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ABSTRACT

Upper and lower bounds are derived for the stop-loss premium of compound
distributions with fixed claim number distribution and known mean, variance
and range for the claim severity distribution.

1. INTRODUCTION

In this paper we investigate bounds on stop-loss premiums for compound distribu-
tions

(1) S=X,+Xy+ -+ Xy

where the claim number distribution Fy is fixed (e.g., Poisson (1)) and where
the claim severity distribution Fy is restricted to have

(2) F.(-0)=0
Fx(b) =1
E[X]=n

for some finite b and p €[0, b].
The stop-loss premium of S with stop-loss point ¢ will be denoted by

©) 1, Fx>=r(x—r)d[§ Pr(N=n)F;'<x)]

t

BUHLMANN et al. (1977), introducing the concept of stop-loss ordering, derived
bounds for w(t; Fx).

In fact, when the random variable X~ equals u with probability one, and X~
has range {0, b} and mean g,

(4) w(1; Fx-)<a(t; Fx)=<m(t; Fx+)

uniformly in ¢ and for all X satisfying (2).

ASTIN BULLETIN Vol 16, No 1|



14 KAAS AND GOOVAERTS

To prove that this is true first observe that @ and 8 exist such that
(5) Fx-(x)< Fx(x) forx<a
Fx (x)= Fx(x) forxza
Fy+(x)s Fx(x) forx=p
Fx+(x)= Fx(x) forx<§.

As E[X"]=E[X]= E[X™], this means that X~ is less dangerous than X and
X" is more dangerous. As a more dangerous distribution has higher stop-loss
premiums, we have

(6) X XXt

where o€ denotes stop-loss order. Stop-loss order is preserved under com-
pounding, so

(M)

12z

N N
X<y X<y XV
1=1 t=1

=1

which 1s equivalent to (4) holding for all real «. For a more detailed proof, see
GOOVAERTS et al. (1984)

Since X~ and X7 satisfy all requirements for X, the bounds in (4) are best
possible, and X~ and X" are extremal distributions.

It is not possible to give such extreme distributions when the variance of X is
also fixed, say

(8) Var (X) = o?

With the techniques of GoovaEgrTs ef al. (1984) one may compute extreme values
of stop-loss premiums, but unfortunately the corresponding distributions depend
on the value of the stop-loss point chosen. There is no severity distribution in
this class that is smallest or largest in the sense of stop-loss order.

In Section 2 we exhibit random variables Z~ and Z” that give bounds like
(4), uniformly in ¢ These bounds are not the best possible, since Z~ and Z*
have variances different from o. They are, however, the greatest lower and least
upper bound with respect to dangerousness.

In Section 3 we give a numerical illustration using the examples of GERBER
(1982).

2. ANALYTICAL BOUNDS ON DISTRIBUTION FUNCTIONS

In GoovaEerTs and Kaas (1986) extreme values are given for distributions Fx
with range [0, b] and the first few moments fixed. When X has mean u and
variance o, we have

(10) F'(x)< Fx(x)< F*(x)

with the values of F' and F* given in the following table, where z = (x— p)/o
and d = by —pu?— o>=0 are used for notational convenience.
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TABLE 1

BOUNDS FOR DISTRIBUTION FUNCTIONS WITH RANGE [0, b},
MEAN p AND VARIANCE o2

x F'(x) F“(x)

0<x= 0 !

x\b—p. 1+ 22

d d d

<xsb-— -2 1-Ey

- I b bx b b(b-x)
1
b——=<x=<b} - 3 1
1+z

Now define the following two severity distributions:

F'(x) 0sx<a
(11) Fy+(x)=4¢ F'(a) asx<f
Fl(x) B<=x<b

where a and B satisfy

(12) a=pt————
o tu(b-p)

x[o(b=2p)—Vo*(b—2p)2+ (624 u(b — 1))’

o
o’+u(b-p)

x[o(b=2p)+ a2 (b~2u)+ (0 + pu(b—pu))?]

B=p

and

Fl(x) 0<sx<p
F'(x) psx=<b

(13) Fz‘(x)={

With d as in table 1, we have a<d/(b—pu) and 8= b—d/u. To check that F+
is well-defined and
E[ZT]1=E[Z7]=n

is a laborious process but involves only elementary calculus. Since the distribution
G with dG(a)=F*(a)=1-dG(8) has mean u and variance ¢?, we have
Var (Z*)> o2

In fact, it may be shown that, writing *= (¢ —u)/o for all 1,

(1+b*2)(1+o*2))>
(1+a*?)(1+8*?)

