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A B S T R A C T  

Kornya-type higher order approximations are derived for the aggregate claims 
distribution and for stop loss premiums in the individual model with arbitrary 
positive claims. Absolute error bounds and error bounds based on concentration 
functions are given. In the Gerber portfolio containing 31 policies, second order 
approximations lead to an accuracy of 3 x 10 -4, and third order approximations 
to 1 .7x l0  -5. 
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I.  I N T R O D U C T I O N  A N D  S U M M A R Y  

Consider a portfolio containing N policies, where for i =  l , . . . ,  N the claim 
amounts distribution Q~ of the individual risk i can be represented as 

Q, = (l - q;)8o+ q,P;. 

Here, tSo is the Dirac measure of  zero, 80{0} = 1, and P; is a probability measure 
with Pi(0, co) = 1. The number  qi E (0, 1) is the probability that risk i produces a 
claim. The distribution Pi is the conditional distribution of the claims in risk i, 
given that a claim occurs in risk i. We shall be concerned with approximations 
for the convolution 

G = Q , * . . - *  QN 

which is the aggregate claims distribution of the portfolio in the individual model. 
In this first section we shall (a) give heuristic motivations for the approxima.  

tions, (b) introduce the approximations,  and (c) present error bounds. In Section 
2 a numerical illustration is given. All our proofs are deferred to Section 3. 

(a) Assume for the moment  that N = 1, and write 

Q,=Q=(1-q)8o+qP 

and g for the characteristic function of P. The characteristic function of Q is 
given by 

l -q+qg = e x p  (log ( 1 - q + q g ) ) .  
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The kth-order approximations Hk for Q suggested by KORNYA (1983) are derived 
as follows: Expand the right-hand side of the equation 

log (1 - q + qg) = log (1 + qg/(1 - q)) - l og  (1 + q/(1 - q)) 

in powers of q/(1 - q). This yields the following approximation for the characteris- 
tic function h of Q: 

h k = e x p (  ~ (-- l~+t(1/ j)(q/( l --q))J(gJ--1)) .  
j = l  

Whenever q is small, hk will be a good approximation for h. The approximation 
Hk has characteristic function hk, an hence Hk will be a good approximation for 
Q according to the continuity theorem for characteristic functions (see Lo~vE 
1977, p. 204). 

We consider slightly different kth-order approximations Hk* which are derived 
as follows: Expand the right-hand side of the equation 

log (1 - q+ qg) = log (1 + q(g - 1)) 

in powers of q. We then obtain the following approximation for h: 

hk* = exp (j~, (-1)J+~(1/j)qJ(g-1)J). 

The approximation H~ has characteristic function h~. 
For arbitrary N > 1 the approximations Hk and Hk* for G are constructed as 

follows. Let Hk(i) and Hi( i )  be the approximations for Q~, i = 1 , . . . ,  N. Then 

and 

H~ =H~(1) , . . . ,H~(N) 

Hk* = Hk*(1) * ' ' '  * Hk*(N) 

respectively. 

(b) We introduce first the compound Poisson distribution 

H = E  (A"/n!) e-XPo *" 

with Poisson parameter 

A = q ~ + ' ' ' + q N  

and claim amount distribution 

Po = q~/ APi +" • • + qN/ APN. 

In the collective risk theory model, H is the aggregate claims distribution of the 
portfolio. 

Consider next the compound Poisson distribution 

H, =E (A')"(n !)-' e-~'(P~) *" 
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with Poisson parameter 

A '=  q,/(1 - qt)+" • • + qN/(1 -- qN) 

and claim amount distribution 

P~ = q,/((1 - q,)A')Pt +. • • + q N / ( ( l - - q N ) A ' )  PN. 

The approximation Hi for G is always on the safe side in the sense that for all 
real t 

(1) G(t, o0) ~< Hi(t, oo). 

In order to define Kornya's approximations Hk for G it is convenient  to extend 
the concept of compound Poisson distributions to finite signed measures M, i.e. 
to countably additive set functions M satisfying 

sup [ M ( A ) [ < ~ .  
A 

Define the n-fold convolution M*" of M by 

M*°=~o,M*~"+"(A)=fflA(x+y)M*"(dy)M(dx) 
and define the signed Poisson measure with Poisson parameter Z ~ • and signed 
claim amount measure Mo by 

M = e  -A ~ A"/(n!)Mo*".  
n m O  

For i = l , . . . , N  a n d j = l , 2 , . . . d e f i n e  

c o = ( - 1 ) J + l ( I / j ) ( q , / ( l  - q , ) Y  

and for k = l, 2 , . . . ,  let 

N k 

A~=E E ~  
i = l j = l  

N k 

g~ = E E (c~/A~)P~ s. 
i=13=1  

Write Hk for the signed compound Poisson measure with Poisson parameter hk 
and signed claim amount measure Rk. Notice that Hi is the compound Poisson 
distribution defined earlier. For arbitrary k/> 1 the signed measures are normed, 
H~(R) = 1, but Hk can be negative, Hk(A)  < 0 for some sets A. 

