing loading. 

Ifa premium principle is defined by a utility function, then the above mentioned, 
(so-called) plausible properties are in general very restrictive: The Swiss premium 
calculation principle e.g. is translation invariant if and only if the corresponding 
utility function is exponential or linear, and it is positively homogeneous if the 
utility function u(x) is--up to linear transformations--a power of x. Therefore, 
e.g., the Swiss premium calculation principle is both translation invariant and 
homogeneous only in the case of a linear utility function. Such an analysis has 
been performed already for all known principles and all properties mentioned 
above. If zr denotes a premium calculation principle, which therefore to any real 
random variable X assigns a real number ~r(X)--the premium of X - - t h en  in 
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all cases it turns out that, e.g., in the case of  translat ion invariance (that means  

( I )  r r (X + c ) =  ~ ' ( X ) + c  

for all risks X and all real numbers  c), it is sufficient to know equat ion (1) for 
all cell~ and only all X e D2 (D2 the set of  all 2-atomic r andom variables):  If  
(1) is valid for all c e ~, X e D2, then automat ica l ly  (1) is fulfilled also for those 
X not in D2. This reduct ion to the essence of  a proper ty  has been worked out 
for the proper ty  of  translat ion invariance by REICH (1984) in a definitive sense: 
Any principle is a l ready translation invariant  (i.e., (1) holds for all c e R and all 
risks X) ,  if (l~_lS fulfilled for all X e D2 and two specific values of  c only, say 
c = I and c =V2.  In case of  the Orlicz principle (HAEZENDONCK and GOOVAERTS 
(1982)) a single value of  c, e.g., c = i, suffices. A further reduct ion is impossible  
as one can see from the counte rexamples  in REICH (1984). 

In the case of  the proper ty  of  homogenei ty  (somet imes  also called propor t ion-  
ahty)  

(2) rr( c X  ) = c~r( X ) 

(more exactly we will examine positively homogeneous  principles,  i.e., c e R  ÷) 
we will now give a similar analysis o f  the analogous  problems.  Equat ion (2) 
means  for c = ½, say, that the p remium of  X should be homogeneous ly  divided 
in two equal  parts,  if the risk X is split up into two parts in a homogeneous  way. 
The aim of  this paper  therefore is to give an answer  to the question" How little 
does one really need to know, to have a l ready proper ty  (2) m full generali ty (i.e., 
for arbi t rary risk X and arbitrary c c R ÷) ? Of  course, this leads to other  condit ions 
than in the case of  t ranslat ion invariance and other  principles are now of  special 
interest. A mere  corol lary from the results (still to be formulated and proved)  
should be ment ioned  here: Take for example  the Swiss p remium calculat ion 
principle.  I f  (2) holds for all X e D 2 only and for all c • [~, ½], then (2) holds 
automat ica l ly  for all risks X and all c ~ I/~ ÷. There  is therefore no difference in 
homogene i ty  as a local or  global property.  This fact is a trivial consequence  of  
theorem 2.2, which is best possible in the precise sense specified there. Moreover  
for every known p remium calculation principle the following is true (X  ~ D2): 
If  (2) holds in the two special cases c = ½ and c = ½ only, then again (2) is fulfilled 
for all c > 0. 

From this one can prove that even an extremely weaker  assumpt ion  than the 
homogene i ty  is (with the Orlicz principle as the only except ion)  very restrictive 
for all utility principles. 

2. R E S U L T S  A N D  R E M A R K S  

Among  the known principles the following are in every case (i.e., independent  
o f  the choice of  the corresponding parameters  or utility functions) positively 
homogeneous :  Expected  value principle,  maximal  loss principle,  percenti le prin- 
ciple, s tandard  deviat ion principle and Orlicz principle. The var iance principle 
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on the contrary is certainly not positively homogeneous in the case of a non- 
vanishing loading (cf. GOOVAERTS, DE VYLDER and HAEZENDONCK (1984)). 

For the remaining cases of the Swiss Premium calculation principle, the zero 
utility principle (which is indeed a special case of  the Swiss premium calculation 
principle, but has for technical reasons to be treated separately) and the,Esscher 
principle it will now be proved for example: If  one has for all X c D2 

7r(½X)=½7r(X) and ~r(½X)=½~r(X), 

then 

~r( cX  ) = c~'( X ) 

holds for all X and all c e ~+, i.e., zr is positively homogeneous. More generally 
and more exactly: 

2A. 7r = zero utility principle 

This principle was introduced by BUHLMANN (1970). One starts with a utility 
function u with u'(x)>~O, u"(x)<~O. For a given risk X the premium P =  zr(X) 
is determined by 

(3) E [ u ( P  - X)]  = u(0). 

