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I N T R O D U C T I O N  

A conventional practice in standard risk theory considerations has been to assume 
that claims are paid immediately as they have incurred (see BPP, item 3.1c, BPP 
is used as an abbreviation for the book "Risk Theory", 1984 edition, by Beard, 
Pentik/iinen, Pesonen). The delay of the claims settlement has been, of  course, 
a central aspect in reserve calculation theory and practices, and numerous valuable 
works have been published on this topic in recent years. However, its regard in 
general model building and in risk theory considerations has gained little attention 
until recent years. The purpose of this paper  is to contribute to this research 
work by discussing how the "run-off" risk, i.e., the variability due to the delay 
of the claims payment, could be incorporated into the standard risk theory models 
as a separate entry (see BPP, item 10.2e) and to find some evaluation of  the order 
of  magnitude of the "extra"  (if any) fluctuation so rendered. We expect that the 
proposed technique can also be utilized in testing different reserve calculation 
methods and in comparing their effectiveness. The main ideas follow very much 
along the lines given by RANTALA in his doctoral thesis (1984). 

One should appreciate the fact that any risk theory model can never be more 
than an idealization of real-life processes. An intricate problem for practitioners 
is to evaluate the uncertainties ensuing from the fact that the model, more or 
less, ignores or only approximates the factors affecting the real events, and that 
the practical applications are often based on and their necessary parameters 
estimated from observed data that are subject to random fluctuations and to 
many other kinds of  uncertainties. The problem complex of  the run-off risk, when 
understood in a broad sense, is so wide that it requires a series of  studies, and 
this paper  should be regarded as a first step only. The posing of the problem 
follows the conventional risk theory approach by using the mixed compound 
Poisson process further allowing for long-term variations of risk exposure 
("cycles"),  and now extending the model to cope with the delayed settlement of  
the claims. At this stage of  the on-going researchwork the impact of  the parameter 
estimation is excluded from consideration. Therefore, our results and the numeri- 
cal examples, as given in what follows, do not describe the total uncertainty of 
the claims or the reserves. 

The structure of  the paper  is the following. First, the main assumptions are 
given in Chapter  1, then the effect of the run-otI phenomenon on the variance 
of  the claims fluctuation is evaluated for the going-concern case in Chapter  2 
and for the break-up case in Chapter  3. Some numerical examples will be given 
in Chapter  4 and finally in Chapter  5 the same effect is considered by using the 
simulation technique, which allows for more general assumptions on inflation 
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and the other pertinent features involved. As mentioned above, the handling of 
the parameter  estimation problem is deferred to a future paper. The estimation 
of claims reserves has already been explored in numerous meritorious treatices, 
see e.g., the Survey published by the NATIONALE NEDERLANDE (1981), the GISG 
Working Party summary paper  of  the British actuaries (1983), TAYLOR (1986) 
and many others. One of the early papers on the building of "a run-off theory" 
was published by PHILIPSON (1965). NORBERG (1985) when dealing with estima- 
tion techniques makes use of  partially similar development functions as will be 
employed in this paper. 

1. D E F I N I T I O N S ,  N O T A T I O N S  

1.1. Paid and Not Paid Claims 

We are going to consider a claims process X. (The stochasticity of  the variables 
is indicated by boldface letters.) The issue is the fact that it always takes some 
time until a claim is notified to the insurer after it has been incurred. A further 
time delay occurs until it is paid. For the claims which are not notified a statistically 
constructed reserve should be established, the so called IBNR-reserve (incurred 
but not reported). Some insurers also use statistical, collective reserves for some 
classes of outstanding claims, irrespective of whether or not they are notified, in 
order to rationalize the administration (and possibly for stabilizing the flow of 
business). Furthermore, often the information concerning already notified but 
still outstanding claims may be defective, which precludes the insurer from making 
an exact case estimate. So is it e.g., if the claim depends on an on-going court 
trial. All these reasons occasion uncertainty in the evaluation of the business 
outcomes. An inaccuracy in the claims reserve reflects as an inaccuracy in the 
profit so long as the claim is not finally settled. The purpose of this paper  is to 
evaluate this uncertainty. 

In the following we assume that the claims are either paid or outstanding. For 
brevity we (somewhat loosely) define as "pa id"  a claim which is notified and is 
so well documented that its final amount can be reliably determined. All other 
claims are "not paid",  i.e., either IBNR, collectively reserved or defectively 
informed. Of  course, it depends on the practice and on the purposes of the 
considerations just how the interdisciplinary boundary between "pa id"  and 
"not -paid"  claims should be defined. For example, there is nothing which prevents 
the treating of the IBNR-claims only and ignoring the other uncertainties which 
are beyond the scope of  this consideration. Another alternative is to separate the 
(unknown) exact value of the already notified claims and its estimate and to 
handle the difference as if it were an unknown claim. We also use the terminology 
as if only one payment would correspond to each claim. Another interpretation 
would be to take "claim" as "claim payment".  Then e.g., the number  of  paid 
claims should be read as the number of claim payments. Of course, the distribu- 
tions and some of  the initial data depend on the definitions which are selected 
in any particular application, but the theoretical apparatus is very much the same, 
even though the handling of data, parameter  estimation, etc. differ. 
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1.2. Cohort 

The claims are grouped as "cohorts" according to the year of origin to, during 
which they have been incurred. The payment of the claims of the cohort are 
distributed to years to, t o + l , . . . , t o + U , . . . , t o + T ,  as shown in fig. 1.1 T i s t h e  
maximum time for the claims settlement. The "current time" (or the year of 
observation) is denoted by t and the elapsed time from the birth of the cohort 
by s = t - t 0 .  The claims of the cohort t - s  paid in year t - s + u  are denoted by 
X ( t - s ;  u, u) and those paid together in years t - s + u , , . . . ,  t - s + u 2  by 

(1.1) X(t -S;Ul ,U~)= ~ X ( t - s ; u , u )  
| 4 ~ 1 4  I 

Notations. As above for X, an argument (t - s; Ul, u2) will be used for the variables 
to indicate that the event to which the variable is related has occured in year 
t - s and its settlement happens in the period ranging from the beginning of year 
t - s + u ,  until the end of year t - s + u 2 ,  e.g., n ( t - s ;  u,, u2) for the number of 
claims. Furthermore, the argument (t - s) indicates the whole cohort, e.g., X(t  - s) 
or n ( t  - s) represent the total amount or the total number of claims respectively 
of the cohort of the year t - s .  

X 

iiiii . .  . . . . . . . . . . . . . . . .  

(C.s;u 1,u2) i 

t- s c t- s+u i t- s+u 2 c- s+T 

" go - year of origin 

FIGURE I.I. A cohort of claims. The current year is denoted by t and the year of the origin of the 
cohort by t - s. The pillars describe the distribution of the settlement of the claims inside the cohort. 

1.3. Basic Assumptions 

We shall choose our assumptions so that X(t; 0, T) will be a mixed compound 
Poisson process (in a broad sense). 

Firstly, the intensity of the occurrences of  claims is allowed to change from 
year to year, hence from cohort to cohort. This effect is incorporated into the 
model via a randomly varying Poisson parameter n ( t - s )  (expected number of 
claims, BPP, item 2.7c) 

(1.2) . ( t - s )  = n. q ( t - s )  • In ( t - s )  
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where n is a non-random volume parameter and the stochasticity is introduced 
via the structure variable q(t - s). The parameter n indicates, in fact, the expected 
number of claims for the whole cohort of a suitably chosen basis year tb. 

q ( t -  S) is "a structure variable" indicating variations in the risk exposure from 
cohort to cohort, as shall be specified in item 1.5; (see BPP, item 2.7c). l n ( t - s )  
is a volume index indicating the volume of the risk portfolio for the cohort of 
year t - s compared with the basic year tb, hence scaled to have l ,(tb) = 1. More 
details are discussed in item 1.6. This index allows, if so desired, for a regard 
for the growth of the business volume, e.g., occasioned by the acquisition of new 
policies. 

It is often useful to choose the current year t as the basic year of indexes. Then 
the monetary quantities are obtained in the current value of money. 

Secondly, the amounts of individual claims are assumed to change from year 
to year so that the shape of the d.f. S of the claim size Z is preserved but the 
mean claim size E Z  varies according to rules which will be specified later. 

Furthermore, the distribution of the claims payment delays inside each cohort 
is controlled by functions g,(u) ,  gin(u) and g.~(u), which may be separately given 
for the claims numbers (n), average claim sizes (m) and for the total amount of 
claims (X) paid in the uth development year. These functions will also be specified 
later in more detail. We assume that these functions are common for all cohorts, 
i.e., independent of  the time points t - s. The reason for the introduction of three 
development functions instead of a conventional one only (g.~(u)) is to also allow 
for the variation of the average claim size inside the cohorts, e.g., trends up or 
down which may appear when delayed and early paid claims are compared. 

On the other hand, the assumption that the functions g are the same for all 
cohorts is, of course, a restriction. It proved to be necessary in order to get the 
theoretical treatments in Chapters 2 and 3 reasonably tractable. Fortunately these 
restrictions can be dropped in the simulation approach. 