For k = 1, 2, . . .  the approximations Hk* are defined as follows. Let 

k N 

UR = E (-1)J+'(1/J)  E q{ (P , -6o )  *s. 
3=1 i=1 

The signed measure Uk can uniquely be represented by 

k(Rk -,So) Uk =A* * 
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with A ~ c ~  and R~ a signed normed measure with Rk*{0}=0. Let H~ be the 
signed compound Poisson measure with Poisson parameter Ak* and signed claim 
amount measure Rk*. Then 

H~*=H 
N 

A*= Z (qi+q~/2) 
i=1  

N 

A*= 2 (q,+q2/2+q~/3) 
I = l  

N 

R2* = (l/A2*) Z {(q, +q~)P, - (1 /2)q~P~ .2} 
iffil 

N 
R~=(I/A3*) E {(q,+q~ 3 2 3 ,2 +q,)e,-(q,/2+q,)P, +(l/3)q~p~*3}. 

i = l  

Notice that the computation of Hk and Hk* can be done using fast Fourier 
methods (see BERTRAM 1981) or the recursion algorithm (see PANJER 1981). The 
characteristic functions of Hk and Hk* equal 

(-ly+'(l/j)(q,/(1 - q~))J(g~ - 1)t e x p  
\ i = 1  j = l  / 

and 

exP (i~=j j~=l (--l Y+l(1/j)q~(gi --1)i ) 

respectively, where gi is the characteristic function of P;. These characteristic 
functions can easily be computed, and hence fast Fourier methods work. 

Assume now that for some fixed positive h, the distributions Pi are concentrated 
on the positive integral multiples of h, i.e. 

P,{h, 2h, 3h, . . .}  = 1, i =  l . . . .  , N. 

Then for non-negative integral p we have the recursions 

p + l  

(p+l)Hk{h(p+l)}=Ak ~, rRk{hr}Hk{h(p+l-r)} 
r = l  

and 

p + l  

(p+l)H*{h(p+l)}=A*k 2 rR*k{hr}H*{h(p+l-r)} 

and the initial values 

Hk{O}=exp(--Ak) and H * { 0 } = e x p ( - A * ) .  

(c) In contrast to classical higher order approximations for G such as the 
normal power method or Edgeworth-expansions, theoretical error bounds can 
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easily be derived for the approximations H~ and Hk*. Well known error bounds 
for the case k =  1 are 

N 

(2) sup lG(A) -H(A) I<  ~ q~ 
A i=1 

(see GERBER 1984, p. 192, theorem l.a) and 
N 

(3) sup ]G(A)  - H d A ) ]  ~< (1/2)  ~ (q,/(1 - q,))2. 
A i = l  

Smaller error bounds have been derived in HiPP (1985) for the distance between 
the corresponding distribution functions: 

N 

(4) sup IG( -oo  , t ) - H ( - ~ , t ) l ~ < 5  ~ q~/(1-q,)C(P, ai). 
t i=1  

Here, a~ is the mean of P~, and C(P, r) is the concentration function of the 
probability measure P at r >  0, 

C(P, r) =sup  P[x,x + r). 
x 

Finally, 'P is the compound Poisson distribution with Poisson parameter 
N 

A =(1 /2)  E q , ( l - q , )  

and claim amount distribution 
N 

Po = E q,(l-q,)/(2a)Pi. 
i=1  

The right-hand side of (4) will often be considerably smaller than the right-hand 
side of (2). Consider, e.g. 

Pi{l} = 1, qi = cN-I/2, i= 1, . . . ,  N 

with a fixed constant c e (0, 1). Then P is a Poisson distribution with parameter 
cN1/2(1 -cN-1/2)/2 and hence C(P, 1) is of  order N -I/" (compare (11) in HiPP 
1985). So the right-hand side of (4), with ot~ = 1, is of order N -t/4, too, while the 
right-hand side of (2) equals c 2. 