We prove 

THEOREM 2.1. For fixed, posture c~, c2# I let log ca/log c2 not be rational I f  
for  every X ~ D E 

r r ( c I X ) = c t r r ( X )  and 7r (c2X)=c2rr (X)  

hold, then u zs linear. Conversely, i f  u ts hnear, then for  all X and all c~ff~ + 

~ ' (cX)  = c ~ ( X )  

holds, i.e. 7r is posztioely homogeneous. 

REMARK Theorem 2.1 is best possible in the following sense: For any pair 
c,, c 2 e R  + (c ,=c2  is admissible), which the condition of theorem 2.1 (i.e., 
log c, /Iog c :e  Q) does not fulfil, there is a non-linear utility function u such that 

7r( c,X ) = c:r( X ), I = I, 2, X E D2, 

holds. In this case the zero utility principle certainly is not positively 
homogeneous. 

2B. 7r = Swiss p remmm calculation principle 

This principle was introduced by BUHLMANN, GAGLIARDI, GERBER and STRAUB 
(1977)' If  Z~[0, I] and u is a strictly monotonic, continuous function on R the 
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premium P =  7r(X) for a risk X is given by the equation 

(4 )  E [ u ( X  - z P ) ]  = u ( ( l  - z)P) .  

In the case z = ! and by the substitution u ( x ) ~  - u ( - x )  one just gets the zero 
utility principle. By a different p roof  than in the case 2A one proves for 0<~ z < 1 

THEOREM 2.2. For fixed, posture c~, c2 ~ ! let log c~/log c2 not be rational. I f  
for every X ~ D2 

7 r ( c t X ) = c l z r ( X )  and zr (c2X)=c27r(X)  

hold, then for suitable a, 13, Y, r e R (with 137 > O, r > O) 

f O/ "1- ]~X r, X ~ 0 
(5) U(X) I 

I~ -~ ( -x ) ' ,  x < 0 .  

Conversely, ¢f u has the form (5), then for all X and all c e R +  

~r( c X  ) = c~r( X ) 

holds, i.e., ¢r is positively homogeneous. 

REMARK. Theorem 2.2 is best possible in the following sense" For any pair 
c~, c2e~  +, which does not fulfil the condit ions of  theorem 2.2, there is an 
admissible utility function u, not of  the form (5), such that 

¢r(c,X) = c,¢r(X), t = 1,2, X e D 2 

holds. In this case the Swiss premium calculauon principle certainly is not  
positively homogeneous .  

2C. rr = Esscher prmczple 

This principle was introduced in BUHLMANN (1980) and so named in view of  
the formal similarity to the Esscher transform. Given cr t> 0 the premium P = ¢r(X) 
IS determined explicitly by the equanon  

E [ X  exp ( a X ) ]  
~-(x) - 

E[exp (crX)] 

It ts very easy to see (cf. GOOVAERTS, DE VYLDER and HAEZENDONCK (1984)), 

that the Esscher principle is positively homogeneous  only in the case c~ = 0, i.e., 
Esscher p remmm = net premium. A simple p roof  will give the following sharp 
result: 

THEOREM 2.3. I f  for a f ixed Co# I, a single (non-degenerated) Xo~ D2 the 
equanon 

rr( coXo) = Corr( Xo) 

holds, then et = O. 
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2D. General premium principles 

The result ment ioned in the introduction,  namely that the property of  positive 
homogenei ty  is already fulfilled in the global sense if it is known only locally with 
respect to the variable c, now follows easily: If  7r denotes the zero utility principle, 
the Swiss premium calculation principle or the Esscher principle, then the 
theorems above yield at once 

COROLLARY 2.4. I f  for  all X ~ D2 and all c in a given (arbitrarily small) bounded 
interval in R + one has 

~-( c X  ) = c~r( X ), 

then 7r(cX) = cTr(X) holds for  all X and all c ~  +. 