1.4. Detailed Assumptions 

We shall now present our assumptions in a more detailed form as follows: 
The variables X ( t - s ;  u, u) for u =0,  1 , . . . ,  T are conditionally, for a given 

q ( t - s ) ,  mutually independent and distributed according to the compound 
Poisson law (BPP, item 3.2b) having the parameter (=the expected number of 
claims) (cf. (1.2)) 

(1.3) n ( t - s ;  u, u) = n ( t - s )  • g , (u)  

= n.  l , ( t - s ) ,  q ( t - s ) ,  g~(u). 

g , (u)  is "a development function" of the claims numbers inside the cohort: 

(1.4) g , (u)  = En(t - s; u, u) /  En(t - s; O, T). 

Let S(Z;  t - s; u, u) be the d.f. of the sizes of the claims that occurred in year 
t - s and were paid in year t - s + u. We assume that the shape of this distribution 
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is the same for all values of t - s  and u, but the scale is changed so that the 
expected value of the claim size variable Z is: 

(1.5) E Z ( t - s ;  u, u ) = m .  l , , ( t - s )  . gin(u) 

where, in addition to those given above, the following concepts and notations 
are used: 

m is the mean size of the claims of the cohort of the basic year tb and paid in 
the same year. 

Ira( t -s)  is an index for the mean size of the claims of the cohort t - s  and 
paid in the same year t -  s (indicating the effect of inflation and other potential 
movements, again I,,,(tb) = 1). 

g,,,(u) represents the development of the average claim size inside a cohort. It 
indicates (1) the effect of inflation compared with its level at the first year of the 
cohort (= t -  s), and (2) changes (if any) for any other reason which may result 
in upward or downward trends in the real size of delayed claims. It will be scaled 
to have g , , (0)= 1. 

Note that the payments X(t  - s ;  u, u) for consecutive development years u are 
correlated owing to the assumption that the structure variable q is the same for 
the whole cohort, but they are conditionally uncorrelated when q is given. In 
practice there may appear circumstances that also render other correlations, for 
instance, if the working capacity of the claims settlement is changed in some 
particular year, it likely renders a negative correlation. These kinds of features 
are not accounted for in our paper, but supposedly they and other similar changing 
conditions can be properly observed on a case basis, if deemed necessary. 

1.5. The Structure Variable q 

The structure variable q controls the variations of risk exposure from cohort year 
to cohort year caused by various reasons such as the impact of  weather conditions, 
business cycles and trends. It can be given either as a deterministic function or 
as a stochastic time series or as any mixture of both. It will be exemplified as an 
autoregressive time series in Chapter 4. We shall limit our considerations only 
to the cases where q(t) is weakly stationary, i.e., the following characteristics 
exist and are finite: 

2. C o v ( q ( t ) , q ( t + i ) ) = y ( i ) .  (1.6) Eq = 1 ; Var q = o-q, 

1.6. Inflation 

Inflation between the cohorts is controlled by the above index I,,. We assume 
that the inflation between the development years inside the cohort is amalgamated 
into the development function g,,(u). 

Note that we need not assume that the inflation between the cohorts and inside 
the cohorts should be the same. Policy conditions and other reasons may cause 
differences, for which our model allows. A restriction is, however, that the inflation 
rates within the cohorts, as amalgamated in the development functions gin, are 
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assumed to be the same for all cohorts as was stated in item 1.3. This assumption 
can be, however, relaxed in the simulation as presented in Chapter  5. 

1.7. Function g.~(u) 

We further introduce a third development function to indicate the development 
of  the total amount of  claims inside any cohort. It can be defined by means of 
the other two as follows 

(1.7) gx(u)=g.(u)gm(u). 

Thus E X ( t - s ;  u, u ) =  n m I , ( t - s ) l , , ( t - s ) g . , ( u ) .  When any two of the develop- 
ment functions are given, then the third is determined from (1.7). 

REMARK 1. Often the distribution of the total payments inside the cohort is 
readily available and therefore used as a basic development function. It is in 
terms of  our concepts 

(1.8) E X (  t - s; u, u ) /  E X (  t - s; O, T) = g.,.(u)/ Gx( T) 

where Gx is the accumulated development function obtained from g.~(u) by 
summation (see (1.12) below). 

REMARK 2. Possibly only the function gx(u) may be available, not the claim 
size development g,,(u) .  This can be the case e.g., in ingoing reinsurance. Then 
e.g., taking.gin(u) =- 1 avoids the model breaking down. It implies g , (u )  = g.~(u). 
Another alternative is to assume that the inflation within the cohorts and between 
them is the same, which makes it possible to construct gin(u) accordingly. Of 
course, some of the model outcomes are sensitive to these kinds of  simplifications, 
but likely not in a fatal way, as some examples given later seem to indicate. 

1.8. The Moments  of  the Claim Size Distribution 

The moments about zero of the claim size distribution are, according to the 
assumptions (item 1.4) that the scaling only is changed from year to year, as 
follows: 

(1.9) a,(t - s; u, u) = Io ~ 

ai .  

Z ~ d S ( Z ;  t - s ;  u, u) 

l m ( t - - S ) ' ' g m ( u ) '  ( i =  1 , 2 , 3 , . . . )  

where S is the distribution function of the claim size and a~ = ai(tb; 0, 0) is a 
basic amount calculated from (1.9) replacing there S by S ( Z ;  tb; 0,0) for the 
basic year tb of the indexes. 
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1.9. Composition of the Development Years 

Our assumptions imply that the sum variable (1.1) is again a mixed compound 
Poisson variable having the parameter 

(1.10) n( t -s ;u l ,u2)= ~ n( t - s ;u ,u) .  
u ~ u  t 

Here and in the sequel the n's not printed by bold-face letters denote the expected 
values n( ) = En( ) of the various claim numbers. 

REMARK. If gin(u) were -=1, then the claim size distributions of the develop- 
ment years u of  each cohort separately would be identical. Then we could reverse 
the order of the assumptions, i.e., if the cohort variable X(t - s ;  0, T) is assumed 
to be compound Poisson distributed for any fixed q and the development times 
are i.i.d, random variables then the development variables X ( t - s ;  ul, u2) for a 
given q( t - s )  are i.i.d, compound Poisson variables (see KARLSSON 1974). 

The moments related to any development period (ul,  u2) are obtained from 
the equation (see BPP, item 3.7a) 

(1.11) n( t - s ;u t ,u~) .a , . ( t - s ;u l ,us )  = ~ n( t - s ;  u, u) . ai(t-s;  u, u) 
u = u  I 

which expresses the characteristics of a sum variable in terms of the corresponding 
characteristics of the component variables. 

1.10. Accumulated Development Functions 

Accumulated development functions are denoted by corresponding capital letters 
and defined as follows 

(1.12) G.(u) = ~ g.(v) (replace * here by n, x respectively). 
o = O  

These functions are scaled by the conditions (cf. (1.4)) 

(1.13) G,(T)=I;  gm(0)=l .  

Owing to (1.7) gx(u) is then uniquely determined. In addition, we define G.(u) = 0 
for u~<0. 

1.11. The Mean Total Claim Amount 

The mean total amount of claims for the cohort interval u~, u 2 i s  now 

(1.14) EX( t - s ;  u,, u2) = Xo • Ix(t-s)" [Gx(u2)-G.~(u,-l)] 

where 

(1.15) X o = n m  and I~ = I ,  Im. 
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Here Xo is the average basic amount of the total amount of claims for the cohort 
tb, (see BPP, item 3.3c). Ix transforms the business volume and the monetary 
values to the level of  the birth of the cohort t - s ,  and the difference of the G~ 
functions in (1.14) allocates the shares of  the claims to the period u~, u2 adjusting 
also the monetary value to correspond to the level of  the time payment. 

1.12. '/-he Variances of  the X Variables 

The variances of  the X variables are still needed as primary building blocks for 
the further considerations. We have, according to the standard risk theory (see 
BPP, item 3.3c) and by using the above concepts and notations, the variance for 
the one year payment 

Var X ( t - s ;  u, u )= n ( t - s ;  u, u) • a2 ( t - s ;  u, u ) +  o'2q • ( E X ( t - s ;  u, u)) 2 

= n. a2" I , ( t - s ) .  g , ( u ) .  I , , ( t - s )  2. gin(U) 2 

+0-20. n 2 . m 2. l , ( t - s )  2 • g.,(u) 2. 

Introducing the notations 
2 . g o  2 (1.16) Vo = n.  a2; Vq=Oeq 

for the basic amounts of  the "pure Poisson" variation 
variation, we can write the above expression in the form ' 

(1.17) 

Let 

(1.18) 

be another 
payment period u~, u2 can be written as 

(1.19) V a r X ( t - s ; u l , u 2 ) = v o . I ~ ( t - s ) . I , ~ ( t - s ) . [ G , ~ x ( u 2 ) - G ~ x ( u t - 1 ) ]  

+Vq' I x ( t - s )  2" [ G x ( u 2 ) - G x ( u , - l ) ]  2 

in a similar way as (1.17) by using the rule (1.11) (see BPP, item 3.7). 

and of the structure 

Var X ( t - s ;  u, u )= Vo " I x ( t - s ) "  I ra( t - s )  • gin(u) • gx(u) 

+vq. I x ( t - s )  2". gx(u) 2. 