For the presentation of  error bounds for H k and HR* corresponding to (2) and 
(4) we need some notation. Fix k/> 1, and for i=  l , . . . ,  N define 

7i = ( 1 / ( k +  1))(qJ(1 - q i ) ) k + l ( 1  -- q,)/(l  -2q i )  

and 

Let 

tr, = (1/(k + 1))(2q,)k+'/(l -- 2q,). 

N N 

i = 1  i = 1  

N N 

t~ = ~ (e* , -1) ,  8*=  E 
i = l  i = 1  

(e~,-1). 
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The error bounds  cor responding  to (2) are 

sup IG(A)  - Hk(A)[ ~< e" - 1 
A 

(5) 

and 

(6) 

(7) 

(8) 

and 

(9) 

sup ]G(A)  - Hk*( A)  I ~< e '~ - 1. 
A 

The error  bounds  cor responding  to (4) are 

N 

sup IG( -oo ,  t) - H l ( - o o ,  t) I < 5 Z (e 2", - I ) C ( P ,  2a~) 
t i = 1  

N 

sup ]G(-oo,  t) - Hk(--oo, t)](1 - 6) ~< 5 Y. (e 2 '  - I ) C ( P ,  ( k +  1)a,)  
I i = 1  

N 

suplG(-oo, t ) - H k * ( - o o ,  t ) 1 ( 1 - 6 " ) ~ - 5  ~ ( e 2 ~ ' - l ) C ( P , ( k + l ) a , ) .  
t i = 1  

The probabi l i ty  measure  P occurr ing in the concentra t ion function is the com- 
pound  Poisson distr ibution defined above.  The numbers  zi in (7) have to be 
defined with k = 1. In (5)-(9)  we tacitly assumed that  

q~ < 1/2, i = 1 . . . .  , N. 

C o m p a r i n g  (5) and (8) with (6) and (9) one might expect  that  the approx imat ions  
Hk per fo rm better  than Hk*. In our  numerical  il lustration this is not true. Notice 
also that  the mean  of  Hk* and the mean  of  G coincide,  while the mean of  Hk 
and the mean  of  G are different. 

Finally, Kornya ' s  approx ima t ions  Hk can be used for approx ima te  computa t ion  
of  the s top loss p remium 

I (x- zl+G(dx) 
in the individual  model.  Under  the assumpt ion  

q~ < 1/2, i =  1 . . . .  , N 

we obtain the fol lowing error bound:  

(10) I.( (x-z)+G(dx)-f ( x - z ) + H k ( d X ) l  

< ~ ( e ' -  1) I ( x - z ) + G ( d x )  

N 

+e"  E a , (q , / (1 - -q , ) ) k+ ' (1 - -q i ) / ( l - -2q , )  . 
i = l  

Notice that  for fixed N, Q~ . . . . .  QN, the approx imat ions  Hk and Hk* converge 
to G when k tends to infinity. The error bounds  (5), (6) and (8), (9) converge 
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to zero when k tends to infinity. Hence if an upper bound for the error is given 
we can choose k such that the error of approximating G by Hk (or by H~) is 
smaller than the prescribed upper bound. The computation time which is needed 
for the numerical computation of Hk or H~, e.g. with Panjer's recursion algorithm 
in the arithmetic case, is linearly increasing with k. 

2. NUMERICAL ILLUSTRATION 

We consider the small portfolio of GERBER (1979, p. 53, table 3). The following 
table shows the values G(-~,  x), Hk(--oO, x), H~(-oo, x) for k = 1, 2, 3 and 
x = l , . , . , 2 0 .  

x G H, H2 H3 H,* H~ H~ 

1 0.238195 0.229700 0.238496 0.238183 0.246597 0.238473 0.238206 
2 0.252929 0.244014 0.253249 0.252916 0.261393 0.253210 0.252940 
3 0.340663 0.328876 0.341094 0.340645 0.348145 0.340851 0.340667 
4 0.453846 0,438079 0.454416 0.453823 0.459370 0.453872 0.453840 
5 0.564555 0,547070 0.565265 0.564526 0.569766 0 .564611  0.564555 
6 0.660883 0,640235 0.661712 0.660847 0.662625 0.660717 0.660869 
7 0 . 7 2 2 4 3 1  0,703134 0.723259 0.722394 0.723633 0.722303 0.722421 
8 0.791453 0.770973 0.792362 0.791413 0.789060 0.791157 0.791436 
9 0.846270 0.828072 0.847221 0.846230 0.843637 0.846108 0.846270 