Finally one should pay attention to a very general result, which on the one hand 
makes the results above more transparent,  on the other  hand is true for general, 
possibly still unknown principles: Denote by 7r any premium principle with the 
very weak and plausible continuity condit ion,  that for every convergent  sequence 
( ' y k ) ~  R + and every X ~  D 2 

lim 7r(y~X) = ¢r(lim Yk" X ) .  
k~cO k~oo 

For such principles one has throughout  

THEOREM 2.5. For fixed, posztive c~, c2~ 1 let log c J l o g  c z not be rational. I f  

7 r ( c i X ) = c l r r ( X )  and 7r (c2X)=c27r(X) ,  X E D 2 ,  

then rr( cX  ) = cTr( X ) holds for  all X ~ D 2 and even all c >  O. 

As a corollary (because in any interval I, however  small it may be, there are of  
course always two numbers  Cl, c2#1  in / such that log c~ / Iogc2~Q)  we note: 
The (global) property of  such premium calculation principles o f  being positively 
homogeneous  is always a local property in the following sense: 

If  rr (cX)  = cTr(X) holds for only all c ~ I, then automatical ly also for even all 
CER +. 

REMARK. Simple and explicit examples for pairs of  numbers  c~, c2# ! ,  which 
satisfy log c J I o g  c2~Q, are the following: 

(I) c, = 2, c2 = 3, 
( i i )  c,  = ½, c2 = ½, 
(lii) cl = 1 .1 ,  c2 = 1 .2 ,  
(iv) ct = 2, c2 = rr, 
(v) ct = 2, c2 = e ~, 
(vi) cl = e, c2 = e , 
(vn) cl = 1.25, c2 = I.I.  
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As was pointed out by GERBER (1979), pp. 73-74, the global property of  posittve 
homogenei ty  is not reasonable for practical reasons. From example (vii) e.g., one 
can deduce by the corollary o f  theorem 2.5 more precisely that it is in the same 
way again unreasonable  to accept the homogenei ty  property as a local property 
with respect to c only: If  for all X 

~-(cX) = c~ ' (X)  

holds for, say all c between 1 and 1.25 (local property),  then automatical ly by 
the results above also for all c > 0 (global property).  In accordance  with GERBER 
(1979) the quotmnt 7r(cX)/Tr(X) should depend not only on c but also on X. 

3. PROOFS 

Ad 2A: First of  all we consider the zero utility principle rr with strictly monotonic  
utility function u, such that u'(x)~> 0, u"(x)<~ 0. To prove theorem 2.1 we assume 
u ( 0 ) = 0  without  loss o f  generality, because for a given risk X the premium 
P = ~r(X) does not change if in (3) u is substituted by u - u(0). 

LEMMA 3.1. l f f o r a f i x e d  Co>0 

(6) 7r(coX) = Cozr(X), X ~ D2, 

then there exzsts a/30 =/3o(C0) such that 

U(CoX) = 13oU(X) 

holds for all x ~ R. 

PROOF. For the present let be x > 0, and for a, b ~ R, q ~ [0, I] let X = Xa.b.q ~ D2 
be defined by 

p r ( X = a ) = l - q ,  p r ( X = b ) = q .  

With the abbreviat ion P = P(a, b, q) = ~ ' (X)  one has by (3) 

(7) 

and by (6) 

(8) 

(7) and (8) ymld 

(9) 

(lO) 

(i - q ) u ( P - a )  + q u ( P - b )  = u(0), 

(1 - q ) u ( c o ( P -  a)) +qU(co(P - b)) = u(O). 

l - q =  u ( P - b ) - u ( O )  

q u ( O ) - u ( P - a ) '  

1 - q_  U(Co(P- b)) - u(O) 

q u ( O ) - u ( c o ( P - a ) ) "  

Putting x ' = - I ,  a = 2, y = l, b = i - x  one gets 

( l l )  a = y - x ' ,  b = y - x  and b < y < a .  
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If 

u(O) - u(x')  
(12) q - u ( x ) - u ( x ' ) '  

then 0 < q < l  in view of  the strict mono ton ic i ty  of  u. Because o f  x=3,-b,  
x ' =  3 , - a  and by (12) one concludes  

(I - q)u(  3 , -  a) + qu( 3 , -  b) = u(O), 

therefore  3' = P(a, b, q) a c c o r d m g  to (7). F rom this, in view of  (10), ( I I ) It fol lows 

1 - q U(CoX)- u(O) 
(13) 

q - u ( 0 ) -  U(CoX') 

for a rb i t ra ry  x > 0. Toge ther  with (9) this leads to 

U(CoX)- u(O) u ( x ) -  u(O) 

u ( O ) -  U(CoX') u ( O ) -  u(x')  