Gmx(u)= E gin(v), g,~(v) 
o=0 

development function. Then the corresponding variance for the 

1.13. The Yield of  Interest 

The yield of  interest is provided to be given as a separate entry into the 
comprehensive models and it is not needed to be taken into account in the context 
of  the claims variable (see BPP, item 10.2a). However, for calculation of the 
necessary premium rates and for evaluation of the proper amou m of the reserve 
for outstanding claims an assumption of the rate of  interest is needed, if the 
discounting of future yield of interest is considered appropriate.  We use a constant 
rate of interest ii in Chapters 2-4 and a randomly varying rate for simulations 
in Chapter  5. The discounting factor is denoted by 

(1.20) v = 1/(l  + i,). 
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1.14. The Discounted Future Claims Expenditure 

The model is now extended to allow for the discounting of the future payments. 
We shall need only summations from the end of the current year t to the end of 
each cohort: 

E X o ( t - s ;  s + l ,  T ) =  (1.21) 

where in an analogy with (1.12) 

T 

2 
II=S+I 

T 

= 2 
u = s + l  

= X o t ~ ( t  - s) d, (s) 

v ~ . . . .  ~ ) E X ( t - s ;  u, u) 

Xov ¢ . . . . .  ~)lx(t - s)g~(u) 

T 

(1.22) (~x(s)= Y. v ( . . . . .  ~')gx(u) 
u = s + l  

is a modified accumulated development function. The subscript v of  the X 
indicates the discounting and the bar over G both the discounting and the fact 
that this function is a complemen t  of the function G~(s) as given by (1.12). 
However, their sum G + G  is not usually equal to l, unless v =  l and gin(u) is 
equal to 1 for all the u values. 

Note that the discounting is made to relate to current yeat t. 

1.15. The Reserve o f  Outstanding Claims 

The reserve of outstanding claims has a central role in all run-of[ issues. The 
run-off errors understandingly depend on the rules and practices applied in 
reserve calculations. As we already stated above, the estimation problems of the 
parameters introduced above will not be dealt with. Instead we shall assume that 
the claims reserve in the year t for the "unpa id"  claims for the cohort t - s  
(as defined in item 1.1 above) is given by a general formula (see RANTALA 
1984, p. 38) 

(1.23) C ( t , t - s ) = c p ( s ) ' P ( t - s ) + ( ~ ( s ) ' X ( t - s ; O , s ) ,  s = 0 , 1 , 2  . . . .  , T - I  

where P ( t - s )  is the premium related to the cohort t - s  and the coefficients cp 
and cx can be interpreted as weights to balance the general past experience (the 
first term) and the fresh experience obtained just from this particular cohort up 
to year t (the second term) in the evaluation of the reserve. In order not to have 
any safety margin (+ or - )  hidden in the claims reserve we demand that the 
expected value of C(t,  t - s) should be equal to the expected value of outstanding 
unpaid claims: 

(1.24) E C ( t , t - s ) = E X o ( t - s ; s + l , T ) ,  s = 0 ,  1 , 2 , . . . ,  T - 1 .  

Otherwise these coefficients are freely eligible for applications. 
Many of the generally used rules are covered by the formula (1.23) as special 

cases (see Survey of the NATIONALE NEDERLANDE 1981). If C.,- ------ 0, then we have 
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a "premium based" rule, which is often used as a first approximation.  The choice 
cp ~ 0 represents a method which is close to the various chain ladder approaches 
and the combinations of  the two terms represents a variety of  mixtures of  these 
alternatives among them rules of  experience rating character as will be shown in 
Chapter  4. 

REMARK. The above formula (1.23) was adopted mainly to find a concrete 
illustration, not claiming that it would be the most suitable in all environments. 
Other reserve calculation procedures can likely be treated by using the same 
technique with obvious modifications. Furthermore, if there had occurred sig- 
nificant changes or disturbances in the claim process (renewed policy conditions, 
changed judicial practice, etc.) or in the claims settlement handling, they should 
be properly observed by making the necessary corrections to the relevant formulae. 

The total reserve consists of  the current cohort reserves 

T--I 

(1.25) C(t)= E C(t, t-s).  
s=O 

The premium income will be defined for our applications by means of the 
formula 

T 

(1.26) P(t-s)= ~ v("+~)EX(t-s; u,u) 

= t x ( t  - S)Po 
where 

(1.27) Po = Xo" Gx(-1) .  

Note: An alternative approach to the conditions (1.24) would be to provide 
only the unbiasedness for the total amount  of  the claims reserve: 

T - I  

(1.28) EC(t)= ~ EXv(t-s;s+l, T). 
s=0  

Then the cohort reserves may be biased. This is the case in the reserving rule 
"opt  1" which will be introduced for numerical examples in Chapter  4. 

2.  R U N - O F F  E R R O R ,  G O I N G - C O N C E R N  

2.1. The Problem 

We are now ready to examine the effects of a run-off pattern on the claims 
expenditure in conventional income statements. The claims expenditure is given 
as the amount  of  claims paid in the accounting year t irrespective of  the year of  
the origin of  the claims added by the increment of the reserve of outstanding 
claims: 

T 

(2.1) Xp(t) = Z X( t -s ;  s, s)+ C(t)- C( t -  I). 
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The run-off errors consist of  the differences between the eventually settled 
amounts of the claims and their estimates such as are taken into the reserve of 
the outstanding claims. They are not revealed until in the year of  the final 
settlement. Any amendment  in the reserve calculation affects the profit or loss 
for the year during which it is made. 

The errors and effects of  concern will be measured by means o f  the variances 
of the relevant variables. Therefore, we shall first derive a programmable 
expression for the variance of  Xp. 

Note: It would be possible to tender the following presentation in a more 
compact form by using overall vector notations for the variable sets as will be 
demonstrated in the Appendix 1. We chose, however, a more conventional 
approach which may be easier to read because the background tie-ins are more 
clearly recognizable. 

2.2. The Variance o f  the Claims Expenditure 

The expression (2.1) can be written by using the definitions (1.23) and (1.25) as 
follows 

T 

(2.2) Xp( t )=  Z X ( t - s ; s , s )  
s=0  

T - I  

+ ~ (cp(s)" P ( t - s ) + e . ~ ( s ) . X ( t - s ; O , s ) )  
s = 0  

T 

- Z ( c p ( s - l ) ' P ( t - s ) + c x ( s - 1 ) ' X ( t - s ; 0 ,  s - l ) ) .  
s = l  

In order to get the lengths of  the summations and later the corresponding 
vectors to have a uniform dimension T +  1 we introduce the conventions 

(2.3) c p ( u ) = c x ( u ) = O  for u < 0 a n d  for u > T - l ,  

G ~ ( u ) = G m x ( u ) = O  f o r u < 0 ,  

X ( - , . , u ) = 0  f o r u < 0 .  

Since X ( t -  s; O, s ) =  X ( t -  s; O, s -  1)+ X ( t - s ; s, s ), the above expressions can 
be reordered: 

(2.4) X e ( t ) = X a ( s ) . X ( t - s ; s , s ) + Z b ( s ) . X ( t - s ; O , s - 1 )  

+ ~ k ( s ) "  P ( t - s )  

~- S~ + S2 + Ss, 

where 

(2.5) a ( s ) = l + c x ( s ) ;  b ( s ) = c x ( s ) - C x ( S - 1 ) ;  

k ( s )  = Cp(S) - ce(s - 1). 



124 P E N T I K A I N E N  A N D  RANTALA 

All the summations are from 0 to T here and in the sequel unless otherwise 
stated. The S's stand briefly for the three sums above• In terms of them we have 

(2.6) Var Xp = Var St + Var $2 + 2 Cov (S~, $2). 

The terms will now be calculated each in turn. Firstly 

(2.7) Var S~ = ~ a ( s )  2" Var X ( t  - s; s, s) 

+ ~ a(s)  • a (u ) .  C o y  (X( t  - s; s, s), X ( t -  u; u, u)). 

The variance terms are readily available from (1.19). In addition we need, here 
and in the sequel, covariances, which will be derived next. 

2•3. The Covariannces 

The covariances which are building blocks in our considerations are of the form 

( 2 . 8 )  C o v  ( X ( t - - s ;  ut, u2), X ( t -  w; v,,  vg).  

For s # w we have (see RANTALA (1984) and equations (2.3, 3.4)) and (1.14) above 

(2.9) Coy ( . ,  . ) = y ( I s - w l ) E X ( t - s ;  u, ,  u 2 ) E X ( t - w ;  v, ,  v2) 

= t o ( I S -  w l ) "  [ / ~ ( t -  s). (G,(u2)-  Gx(uj - 1)) ]  

• [ l .~( t -  w)" (Gx(v2) -  G . , ( v t -  1))] 

where in terms of the covariances 'y of the structure variable (see (1.6)) 

(2 .10)  ~,o(IS - ~l) = v ( Is  - wl)x~. 

Prov id ing u~ -~ u2 < v~ ~< v2 the covar iance expression (2.9) also holds for  s = w. 