10 0.889418 0.871906 0.890284 0.889376 0.884958 0.889120 0.889402 
11 0.919525 0.904912 0.920386 0.919482 0.915537 0.919389 0.919525 
12 0.943054 0.930424 0.943877 0.943012 0.938845 0.942970 0.943058 
13 0.961336 0.950689 0.962039 0.961299 0.957189 0.961242 0.961338 
14 0.973846 0.965402 0.974490 0.973809 0.970338 0.973842 0.973853 
15 0.982556 0.975869 0.983125 0.982522 0.979556 0.982596 0.982565 
16 0.988468 0.983358 0.988918 0.988436 0.986061 0.988510 0.988472 
17 0.992620 0.988711 0.993002 0.992594 0.990656 0.992680 0.992626 
18 0,995335 0.992455 0.995640 0.995311 0.993832 0 .995401  0.995339 
19 0,997076 0.994992 0.997317 0.997054' 0.995956 0.997142 0.997078 
20 0.998193 0.996704 0.998376 0.998175 0.997370 0.998250 0.998193 

For all approximations K the actual error 

E(g)=sup lG(-oo, t ) -g(-oo,  t)l 
t 

together with bounds (5) and (6) are shown in our next table. 

K H L H~ H 3 Hi* H2* H~ 

E ( K ) 0.020648 0.000951 0.000043 0.008402 0.000295 0.000017 
(5) or (6) 0.040015 0.001395 0.000058 0.160690 0.010060 0.000785 

In this small portfolio the concentration function is quite large. Hence (7), (8), 
and (9) do not yield reasonable error bounds here. 
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3. PROOFS 

Relation (I)  follows from the fact that a Bernoulli random variable X with 
P{X = 1} = p  is stochastically smaller than a Poisson random variable with para- 
meter p/( l  -p ) .  

For the proof  of (3) it suffices to consider the case N = I and to show that 

sup Hi(A) - Q](A) ~< (q]/(]  - q~)):/2. 
A 

This follows from H,{0}~ Q,{0} (see (I)) ,  

x e - ~ x / ( l + x ) ,  x=ql/(1--ql)>O, 

and 

I - e - ~ ( l + x ) ~ x 2 / 2 ,  x = q J ( l - q ] ) > O .  

For the proof  of  (5)-(9) we introduce exponentials for finite signed measures M. 
If  M has characteristic function 

f ( t )  = I ei'-"M(dx) 

then exp (M)  is the finite signed measure with characteristic function exp (f(t)). 
For exp (M)  we have the explicit representation 

e x p ( M ) =  ~ (1/n!)M*". 
n = 0  

Notice that for finite signed measures Mj,  M2, the signed measure exp (M, + M2) 
is the convolution of exp (M,)  and exp (M2). in the following we shall always 
assume that 

qi < 1/2, i = 1 . . . .  , N. 

In this case, the set function 

Mo = ~ ~ (-l)J+'(l/j)(qi/(l-qi))J(pi*i-6o) 
i = l j = l  

is a finite signed measure, and 

exp (Mo) = G. 

For finite signed measures M we shall write M = M + -  M -  for the Hahn-Jordan  
decomposit ion of M, and )M]= M + + M  -, I[MII =IMI(R).  

3.1. LEMMA. For measurable functions f and finite signed measures M, 
exp ( [ M I ) -  ao is a (positive) measure, and 

(a) I.( f(x)(exp (M)-a,,)(dx)l ~ f ,f(x)l(exp (lMl)-ao)(dx ) 

(b)  Ilexp (M)  - aoll ~ e " M " -  1. 
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PROOF. (a) Not ice  first that  

I f  f ( x ) ( e x p ( M ) - ~ o ) ( d x ) l ~ <  f , f ( x ) l l exp (M)-~o , (dx ) .  

Hence  it sumces  to show that  for a rb i t ra ry  measu rab le  sets A 

](exp ( M )  - t%)(A)] ~< (exp ([M]) - 8o)(A). 

This inequal i ty  is true for A = {0}. and for sets A with 0e~ A we have 

] ( e x p ( M ) - a o ) ( A ) l  <~ ~ ( l /n ! ) lMl*°(A)  

= exp (IMI)(A) = (exp (IMI)-8o)(A). 

(b) With  (a) we obta in  

[[exp ( M )  - aoll ~ (exp (IMD - ao) (a )  = ~ II M II"/n ! 

Hence  

PROOF OF (5). Notice  that  Hk = exp (Rk) with 

Because o f  

N k 

Rk = ~ Z co(P~*J-~o). 
i = l j = l  

n = l  

= e [IMII - 1. 

G - Hk = exp  (Mo) - e x p  (Rk) = G * (~o - e x p  (Rk -- Mo)). 