Therefore  

U( CoX) - u(O) = u(O) - U( CoX') 
u ( O ) - u ( x ' )  

U(CoX) - u(O) - U(CoX') u (x )  + u(0)[ 1 
u(O) - u(x')  

U( CoX') 
= u(x )  

u(x ' )  

[u(x) - u(0)], 

u(O) - u (x  ) J 

for all x > 0, respect ing the normal iza t ion  u ( 0 ) =  0. With /30 = U(CoX')/u(x') this 
is the asser t ion for x > 0. 

In the case x ~ 0 one proves in an ana logous  way the exis tence of  a real number  

3'0 such that  

(14) U(CoX) = 3,oU(X) 

holds  for all x ~ 0. Now certainly/30 = 3,o (this is exact ly  the s ta tement  of  l emma 
3.1), because  with regard  to (9) and u ( 0 ) = 0  one has 

I - q _  u (P-b)  
q u (P-a)  ( 1 5 )  

Cor re spond ing ly  by (10) 

I - q  U(Co(P-b)) flo u(P-b)  
(16) q - U(Co(P-a))- 3"0 u (P-a)  

if b < P <  a, which Is true in view of  (I I) and  P = 3'. C o m p a r i n g  (15) and (16) 

one has /3o = 3,o. 
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PROOF OF THEOREM 2.1. Under  the a s sumpt ions  of  theorem 2.1 there are by 
lemma 3.1 real numbers  fl~, /32 such that  

(17) u(c,x)=/3,u(x) and u(c2x)=Ci2u(x), xER. 

Successwe a p p h c a t i o n  o f  these re la t ions gives for x = I 

u(c ,c2)= ° m . m / 3 ~ / ~ 2 u ( 1 ) ,  n , m ~ Z .  

Together  with (17) It fol lows for x ~ ,  n, r n ~ Z  

( 18 )  u( C cTx) = u( c? cT)u(x) /  u( I ). 

By as sumpt ion  one has log c , / Iog  c2~Q,  therefore  accord ing  to Kronecker ' s  
a p p r o x i m a t i o n  theorem (cf. REICH (1984), A p p e n d i x )  the set 

{klogc,+llogc2 k , l~Z}  

is dense  in R. From this it fol lows at once that  for every given number  y > 0  

there are  two sequences  k(n) ,  l (n)~Z such that  

~k(n)ol(n) 
(19) y =  hm ~l ~2 • 

By (18) and the cont inui ty  of  u one conc ludes  

(20) u(yx) = u( y)u(x)/  u( l ). 

for a rb i t ra ry  y > 0, x c R. The only con t inuous  solut ion o f  this funct ional  equat ion  
a r e  

(21) u(x)=u(l)x ' ,  x > 0 ,  

with some r e R ,  as is well known. Because u is s tr ict ly increasing,  (21) holds  
for all x >  0 wi th  sui table  r >  0. Moreover ,  if x < 0 then it fol lows from (20) 

U(X)=U(--I)(--X) r, 

so indeed  there are numbers  ,8 > O, 3' < 0 such that  

~13 x', x !> 0 
U(X) I 

[~/(--X)', x<O 

In the case r = I one has cer ta inly/3  = - y for con t inuous  u',  therefore  u is l inear.  
The case r~>2 is imposs ib le  in view of  u"(x)~<O, the case 0 < r < 2 ,  r e  1, is 
imposs ib le  accord ing  to the exxstence of  u"(0). Because of  the assumed normal iz-  
a t ion o f  u theorem 2.1 ts proved.  

The remark  after  theorem 2.1 can be easi ly proved.  

Ad 2B: 

PROOF OF THEOREM 2.2 (Swiss p remium ca lcu la t ion  pr incip le) .  Let be z <1  
and wi thout  any restr ic t ion o f  genera l i ty  let u be strictly increasing.  Assume as 
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in theorem 2.2 that two numbers  cl, c2~ ! are given and that ~r(c,X)=e,~r(X) 
holds for i =  i, 2. According to (4) one has more precisely 

(22) E[u(c ,X - zc ,  P)]= u((I - z )c ,P) ,  X ~  D2, i= 1,2. 

Defining g,(x) = u(c,x) equation (22) gives 

e[g , (X  - zP)] = g,((! - z) P). 