2.4. The variance Var St 

The variance Var Sj is obtained by substituting (1•17), (2•9) and (2•10) into (2.7) 

(2•11) V a r S t = ~ a ( s ) 2 v o  . I x ( t - s ) . l , . ( t - s ) . g . , ( s ) . g . ~ ( s )  

+ ~  a(s )  2" vq • I x ( t - s )  2" gx(s) z 

+ E n(Is-ul)[a(s). I f ( t - s ) .  gas)] 

• [ a ( u )  • l , , ( t - u ) ,  g x ( u ) ] .  

2.5• Vector Representation 

The formulae tend to become long and complicated even though they are simple 
in concept. Therefore, we shall adopt vector notations, which help to maintain 
a survey over the structures and which are also useful in computer programming. 

The first two terms of (2.11) can be written in the form 

(2.12) Vo" Vg,~Va,,+vq. V',.,~V,.,~• 
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where the capital letter symbols represent T +  1 dimensional column vectors: 

(2.13) Vax = (V~x(s)) = ( a ( s ) l ~ ( t -  s)gx(s))' 

Vain = (Vo.(s))  = (a(s)lm(t  - s)g,,(s))' 

and V'~ V2 are the conventional (scalar) vector products =Y.~ V,(s)V2(s). 
Note that the vectors depend also on the current time t. 
It is rewarding to introduce a short operative symbol for the covariance 

summation: 
T 

(2.14) CS[Vi,  V2] = E 7o(i) E V,(s) .  V2(u ) 
i = 1  [ s - - u [ = i  

O ~ s , u ~ T  

where V~ and I/2 are two vectors of length T +  1 and the elements are indexed 
from 0 to T. 

Hence we can write 

(2.15) VarS,=voV~xV~,,+vqV',xVa~+CS[V~.~, Va.~]. 

(Cf. equation (3) of Appendix 1.) 

2.6. Su.mmary 

The other terms in (2.6) can be handled in a similar way and the following 
formula results: 

- -  ! t t (2.16) VarXp(t)-vo(V~xV~m+ W~mWb,)+vq(V'axV~x+ WbxWbx+2VaxWbx) 

+cs  [vox, v~]+cs  [wb~, Wbx]+2CS [Vax, W,,x] 
where the vectors involved are 

(2.17) Vax = 

V a i n  

Wbx = 

Wbm = 

Wbl = 

(a ( s )  . l x ( t - s )  . gx(S))' 

(a (s )  . I , . ( t - s )  . g , , (s)) '  

( b ( s ) .  t x ( t - s ) .  Gx(s- 1))' 
( b ( s ) .  l , , ( t - s ) .  G,.x(s- 1))' 
( b ( s ) .  I x ( t - s ) ) ' .  

For convenience of the reader we shall recap by stating that the functions a(s) 
and b(s) are given by (2.5), the indexes I in items 1.3 and 1.4, gx and gm in (1.7) 
and in item 1.4, Gmx in (1.18) and the operation CS by (2.14). The cases where 
a simple development function g or an accumulating G is contained in the vector 
are discerned using symbols V or W respectively. (Cf. also equation (7) of 
Appendix 1.) 

3. RUN-OFF ERROR, BREAK-UP 

3.1. Problem 

We examined above the impact of  the estimation error of  the claims reserve C(t)  
on the profit or loss of  the current fiscal year. Now we are asking what is the  
total error contained in C(t) .  The problem setting is equivalent to an assumption 
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that the insurer would discontinue his business and the claims, which are related 
to events in year t or earlier, are paid from C(t). As before we do not deal with 
the estimation problem, instead we assume the reserve rules given in form (1.23). 

The sought after e~'ror, denoted by R(t) :  

T - I  

(3.1) R ( t ) = C ( t ) -  ~ X ~ ( t - s ; s + l , T )  
s ~ O  

is what is left (+ or - )  when all the claims are finally settled. The yield of  interest 
is taken into account discounting the claims payments to the initial time point t. 

3.2. A Solution 

A solution can be found by using a similar technique to that used in Chapter  2. 
We give the final formulae: 

(3.2) VarR( t )=Vo.  ( W ' d W ~ +  V~Wom)+Vq. (W~W~x+ W'oxW~-2W'~xWo~) 

+ c s [ w ~ ,  wo=]+cs[Wox, W o x ] - 2 c s [ w  .... wox] 

where 

(3.3) we, = (c,~(s).  t x ( t  - s)) '  

wcm = ( c~ ( s ) .  I m ( t - s ) G m x ( s ) ) '  

W , m = ( l m ( t - s ) .  dm~(s) ) '  

Wcx=(C~(S)  • ( ~ ( t - s )  . G~(s) ) '  

Wox = ( t A t  - s) . ~ x ( S ) ) '  

V, =(Is(t-s))' 

and 

T 

(3.4) Gmx(s)= E v :t~-s-~) " gin(u)" gx(u). 
u = s + l  

The index s is now running from 0 to T -  1. (Cf. also equation (10) of  Appendix 
1.) 

4. EXAMPLES 

We are going to give some examples of  the application of  the formulae presented 
in the previous chapters. Therefore, the data and functions involved must first 
be specified. 

4.1. The Structure Function 

The structure function q(t) is given by a first order autoregressive time series: 

(4.1) q ( t ) -  1 = a[q ( t ) -  1 ]+e ( t )  
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where a is a coefficient 0 ~  < a < 1 and e, "the noise" is a normally (0, o'e) distributed 
stochastic term. According to the standard formulae of the time series theory 
(asymptotically) 

(4.2) o-q = cr,/x/(1 - a2), 

y(i)=a'.O'2q ( i = 0 ,  1,2 . . . .  ). 

4.2. Reserve Rules 

Reserve rules are given according to the following four alternatives: 
Premium based rule (abbreviation "pr-bas" in the tables) is defined by 

(4.3) c~(s) = 0  

cp(s) = XoG~(s)/ Po 

which is derived by applying the conditions of (1.24). 
The " learn ing"  rule (abbreviation " learn") proposed'originally by BEN KTAN- 

DER (1976) and recently developed for reinsurance practice by among others 
HOVINEN and the Kansa-companies (1981, 1984), is obtained by composing two 
reserve rules. Firstly, the "premium based" reserve rule is the same as (4.3). The 
other rule is "claims based", and it is obtained putting cp's=0 in (1.23). Then 
according to (1.24) cx(s) • E X ( t - s ;  O, s) = E X o ( t - s ;  s+  1, T), which implies in 
the terms of our development functions cx(s) = Gx(s) /G~(s) .  The former rule 
utilizes the past experience contained in the premium P and the latter one the 
fresh experience received from the accumulating X ( t - s ;  O, s). The idea is to 
combine them first giving more weight to the premium-based rule and later more 
weight to the claims-based rule. Following an intuitive experience rating principle 
the reserve for outstanding claims is eventually obtained from them by using the 
weights 

Gx(s)/[Gx(s)+Gx(s)] and Gx(S)/[Gx(s)+Gx(s)]. 

Then the following coefficients are the results 

Xo 
(4.4) cp(s) ~'~0 Gx(s)E/[Gx(s) "it" G x ( s ) ]  

ex(S) = dAs) / [dAs )  + Gx (s ) ] .  

The rule is nicknamed "learning" because all the time, while the cohort is aging, 
it is adapting according to the freshest claims experience. 

Optimal rule 1 (optl)  is based on linear regression theory. It is derived seeking 
coefficients c.~ which minimise the variance of the (unbiased) break-up error R(t)  
(see (3.1)). Recapitulating the formulae given in Appendix 1 in matrix form we 
have 

(4.5) Cx = M(Xk)-I  M(Xk,  X.)~ 
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where, in the terms used above, 

(4.6) M ( X k )  = (Coy ( X ( t  - s; O, s), X ( t  - u; O, u)))  

M ( X k ,  X.) = ( C o v  ( X ( t  - s; O, s), Xo(t  - u; u + 1, T) ) )  

0= (l ,  l , . . . ,  1)' 

and s and u run from 0 to T - 1 .  
Note that only the coefficients cx are defined, not the coefficients c v. This is 

due to the fact that only the former are affiliated with the stochastic terms in Xp 
(see (2.2)) and in R ( t )  (see (3.1)). The coefficients cp should be determined, if 
needed, e.g., by the equations (1.24). 

Optimal 2 (opt2) is also presented in the Appendix 1, equation (13), based on 
the optimization of the cohort reserves separately each in turn. Formally, it results 
from (4.5) if y( i ) ' s  are set equal to zero for i > 0 .  

4.3. The Growth Rates and Indexes 

The growth rates and indexes to be applied in this chapter are assumed to be 
constants according to the following formulae: 

(4.7) l , ( t - s )  = r~,-~; I r a ( t - s )  = rm,-s; gin(u) = r~ 

where rn is the growth factor on the volume parameter  n, and rm and rc for the 
inflation between and inside the cohorts, respectively. They as well as the constant 
rate of  interest (i = ii above) are given under the pertinent headings in the table. 

4.4. The Run-Of f  Tails 

The run-off tails are given as three alternatives, the values of gn (u) being according 
to the ascending u = 0, 1 . . . .  , T as follows: 

(a) Long tail T =  12: 0.15, 0.25, 0.15, 0.15, 0.10, 0.05, 0.05, 0.02, 0.02, 0.02, 
0.02, 0.01, 0.01 (see RANTALA (1984)). 