][G- Hk [[ ~< [] exp ( Rk - Mo) - 8o[[ 

we obta in  with Lemma 3.1b) 

[JG - Hk[[ ~< exp ( ] [ M o -  Rk[ [ ) -  1. 

Now [ [Mo-  Rk][ <~ r impl ies  the assert ion.  

PROOF OF (7) AND (8). For  i =  1 . . . . .  N let 

k 

R~ ' ) =  ~ (-1)2÷l(1/j)(q,/(1 - qi)Y(P~ . 2 -  ~o) 
j = l  

H~.') = exp(R{k') ) 

M, = Qi *" ' "  * Q,- i  * H~ ~+1)* • " " * n ~  N~ 

g (')= ~ (-1)2+~(l/j)(qi/(1 - qi))J(P~ *J - ~o) 
j = t  

97 
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N 

& = max sup fG(-oo, t) - Qm * Mm( - ° ° ,  t)l. 
r t l = l  f 

This implies 

= eHR"'-R'"II J S[ R~'~- R"ll(ds) 

~e~'(k + l)r, ai. 

I2~  (e T' - 1 + e~,(k + 1)riai/r)C(G, r). 

and hence 

With r = ( k +  1)a~ we obtain 

I2~  (e 2~'- 1 )C(G,  ( k +  1)a,) 

N 

A ( 1 -  6)<~ E ( e2"- 1)C(G,  ( k +  l )a , ) .  
I = l  

As in H I P P  (1985, p. 231, (24)), we obtain the following upper  bound  for C(G, r): 

C( G, r) -~ ( Tr2/2)C( P, r). 

Furthermore ,  

f s (exp ([R~ i~- RUT I) - 8o)(ds)[ 

T h e n  

N I I z~--~ Z sup Mi(-~ , t - s ) (Qi -Htk° ) (ds )  . 
i = l  r 

For i = l , . . . , N a n d  t e R  we have 

}I Mi( -~ ,  t-s)(Qi-H~k")(ds) I 

= IM, ,O~( -oo ,  t-s)(exp(R~k~'-RU))-6o)(ds)[ 

= [I ((M, * Q , -  G ) [ t  - s, t ) +  G [ t  - s, t))(exp ( R ~ " -  R - 6o)(ds)  

<~ f (b + G[ t -  s, t ) ) (exp ([R~k'l- R('~l)-6o)( ds) = ll + I2, say. 

Lemma 3.1b) yields Ii ~< & ( e ' . -  1). In order  to compute  an upper  bound  for 12 
we fix a positive r and notice that for s ~ 0 

G[t -s ,  t)~.(l + s/r)C(G, r). 
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N 

A(1 - 8) ~ ("a'2/2) ]~ (e 2', - l ) C ( P ,  (k  - 1)a , )  

which proves (8). 
If k =  1, then for i =  1 , . . . ,  N the signed measures Mi* Qi are (positive). 

measures, and therefore the above mentioned methods can be applied to derive 
an upper bound for C(M, * Q~, r). We obtain with r=2og 

].f M,*Qi(-oo, t - s ) ( e x p  (R~')-R°))-8o)(ds)l 

=lfM,*O,[t-s,t)(exp(R~"-R~")-,o)(ds)l 

<~ C(M, * Qi, r) I (1 + slr)(exp (Ig~ '~- R~°l)-  8o)(ds) 

~< (1r212)C(P, 2a,)(e ~' - 1 + e~'a,2r, lr) 
( ar212)C( P, 2a,)(e 2~' - 1). 

This proves (7). 
The proofs for (6) and (9) are modifications of the above proofs. 

PROOF OF (10). For arbitrary x, z and positive y we have 

(x+y-z)+ ~(x-z)+ +y. 
This implies 

].I (x-z)+(G-Hk)(dx)] = ] I .  (x+Y-z)+G(dx)(exp(Rk-M°)-~°)(dY)] 

f (x-z)+G(dx)llexp (Rk -Mo) -~5oll 

+ f ylexp (Rk -- Mo) - 8ol(dy) 

= 13+ I4, say. 

Lemma 3.1 yields the following bounds: 

13~(e~-  1) f (x-z)+G(dx) 
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ylRk-Mol(dy)~  < ~ ( l / j )  (qi / ( l -q , ) )  ~ yP~*~(dy) 
j=k+l i=1 

N 
= Z c~,(q,/(l--q,))k+'(1--q,)/(1--2q,) 

i=1 

we obtain the asserted inequality (10). 
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