By GOOVAERTS, DE VYLDER and HAEZENDONCK (1984), theorem 2, p. 72, there 
exist real numbers a,, fl,, t = 1,2, such that 

(23) u(c,x)=ot, +13,u(x), x 6 a .  

Without any restriction one can assume u to be normalized,  especially u ( 0 ) =  0. 
Then, of  course, a, = 0 and 

(24) u(c,x)=fl,u(x),  x ~ R .  

From this it follows immediately for arbitrary n, m e Z, x e R 

(25) u( cT cT x) = ~T137 u(x) = u( c? c~')u(x)/ u( l ). 

The condi t ion log c , / log  c2 ~ Q leads via Kronecker ' s  approximat ion  theorem and 
the continuity of  u to 

(26) u( yx) = u( y)u( x) /  u( l ) 

for all y > 0 ,  x ~ .  
In the case x -~0  one introduces ul(x)= u(x ) /u ( I )  and gets by (26) 

u , (yx )=u l (y )u , ( x ) ,  x ,y>O.  

As is well known for cont inuous u, it follows that u~ is monomial ,  therefore u too. 

u ( x ) = u ( l ) x  r, x~>O, 
with suitable r > 0. 

In the case x < 0  one defines z =  - x  and u2(z) = - u ( z ) .  By (26) 

u~( yz ) = u2( y ) u2( z ) / u2( I ), 

therefore it follows in a similar way that u2 is a monomial .  This means 

u(x)= - u ( - l ) ( - x y ,  x<0, 

for suitable s > 0. In view of  (26) r = s holds, so the first part o f  theorem 2.2 is 
proved The second part is trivial. 

The remark after theorem 2.2 is easily proved and the p roo f  is omitted. 

Ad 2C: 

PROOF OF THEOREM 2.3 (Esscher principle). Let Xo~ D2 not be degenerated,  
say 

pr (Xo=  a) = 1 - q ,  pr ( X o =  b) = q 
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for some a, b e f f ~ , a ~ b ,  q e ( 0 , 1 ) .  If  f o r a  fixed c o ~ l  

~r(coXo) = c o ~ ' ( X o )  

is true, then 

c o a ( i - q ) e x p ( a c o a ) + c o b q e x p ( a c o b )  a ( l - q ) e x p ( a a ) + b q e x p ( o t b )  
( l - q ) e x p ( a c o a ) + q e x p ( a c o b )  -Co ( I - q ) e x p ( a a ) + q e x p ( a b )  

Mul t ip l i ca t ion  yields 

(a - b) exp [a(coa + b)] = (a  - b) exp [a(cob + a)] ,  

therefore  in view of  a # b 

exp [a(coa + b)] = exp [a(cob + a)] .  

Assume a > 0, then coa + b = cob + a, therefore  a = b accord ing  to Co # I. This is 
a con t rad ic t ion ,  so necessar i ly  a = 0. 

Ad 2D: 

If  I = ( a ,  b), O~-a<b~<oo, is any interval  in R ÷, then by trivial a rguments  there 
are two numbers  c~, c2e I such that  log c~/Iog c2~Q.  From this it is c lear  that  
Coro l l a ry  2.4 fol lows from the p reced ing  Theorems.  

PROOF OF THEOREM 2.5. By reduct ion  one immedia t e ly  proves for n, m ~ N 

(27) 

Because o f  

~-(c?X) = cT~ . (x ) ,  ~ ' ( eTX)  = c T ~ - ( x ) .  

(_ix) ,-x) 
zr(X)  = ~" c, c, \ c ,  

equa t ion  (27) even holds  for n, m e Z. Then one has 

i = 1 , 2 ,  

(28 )  ~r(c?cTX) = c ~ ' ~ r ( c T X )  = c?cT~r(X).  

Given  an arb i t ra ry  c > 0  there are accord ing  to Kronecke r ' s  app rox ima t ton  
theorem (cf. REICH (1984), Append ix )  two sequences  n(k) ,  r n ( k ) c Z  such that  

rk = C~k~ C~ '~k~ ~ C. 

The cont inu i ty  condi t ion  for zr and  (28) yields  

~ ( c X )  = zr( l im 7k" X ) =  lim ¢r( rkX)  = lim Yk" r r ( X ) = c ~ ( X ) ,  
k ~  k ~ c o  k - - o o  

therefore  the asser t ion.  
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