(b) Medium tail T = 3 :  0.6, 0.2, 0.15, 0.05. 
(c) Short tail T = 2: 0.8, 0.15, 0.05. 

The long tail may be suitable for e.g., marine and reinsurance lines, the other 
two for various classes of  domestic business. 

4.5. The Claim Size Distribution 

The scale of  the monetary quantities was chosen so that the unity may suitably 
correspond to about £100 000. We do not need the specification of the claim size 
d.f., only its lowest three moments,  which were assigned the values 0.006, 0.001 
and 0.0001 respectively. This means that the average claim size is £6000. This 
closely corresponds to the industrial fire distribution that is presented in BPP, p. 
86, as a standard example of  a rather heterogeneous portfolio provided that the 
maximum net retention per claim is about £400 000. 
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4.6. Explanation for Table 4.1 

Table 4.1. sets out a number  of  examples grouped in subsets, each of which is 
aimed at describing some particular feature of the run-off effects. In order to 
show the "canals"  of  the influence the relative magnitudes of  the terms in the 
variance expressions (2.16) and (3.2) are given. The main indicators are the 
increment Ao'x of  the standard deviation o'x compared with the value o'0 it would 
have, if no run-off delay were in existence. Furthermore, o'x is given as a 
percentage of the premium income Po (see (1.27)). Similarly the "break-up"  o-g 
is presented as a percentage of the expected reserve C = EC(t) (see (1.25)) and 
of the premium income Po. 

The effect of  the reserve rule is experimented with for cases having varying 
tail lengths and the size of  the collective, measured by n. As seen in the decomposi- 
tion lines VXi/VX and VRi/VR (i = 1, 2 , . . . ,  8) referring to the terms of the 
formulae (2.16) and (3.2), the Poisson terms (predominantly VX1/VX and 
VR2/VR) determine the outcomes for small collectives, and the structure terms 
( V X 3 / V X  and VRi/VR for i = 3, 4) the behaviour of  large collectives as seen, 
in particular, in the example 11. The covariance terms (6, 7, 8) have significance 
only in large collectives. Note also the existence of negative terms. 

Furthermore, the influence of the structure variation is demonstrated providing 
a possibility to compare the cases where it is present with the cases from which 
it has been removed (examples 16, 17 and 18). The effect of the autocorrelation 
was removed from the example 15, it is to be compared with the case 12. 

4.7. Some Observations 

Expectedly, the reserve rule has a considerable influence on the run-off variation 
in the going-concern consideration. The premium based rule reduces the variance 
in most cases. In fact, it equalizes the fluctuation tops between the consecutive 
years, it "hides"  them in the increased errors in the claims reserve (as evaluated 
on the break-up bases). The other.rules mostly increase the variance from the 
level which it would have, if there were no run-off delay. This is due to the 
construction of the reserve, which is affected more immediately by the variation 
tops in the claims process. 

Also the assumptions made on the growth of the portfolio and the inflation 
rate inside and outside the cohorts have some influence on the behaviour of  the 
system as can be seen when the examples 1 8 . . . 2 2  are compared with the 
corresponding other cases in Table 4.1, the growth and inflation data being totally 
removed from those examples. If, in addition, the structure variation is also 
removed (example 18), then the run-off delay has no effect in the going-concern 
variation. It is a clear outcome observing that then both processes Xp(t) and 
X(t ;  0, T) are composed O f similar pieces which are each independent compound 
Poisson processes. Furthermore, cases 16 and 17 are identical, since premium 
based reserving rules is in fact the "opt imal"  one, if the structure variation is 
missing. 



'! ABLE 4.1 

EXAMPLES OF RUN-OFF ERRORS MEASURED BY THE STANDARD DEVIATIONS 

No. n Xo r,,, r e r n i a Orq T C Atrx/O'o% O'x/ Po% o'n/ C% O-R/ Po% 

1 10000 60 1.06 1.08 1.03 0.07 0.60 0.05 0.12 learn. 21,5 8.9 4.1 12.2 
VXi /VX= 0.79 0.01 0.11 0.00 -0.03 0.13 0.01 -0.07 
VRi/VR = 0.10 0.63 0.04 0.23 -0.18 0.03 0.40 -0.36 

2 l0 000 60 1.06 i.08 1.03 0.07 0.60 0.05 0.12 pr-bas - 15.0 6.2 4.6 13.9 
VXi/VX = 0.74 0.00 0.09 0.00 0.00 0.16 0.00 0.00 
VRi/VR = 0.00 0.49 0.00 0.21 0.00 0.00 0.31 0.00 

3 10 000 60 1.06 ! .08 1.03 0.07 0.60 0.05 0.12 opt I 30.1 9.5 4,0 12.1 
VXi/VX = 0.79 0.01 0.11 0.01 -0.03 0.18 0.01 -0.09 
VRi/VR = 0.15 0.64 0.06 0.28 -0,22 0.12 0.41 -0.44 

4 10 000 60 1.06 1.08 i .03 0.07 0.60 0.05 0.12 opt2 15.0 8.4 4.1 ! 2.3 
VXi /VX= 0.78 0.01 0.11 0.00 -0.03 0.18 0.01 -0.06 
VRi/VR = 0.07 0.62 0.03 0.27 -0.14 0.05 0.40 -0.29 

5 10000 60 1.06 1.08 1.03 0.07 0.60 0.05 3 learn. 16.4 8.7 7.3 5.1 
VXi/VX = 0.67 0.01 0.28 0.01 -0.03 0.15 0.01 -0.09 
VRi/VR = 0.15 0.80 0.09 0.22 -0.28 0.07 0.13 -0.19 

6 10 000 60 1.06 i .08 1.03 0.07 0.60 0.05 3 pr-bas -7.4 6.9 7.9 5.5 
VXi/VX = 0.62 0.00 0.23 0.00 0.00 0.15 0.00 0.00 
VRi/VR = 0.00 0.69 0.00 0.19 0.00 0.00 0.12 0.00 

7 10 000 60 1.06 1.08 1.03 0.07 0.60 0.05 3 opt l  9.2 8.2 7.2 5.1 
VXi/VX = 0.65 0.01 0.26 0.00 -0.02 0.15 0.00 -0.06 
VRi/VR = 0.09 0.82 0.05 0.23 -0.21 0.05 0.14 -0.18 

8 l0 000 60 1.06 1.08 1.03 0.07 0.60 0.05 3 opt2 7.6 8.0 7.3 5.1 
VXi/VX = 0,65 0.01 0.26 0.00 -0.02 0.15 0.00 -0.06 
VRi/VR = 0.07 0.82 0.04 0.23 -0.19 0.04 0.14 -0.15 

9 10 000 60 1.06 1.08 1.03 0.07 0.60 0.05 2 pr-bas -3 .4  7.2 11,6 3.1 
VXi/VX = 0.57 0:00 0.34 0.00 0.00 0.09 0.00 0.00 
VRi/VR = 0.00 0.84 0.00 0.13 0.00 0.00 0.04 0.00 

10 10 000 60 1.06 !.08 1.03 0.07 0.60 0.05 2 opt l  3.8 7.8 11,1 3.0 
VXi/VX = 0.59 0.00 0.36 0.00 -0.01 0.09 0.00 -0.03 
VRi/VX = 0.04 0.91 0.03 0.14 -0.13 0.02 0.04 -0,05 

Long tail, 
reserve rule 

varying 

Medium tail, 
reserve rule 

varying 

Short tail 
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Notations are given in the preceding text. 



TABLE 4.1 
Continued 

No.  n X o r,,, r~ r n i a o'q T C ~ o ' x / O ' o %  O'x/Po% o'1~/C% O-R/PO% 

I I 100 000 600 1.06 1.08 1.03 0.07 0.60 0.05 12 opt l  26.9 6.7 1.6 4.8 Portfolio 
VXi[VX = 0.38 0.04 0.58 0.10 -0.33 0.76 0.16 -0.70 size n 
VRi/VR = 0.44 0.40 !.24 1.79 -2.85 2.11 2.59 -4.73 varying 

12 I 000 6 1.06 1.08 1.03 0.07 0.60 0.05 12 optl  8.6 19.0 10.7 32.0 
VXi /VX = 0.97 0.00 0.01 0.00 -0.00 0.02 0.00 -0.00 
VRi/VR = 0.01 0.91 0.00 0.04 -0.01 0.00 0.05 -0.01 

13 100 I 1.06 1.08 1.03 0.07 0,60 0.05 12 optl  2.0 54.4 32.4 97.0 
VXi/ VX = 1.00 0.00 0.00 0.00 -0.00 0.00 0.00 -0.00 
VRi/VR = 0.00 0.99 0.00 0.00 -0.00 0.00 0.01 -0.00 

14 100 l 1.06 1.08 1.03 0.07 0.60 0.05 12 pr-bas 0.9 53.8 32.4 97.0 
VXi /VX = 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
VRi/VR = 0.00 0.99 0.00 0.00 0.00 0.00 0.01 0.00 