In the same way, considering the distribution H with
dH(0)=F'(n),  dH(p)=F"(u)—F'(n), dH(b)=1-F"(n),

(14) Var(Z+)=orz(1+ln<



16 KAAS AND GOOVAERTS

which has mean p and variance o2, one shows that Var (Z7) < o’. Because of
(10) we have immediately that Z~ is less dangerous than any X, and Z" is more
dangerous, so

(15) m(t,Z)<w(, X)<sm(; Z7)

uniformly for all ¢t and for all feasible X.

Now let W be a random variable with dF,,(x)>0 for some x where also
F'(x) < Fw(x) < F¥(x). It is easy to construct a feasible X with Fy(x)= Fu(x)
and x outside the spectrum of X : dFyx (x) = 0. But then either X is more dangerous
than W, or X and W are not comparable because Fx and F,, have two more
more sign changes. So to be more dangerous than all X, Fy, must be first above
F* then constant between F* and F’, then below F’ But then it is easy to see
that F,+ and Fy have only one point of intersection, so Z* is less dangerous
than W,

Reasoning along the same lines for Z~ we may conclude that among the
distributions more dangerous than any feasible X, Z™ is the least dangerous,
whereas Z~ is the most dangerous less dangerous distribution. In this sense Z*
and Z~ are optimal choices.

3. NUMERICAL ILLUSTRATION

In order to assess the quality of the bounds derived in the previous section, we
give a numerical example. In GERBER (1982) methods are described to bound
as well as to approximate stop-loss premiums of compound Poisson distributions.
His method to obtain a lower bound using mass concentration does not always
give an arithmetic discrete distribution, so we used the method of matching (two)
moments, which is much more exact with the same computational effort. To
obtain Gerber’s uniform (1, 3) claim severity distribution as a special case, we
took b=3, u=2 and o’>=1 in our examples, the claim numbers being Poisson
(A) with A =1, 10 and 100.

TABLE 2

BounDs FOR Stop-Loss PrREMiumMs witH CLAIM-RANGE [0,3], MEAN 2,
VARIANCE } AND CLAIM NUMBER POISSON (1)

Stop-Loss Gerber's Upper Upper Lower Lower
Point ¢ Exact Value Bound (4) Bound (15) Bound (15) Bound (4)
0 2000 100 0% 100 0% 100 0% 100 0%

2 8277x107" 124 1 1135 893 88.9

4 2689x 107" 147 2 1242 78 4 77.1

6 7184x%1072 149 4 134 8 673 650

8 1.627x 1072 288 4 182.9 5617 535

10 3254x 1073 364.0 2273 46 2 423

12 5.815x107 3656 2611 367 326

14 9346 x 1077 9213 356 9 287 246

16 1366%x107° 1166 9 4950 221 183

18 1840%107° 11540 597 4 168 133

20 2302x1077 3578 6 807 5 125 95




BOUNDS ON STOP-LOSS PREMIUMS 17

TABLE 3

BouNDs FOR STOP-LOSS PREMIUMS wiTH CLAIM RANGE [0,3], MEAN 2,
VARIANCE § AND CLaiM NUMBER Poisson (10)

Stop-Loss Gerber’s Upper Upper Lower Lower
Point ¢ Exact Value Bound (4) Bound (15) Bound {I15) Bound (4)
15 5757 105 4% 103 0% 99 0% 99 0%
20 2626 1182 109 2 95.6 953
25 9321x107! 141 6 1212 916 916
30 2563%x10™! 1759 1411 819 807
35 5507x 1072 2574 172.0 747 7417
40 9383x107? 3803 2188 61.2 592
45 1289%x1073 5515 289 4 53.1 531
50 1449x10™* 1028 0 396 5 402 379
55 1355%x 1073 1762 1 5608 333 333
60 1067x107° 28299 8168 235 215
65 7175%107% 6465 7 1226 1 186 18.6
TABLE 4

BOUNDS FOR STOP-LOSS PREMIUMS WITH CLAIM RANGE [0,3], MEAN 2,
VARIANCE } AND CLAIM NUMBER POISsON (100)

Stop-Loss Gerber's Upper Upper Lower Lower
Point ¢ Exact Value Bound (4) Bound (15) Bound (15) Bound (4)
180 2177x 107! 104 4% 102 2% 99.1% 99 1%
200 8304 177 109 2 96 1 96 0
220 1959 1520 126.4 892 889
240 2647x107" 2300 161 6 781 776
260 1992x 1072 4209 2296 64 2 635
280 8395x10™* 9223 364 7 493 48 4
300 2.319x107° 2846 4 7259 338 334
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