15 I 000 6 1.06 1.08 1.03 0.07 0.00 0.05 12 opt l  1.3 17.8 10.4 31.2 a =0 
VXi /VX  = 0.99 0.00 0.01 0.00 -0.00 0.00 0.00 0.00 (see (4.1)) 
VRi/VR = 0.00 0.96 0.00 0.04 -0.00 0.00 0.00 0.00 

16 1 000 6 1.06 1.08 1.03 0.07 0.00 0.00 12 optl  1.1 17.0 10.2 30.5 tTq = 0  
VXi /VX = 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
VRi/ VR = 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 

17 I 000 6 1.06 1.08 1.03 0.07 0.00 0.00 12 pr-bas 1.1 17.0 10.2 30.5 
VXi/ VX = 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
VRi/ VR = 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 

18 I 000 6 i.00 1.00 1.00 0.07 0.00 0.00 12 pr-bas 0.0 20.6 10.0 29.7 Growth 
VXi] VX = 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 factors 
VRi/VR = 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 = I 

19 I 000 6 1.00 1.00 1.00 0.07 0.00 0.10 12 pr-bas -12.0 21.1 10.8 32.2 
VXi /VX = 0.95 0.00 0.05 0.00 0.00 0.00 0.00 0.00 
VRi/VR = 0.00 0.85 0.00 0. ! 5 0.00 0.00 0.00 0.00 

20 I 000 6 1.00 1.00 1.00 0.07 0.00 0.10 12 optl  -2 .0  23.5 10.7 32.0 
VXi /VX = 0.95 0.00 0.05 0.00 -0.01 0.00 0.00 0.00 
VRi/VR = 0.01 0.86 0.00 0.15 -0.03 0.00 0.00 0.00 

21 1 000 6 1.00 1.00 1.00 0.07 0.80 0.10 12 opt l  19.3 28.7 11.6 34.6 Strong 
VXi /VX = 0.86 0.01 0.05 0.00 -0.01 0.14 0.01 -0.05 structure 
VRi/VR = 0.10 0.74 0.02 0.13 -0.08 0.09 0.34 -0.35 variation 

22 I 000 6 i.00 1.00 1.00 0.07 0.80 0.10 12 pr-bas -5.3 22.8 12.8 38.1 
VXi /VX = 0.82 0.00 0.04 0.00 0.00 0.14 0.00 0.00 
VRi/VR = 0.00 0.61 0.00 0.11 0.00 0.00 0.28 0.00 
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The break-up errors, measured by Crn, are rather large in small collectives, but 
somewhat unexpectedly the reserve rules have only a slight influence on it. This 
is obviously due to the fact that the cohort outcomes equalize each other irrespec- 
tive of  what a rule may be applied. 

4.8. Remarks 

Let us recall anew the restrictions already stated in the introduction. The consider- 
ations are subject to specified conditions, excluding among other things the 
uncertainty involved in the parameter  estimation. Therefore, our results should 
not be understood as describing the total actual fluctuation but only specific 
components  of  it. Furthermore, in order to keep this paper  in reasonable limits, 
the autocovariances of the Xp(t) or the R( t )  variables (t varying) were not dealt 
with, nor the correlations between these variable sets. This would be done by 
using the same building blocks as introduced above. The autocovariance structure 
of  Xp(t) may be clearly different from that of  the "undelayed"  conventional X(t).  
For instance, if the latter were the compound Poisson process having zero 
autocovariances, the first T autocovariances of  the Xp(t) process would be 
non-zeros, on the contrary to one of the standard assumptions of the conventional 
risk theory. 

5. S I M U L A T I O N  

5.1. The Problem 

It is also useful to handle the run-off patterns by using the simulation technique. 
Its merit is in the easy possibility to relax some of  the restrictive assumptions 
made above, e.g., a stochastic inflation and interest can be incorporated into the 
model Without any noticeable complications. We shall draft the method both for 
the break-up case and for the going-concern consideration, but first a number of 
definitions and modifications are necessary. 

5.2. Inflation 

Inflation is simulated by the following first order autoregressive time series: 

(5.1) ira(t) -imo = a,, .  [i,,,(t - 1) - i , ,o]  + o',,em(t) 

where 

(5.2) ira(t) = l , , ( t ) / l m ( t -  1) - 1 

is the rate of inflation and Im the index of inflation between the cohorts (cf. 
(1.5)). The variable e is a normally (0, 1) distributed random number and 
coefficient o'm controls its magnitude. 

The equation (5.1) is, with minor modifications, the same as that proposed by 
Professor Wilkie (1984). The investigation of the inflation index series of numerous 
countries (Appendix 2) revealed that seem to be lengthy "peaceful"  periods 
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during which the rates are moderate and obviously distributed in a way which 
can be appropriately simulated by the original Wilkie formula. But often a 
peaceful period is broken by a considerably excessive inflation lasting some few 
years. Because such an event can occasion considerable trouble for the insurance 
industry, we considered it justified to supplement the model by providing the 
possibility of giving an additional impact to the "normal" flow of inflation as a 
"shock". We applied a deterministic shock in some of our examples given in the 
sequel. However, it is no problem to also make this term stochastic. The shock 
can be given as an addition to the values which are first generated by equation 
(5..1) for the whole time horizon or they can be added every year to the current 
value i,,(t) in (5.1) so that they autoregressively affect the subsequent values. 
The latter procedure creates a tendency for the flow curves to keep soaring for 
lengthy time periods, which may not be always in good consistency with 
experience (see Appendix 2). Therefore, we applied the former alternative in our 
examples. 

Another observation was that the rate of inflation is, as a rule, positive and 
that there seems to be some positive lower limit under which it never or very 
seldom falls. Therefore, it may be suitable to provide the model with condition: 

(5.3) i , , ( t)~> /rain. 

Note that the Wilkie model seems to also produce negative rates when his 
standard data are used. 

We used the following standard values for the parameters involved i,,o = 0.06; 
a,, = 0.7; o',, = 0.015; imln = 0.03. 

5.3. The In teres t  R a t e  

The rate of interest (including also asset appreciations and depreciations) seems 
to be one of the most problematic links in model building. Its behaviour essentially 
differs in different countries depending on the size and the character of the capital 
market in the particular country, on the investment practices of the insurers and 
on the valuation principles of assets (especially whether or not it is allowed to 
create buffers by undervaluating them). Professor Wilkie has proposed models 
for some investment categories based on the British experience. His idea is to 
make the rates and values dependent on inflation. A high rate of inflation is 
gradually increasing the rate of the return on investments so that the investors 
can have inflation losses compensated for in the long run. 

We have had to postpone further investigations of the asset models to a future 
date and have made use of a simplified equation as follows: 

(5.4) i , ( t ) -  i,o = a, .  [ i , ( t  - 1 ) -  i,o]+½[i,,,(t - t a ) +  i m ( t -  ta - 1 ) -  2i,,o] + o',e, 

where ii(t) is the rate of interest earned on an average for to the whole investment 
portfolio; im is the average value of ie (a parameter to be given); a~ a coefficient 
to introduce an autoregressive element into the process; and tz~ is again a normally 
(0, 1) distributed random variable introducing additional noise to the process. 
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The second  term compensa t e s  for the in f l a t ion  in two years  with a t ime de lay  

td. 
We used the fo l lowing s t anda rd  values  for the pa ramete r s  i~o = 0.07; a~ = 0.1; 

o'i = 0.01. 
Note :  Owing  to the choice  i~o> im an expec ta t ion  of  a posi t ive yie ld  of  interest  

in real terms is assumed.  
It is conven ien t  to in t roduce  funct ion 

(5.5) l , ( t ) =  l~I ( l + i , ( u ) )  
u = l  o 

in ana logy  with l ,(t) (cf. (5.2.)) 

5.4. Examples 

Figure  5.1 provides  examples  o f  the s imula t ion  results  ob ta ined  by means  o f  the 
above  formulae .  

0.20 

0.10 Rate of Interest /-J'-.._3<- 

- Rate of Inflattan 

0.20 

0.10 
7"  ~ "" V - L \  

'~Rate of Inflation 

10 20 t tO 20 t 

FIGURE 5.1. The rate of inflation and the rate of interest (dotted line) simulated by the algorithms 
(5.1) and (5.4). A shock of 0.14 was assumed in the right hand side diagram for the years t = 2, 3. 

5.5. Simulation of the Break-up Error 

As the p r imary  bu i ld ing  b locks  o f  the s imula t ion  p rocedure  the cla ims amounts  
X ( t - s ;  u, u) are needed  for  var ious  s and  u values  and  they are genera ted  as 
desc r ibed  in the next  i tems.  The  c la ims expend i tu re ,  which fall due  for paymen t  
in the years  t +  k (k = 1, 2 , . . . ,  T) are ob ta ined  by summing  up the re levant  pieces 
as demons t r a t ed  in fig. 5.2. by  a shaded  pil lar .  In the s imula t ion  o f  the process  
in a b r eak -up  s i tuat ion these amount s  are pa id  from the c la ims reserve C until  
all o f  them are set t led,  the latest  ones accord ing  to our  a s sumpt ions  in year  t + T. 
Wha t  is left  (+  or  - )  o f  the  init ial  reserve C(t), is jus t  the s imula t ed  run-off 
error.  This is ob ta ined  by running  the a lgor i thm from k = 1 up to k = T: 

T - - k  

(5.6) C ' ( t + k ) = C ' ( t + k - 1 ) -  ~ V ( t , k ) X ( t - s ; s + k , s + k )  
s = O  

where  C'(t) = C(t) and  a d i scount ing  auxi l ia ry  funct ion  was in t roduced  in the 
terms o f  the interest  p roduc t  (5.5) as fol lows 

(5.7) V(t, k) l ,( t)/ l i(t+ ' = k " ~ )  ~ D(k-I/2) 
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- 1  
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t - I"+1 t - s t t + k  t + T  

FIGURE 5.2. The run-off pattern composed of the cohorts t, t - ! .... , t - T+ 1. 

where the last term represents the special case, where the rate of  interest is 
detei'ministic and constant v = 1/(1 + ii). The value to be assigned to the index 
L( • ) for a half year argument can suitably be taken as the mean of values at 
the beginning and at the end of the year. 

To make the algorithm workable a generator is needed to get the X's for the 
summation. 

5.6. A Random Number Generator 

A random number generator for the production of the claims amount may 
conveniently be of the type, which is described in BPP, Section 6.8.3. It is based 
on the assumption that the distribution function F ( X )  of the total amount of 
claims inherent from some specified collective and period can be approximated 
by a formula of the type 

(5.8) F ( X )  = N ( f ( X ) )  

where N is the standard normal d.f. and f is some suitable transformation which 
replaces the variable by (as far as possible) a symmetric one (see BPP, Section 
3.11) The well-known NP-approximation is an example belonging to this family 
of approximations. In the sequel we use the Wilson-Hilferty approximation (BPP, 
item 3.5b). Then compound Poisson distributed random numbers can be generated 
as follows: 

(1) Generate a normally (0, 1) distributed number (BPP, item 6.8f) rn. 
(2) Do the transformation ro = f - l ( r , )  so arriving at a random number, which 

has the mean, st. deviation and skewness 0, 1 and 'yx respectively. 
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(3) rx = m x +  rxo'x is then the requested (approximately) compound Poisson 
distributed random number having the mean, st. deviation and skewness rnx, O'x, 

"Yx- 

The Wilson-Hilferty transformation is 

(5.9) r~ = f - ' ( r , , )  = cl • (r,, - c2) 3 - c 3 

where, denoting g = ~Yx. 

c t=g2 /3 ;  c 2 = g - I / g ;  c3=2/g .  

(See BPP, equation (3.5.14), p. 71, a report on this and related approximations 
will be published by PentikS.inen in near future)). 

Furthermore, we need the mean, st. deviation and skewness for each relevant 
X in the summation (5.6). 

5.7. The Basic Characteristics 

We recapitulate the formulae of the above mentioned basic characteristics: 

(5.10) r n x ( t - s ;  u, u) = n ( t - s ;  u, u , ) m ( t - s ;  u, u) 

o - x ( t - s ;  u, u ) = x / [ n ( t - s ;  u, u) . a 2 ( t - s ;  u, u)] 

y~x.( t - s; u, u ) =  ~3( t - s; u, u ) /  oLv( t - s; u, u) 3 

(see BPP, equation (3.3.9), p. 54). 
The variable n ( t - s ;  u, u) can be obtained from (1.3) without any need for 

modifications. The structure variable q ( t - s )  is to be generated separately for 
each cohort (and for each realization of the simulation process). For instance, 
the autoregressive algorithm (4.1) or any similar one can be used. The noise term 
e( t )  may be generated assuming it to be normally distributed. 

The development function g, , (u)  will be modified separating the influence of 
inflation and the possible change in the real value of the delayed claims, the 
latter given by a function go(u). In our simulations we employ the formula 

(5.11) g, , (u)  = go(u)L , ( t  - s + u)/1,,,(t - s). 

Also go(u) can be made cohort dependent or dependent on the current time t + k, 
if there is found a justification for it. 

The characteristics needed in the generator can now be written as follows 

(5.12) r e x ( t - s ;  u, u ) =  m .  l , , , ( t - s )  • go(u) • l , , ( t - s + u ) / l , , ( t - s )  

= m .  i , , ( t - s +  u) • go(.U) 

~ r x ( t - s ;  u, u ) =  l , . ( t - s +  u) . go(u)" ~ / [ n ( t - s ;  u, u) . a2] 

a 3 1 
' y x ( t - s ;  u, U)=a~/2 " x / ( n ( t - s ;  u, u))" 

The monetary quantities are obtained at the level of  year t - s + u. 
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FIGURE 5.3. A simulated run-off pattern. The data are the same as in the case 12 in Table 4.1, but 
inflation is now made stochastic. Sample size 100. Mean=0.5% (the theoretical value =0 in Table 

4.1) and standard deviation= 10.6% (10.7% in Table 4.1). The "'safety margin" M-~30%. 
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FIGURE 5.4. The same run-off pattern as in Fig. 5.3. but now assuming an inflation shock of  14% 
in addit ion to the simulated normal inflation in years t +3 and t +4. Mean -22%,  standard deviation 

11.9% and the margin M ~-37%. 
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5.8. Examples 

Figures 5.3 and 5.4 display two examples of the simulation outcomes of break-up 
processes. 

In order to have the results comparable with the deterministic value of Table 
4.1 the interest was kept deterministic, the stochasticity as introduced in item 5.3 
being incorporated in the going-concern simulation in the next following items. 

That part M of the variation range of the residue which falls below the zero 
line in figs. 5.1 and 5.2 can be used as an estimate for the margin necessary to 
be incorporated into the claims reserve, if it is required that the run-off 'of the 
reserve in a break-up situation may not result in a negative residue by a desired 
probability. 

5.9. The Simulation of  the Going-Concern Process 

In order to arrive at a conception of the influence of the run-off impact the ratio 

(5.13) x(t)  = Xp(t) /  B(t )  

will be simulated for some time period. Here Xp is the claims expenditure as 
defined by (2.1) and 

(5.14) B(t )  = P( t )+  ii(t) . ½[ C'( t)  + C'(t - 1)] 

is, what can be called underwriting income, the premium income (1.26) supple- 
mented by the interest earned by the claims reserve (5.1). 

In order to simulate, so far as possible, the conventional income statements it 
is assumed that the incomes are received and the payments made in the middle 
of  each year. Therefore, the premium income differs slightly from that defined 
in item 1.15. The latter should now be multiplied by v ~/2 to make the process 
consistent. 

Another indicator is the relative run-of[ error 

(5.15) r( t) = R(  t) /  B( t) 

where R is the error as defined by (3.1). 
Both x and r are composed of a number of claims amounts X ( t - s ,  u, u) as 

it can be found in similar way as described above for the break-up case. 

5.10. Graphic Examples 

Figure 5.5 exhibits simulated curves of the above target ratios x and r. The former 
was simulated in parallel omitting the run-off effect (Xo) and taking it into account 
(x). The former is, in fact, what the claims amount would be if it were possible 
to evaluate the outstanding claims without any estimation error. The correspond- 
ing r curve is set out. We see how some part of the actual fluctuation of the 
annual claims amount x is smoothed away from xo and "hidden" in the fluctuating 
run-off error r. This feature is characteristic of the premium based reserve rule 
(cf. item 4.3) which was applied in this example. 
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FIGURE 5.5. A simulated flow of  the claims ratios assuming that the run-off error is=0(Xo) and 
taking it into account (x) according to our standard assumption. The corresponding relative run-off 
error r is set out for the same process. A shock as described in item 5.2 was assumed. The asterisks 
indicate the maximum or minimum point of the curve concerned and they will be adapted as indicators 

of the volatility of the process as will be later explained. 

Note that according to the definition of the run-off error (3.1) a negative value 
of it indicates a case where the reserve of outstanding claims was not sufficient 
to meet the simulated claims. 

A survey of the process concerned can be obtained repeating the simulation 
numerous times according to the Monte Carlo method as we already did in the 
case of the break-up process. Figure 5.6 displays an example of  a process with 
and without an inflation shock. 

5.11. Tabular Results 

If the effect of different reserve rules and other relevant issues are to be evaluated 
and compared, the differences in the results often are difficult to ascertain from 
diagrams such as exemplified above. Therefore, it is useful to present the simula- 
tion results also in a numerical form. We experimented with the following idea. 
First the maximum value of x(t) and the minimum of r(t) (t running over the 
test period) are picked up from the curves of Fig. 5.5. They are earmarked by 
asterisks. 

The Monte Carlo process as that of Fig. 5.6. then produces a sample of the 
distribution of these quantities MAX [x(t)] and MIN [r( t)]  and an approximate 
evaluation for the risk probabilities 

(5.16) Prob{MAX[x(t)]>xe}=ex and Prob{MIN[r(t)]<re}=e,. 

If information about the range of adverse fluctuation is needed in a concise form, 
the limits xe and re may be useful indicators, when the e's are fixed at some 
suitable level, say 0.01 or 0.05. 
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FIGURE 5.6. Simulated going-concern processes. The data are the same as in the case 2 of Table 
4.1. An inflation shock such as shown in Fig. 5.1 is assumed in the lower diagram. Note, when 
comparing the outcomes of the table and the diagrams, that the denominators of x and r are slightly 

different as seen in the heading of Table 4.1. and in equations (5.13) and (5.15). 
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Note that the conventional indicators such as the standard deviation or its 
multiples may not be suitable in this context, if a temporary inflation shock or 
business cycles are included in the process. 

Table 5.1 exhibits some few examples of  the above indicators. The tail is the 
run-off period as defined in item 1.2. The basic data are as given above. Test 
period 10 years, sample size 1000. 

TABLE 5.1 

SIMULATION RESULTS, GOING-CONCERN 

No. n Tail Reserve Inflation Interest Xool Xoo5 ro.ot ro.5 

1 I 0 0 0 0  0 - -  - -  - -  1 . 2 7  1 . 2 3  - -  - -  

2 10000 12 learn det, no shock det 1.25 1.21 -0.30 -0.28 
3 10000 12 learn stoch, no shock stoch 1.27 1 . 2 3  -0.36 -0.28 
4 10000 12 learn stoch + shock stoch 1.32 1 .27  -0.57 -0.50 
5 10000 12 pr-bas stoch + shock stoch 1.25 1 .21  -0.60 -0.50 
6 10000 12 Optl stoch+ shock stoch 1,34 1 . 2 8  -0,56 -0,47 
7 10 000 3 learn stoch + shock stoch 1.31 1.26 -0.26 -0.23 
8 100 12 learn s toch+shock stoch 1.98 1 . 9 5  -0.98 -0.93 

6. SOME CONCLUDING REMARKS 

6.1. The above examples were intended only to demonstrate the methods 
described above, the direct calculations and the simulations. To make an analysis 
and to obtain a view of  the behaviour of  various run-off patterns was beyond 
the scope of this paper. However, some very tentative observations can be quoted. 

6.2. In the case of going-concern considerations the effect of the run-off errors 
on the conventionally counted claims expenditures seems to be noticeable only 
when the run-off tail is rather long and the rate of  inflation varies widely. The 
effect is likely to be greatly strengthened if the rate of  interest cannot fairly flexibly 
follow the movements of  the rate of  inflation, but these aspects were not studied. 

The size of the portfolio seems to be one of the relevant factors as is seen 
comparing example rows 4 and 8 in Table 5.1. 

6.3. Our plan is to extend the studies to also cover the solvency margin, which 
is constituted as the accumulated profits or losses. It is obvious that aspects such 
as are applied in control theories concerning the continuous adjusting of  premiums 
and other pertinent quantities according to the ever present changing state of the 
process may have an important role (RANTALA 1984). As already noted another 
planned extension is to incorporate the parameter  estimation procedure into the 
model. 

6.4. Expectedly, the run-off phenomenon can also play a significant role in the 
evaluation of the solvency conditions of  insurers. The effect depends essentially 
on whether the break-up principle or the going-concern alternative should be 
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a d o p t e d  as the bas ic  ph i losophy ,  because  in the case of  a b r eak -up  s i tua t ion  the 
run-off e r ror  is to be taken into account  in one way or  ano the r  in full whereas  
in the go ing-concern  cons ide ra t ion  it may be sufficient to only regard  its influence 
on the loss rat io x. A d iscuss ion  of  whether  or when the b reak -up  basis  is 
a p p r o p r i a t e  to be accep ted  falls beyond  the scope  o f  this p a p e r  ( the topic  is 
d iscussed in the t r ansac t ions  o f  the Confe rence  on Insurance  Solvency,  
PENTIK,~INEN (1986)). 

6.5. The mode l l ing  of  the rate of  interest  (asset  risk) is one o f  the poin ts  which 
was left open  for future studies.  A weakness  of  our  tentat ive equa t ion  (5.4) is 
that  it does  not regard  the poss ib i l i ty  o f  such a ma jo r  p lunge  in the yield,  as that 
which occur red  in some count r ies  when the values of  equit ies  and  some assets 
d r o p p e d  immense ly  in the mid-1970s (not  to speak  o f  the Grea t  Depress ion  at 
the beg inn ing  of  1930s). Possibly this shor tcoming  can be c o m p e n s a t e d  for by 
insert ing into the model  a de te rmin is t ic  or  s tochas t ic  adverse  impac t  s imi lar  to 
the " s h o c k "  we i nco rpo ra t ed  into the inflat ion equat ion  (5.1). 
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APPENDIX 1 
MATRIX PRESENTATION FOR Var (Xp(t)) AND Var (R(t)),  OPTIMAL CLAIMS RESERVES 

I. Var (X , ( t ) )  
Let 

X~(t) = (X(t ;  0, 0), X ( t  - I; I, 1) . . . . .  X ( t  - T; T, T))' 

X2(t ) = (X(t; 0, - I ) ,  X ( t -  I; 0,0) . . . . .  X ( t -  T; O, T -  I))' 

a = ( a ( O ) , a ( I )  . . . . .  a(T)) ' ;  b=(b(O) ,b ( I )  . . . . .  b(T)) ' .  

(for notations see Chapter 2). Then (2.4) can be written briefly as 

(1) Xp( t ) = a' X t ( t 7 + b ' X2( t ) + non-stochastic terms. 

Hence 

(2) Var (Xp7 = a ' M ( X O a  + h'M(X2)h + 2a 'M(X~,  X2)b, 

where M(X,  F) denotes the covariance matrix of random vectors X and F and M ( X )  = M(X,  X)  
and the arguments are dropped from the notations. The necessary covariances can be obtained from 
(I.19) and (2.9). In fact, we have 

M ( X O  
(3) X° 2 = vp" D(I.Jmg,,x)+ D((~g.,.)M(q)D(I.~g.,.) 

M(X2) 
(4) X°  2 = Vp . D( IxlmG,,x) + D( I,.G,.TM (q)D( I., G.,.) 

M ( X i ,  X2) 
(5) X°  2 D(l.~gx)M(q)D(lxG.,),  

where vp = vo/Xo 2 and D ( Z )  denotes a diagonal matrix with the elements of the vector Z on the 
diagonal. The covariance matrix M(q)  is 

( °'2q y(17 ' ' "  Y(T)) )  

(6) M ( q ) =  y( l )  O'2q ' ' '  y ( T - I  . 
] . . . 

\y('T) y ( T - I ) ' ' '  o'~ / 

By reordering we obtain 

Var (Xo) 
(7) X°  2 = vp[a'D(l.,l,,,g.,~)a + b'D(I.J,.G,..~)b] 

+ a'D( Ixg.~)M(q)D(I.,gx)a + b'D(IxGx)M(q)D(l~G.~)b 

+ 2a'D( l~g.OM(q)D( I.~G~)h. 
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2. Var (R(t))  
Let 

Xk(t ) = (X(t;  0 , 0 ) , X ( t -  I; 0, 1) . . . . .  X ( t -  T+  1;0, T -  I))' 

X~( t )  = ( X , ( t ;  1, T) ,  Xv( :  - 1; 2, T )  . . . . .  Xo( t  - T +  l ;  T, T)) ' .  

In order to have a linear and unbiased total claims reserve the reserve formula should be of the form 

(8)  C = c~Xk -- c'~EXk + ~'EX., 

where 0= (1, 1 . . . . .  1)' and EX k and EX, are given by (1.14) and (1.21). Then the variance of the 
run-off error 

(9)  R = C - ~'X~ 

can be obtained from 

(10) Var (R) = c~,M(Xk)c.~ + ~'M(X,)~ - 2c~M(Xk,  X,)U, 

where the covariances needed are given by (1.19), (2.9) and (2.1 I) with slight modifications to take 
into account the effect of discounting. The covariance matrices in (10) can be expressed as functions 
of vp and M(q)  in the similar way as in (7). 

3. The optimal claims reserve 

It follows from the theory of linear regression models that the expected mean square error E ( R  ~) = 
Var (R) of the claims reserve is minimized when 

(11) cx= M (X~) - '  M(Xk ,  X~)~. 

Note that in our general framework c~. depends on current time t due i.a. to time-dependent 
Poisson-variance. 

In some cases it may be desirable to compute an optimal (in the mean square error sense) claims 
reserve for each cohort separately.' Then the coefficienis ca(s) are 

Coy ( X ( t - s ;  O, s), X o ( t - s ;  s+ 1, T)) 
(12)  c , ( s )  = 

V a r ( X ( t - s ;  O, s)) 

= vq" l x ( t - s )G . , ( s )Gx( s )  

v o • l , , ( t - s ) G " . , ( s ) +  Vq' I x ( t - s ) G x ( s )  2' 

which in the general case depends on t. However, if 1,-= I (which implies 1,. = Ix) then Cx(S) is 
independent of t and can be written as 

GAs)" d.,(s) 
(13) cx(s) 

VO/O q " Gm.x(S) + Gx(S) 2' 

If further q , , ( U) -  = ! then G~,-= G~ and (13) reduces to 

~x(s) 
(14) c~(s) = 

vol vq + GAs)' 

which, in fact, corresponds to the traditional linear credibility coefficient of credibility theory. 
RANTALA (1984) contains a numerical example on the differences between (11) and (12). 
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