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ABSTRACT

Kornya-type higher order approximations are derived for the aggregate claims
distribution and for stop loss premiums in the individual model with arbitrary
positive claims. Absolute error bounds and error bounds based on concentration
functions are given. In the Gerber portfolio containing 31 policies, second order

approximations lead to an accuracy of 3x 107, and third order approximations
to 1.7x107°,
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1. INTRODUCTION AND SUMMARY

Consider a portfolio containing N policies, where for i=1,..., N the claim
amounts distribution Q; of the individual risk i can be represented as
Qi=(1-q;)8,+ q.P.

Here, 8, is the Dirac measure of zero, 5,{0} =1, and P, is a probability measure
with P;(0, ) = 1. The number g; € (0, 1) is the probability that risk i produces a
claim. The distribution P; is the conditional distribution of the claims in risk i,
given that a claim occurs in risk i. We shall be concerned with approximations
for the convolution

G=0Q,* - -%Qn

which is the aggregate claims distribution of the portfolio in the individual model.

In this first section we shall (a) give heuristic motivations for the approxima-
tions, (b) introduce the approximations, and (¢) present error bounds. In Section
2 a numerical illustration is given. All our proofs are deferred to Section 3.

(a) Assume for the moment that N =1, and write
Q=Q=01~-¢q)8,+qP

and g for the characteristic function of P. The characteristic function of Q is
given by

1—qg+qg=exp(log(1—q+qg)).
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The kth-order approximations H, for Q suggested by KorNYa (1983) are derived
as follows: Expand the right-hand side of the equation

log (1-g+qg)=log(1+qg/(1—q))—log(1+q/(1—q))

in powers of ¢/ (1 — q). This yields the following approximation for the characteris-
tic function h of Q:

hy =exp (Z (="' (1/j) g/ (1 -9)Y (¢’ - 1)).

Whenever ¢ is small, h; will be a good approximation for h. The approximation
H, has characteristic function h,, an hence H, will be a good approximation for
Q according to the continuity theorem for characteristic functions (see LOEVE
1977, p. 204).

We consider slightly different kth-order approximations H¥ which are derived
as follows: Expand the right-hand side of the equation

log(1—g+qg)=log(1+q(g—1))

in powers of g. We then obtain the following approximation for h:
k
hi =exp (_Z‘ (—1)’+'(1/j)q’(g—1)’).
i=

The approximation H¥ has characteristic function h¥.
For arbitrary N> 1 the approximations H, and H¥ for G are constructed as
follows. Let H, (i} and H¥(i) be the approximations for Q;, i=1,..., N. Then

H, = H (1) *- - -+ H(N)
and

Hf=H{Q1)*- - * H{(N)
respectively.

(b) We introduce first the compound Poisson distribution
H=Y (A"/n!)e Pt
with Poisson parameter
A=gt+---+gn

and claim amount distribution

Py=q,/AP,+- - -+qn/APy.

In the collective risk theory model, H is the aggregate claims distribution of the
portfolio.
Consider next the compound Poisson distribution

H =% (A)"(n)™" e ¥ (Pe)*
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with Poisson parameter

AM=q/(1=g)+- - +gn/(1-gn)
and claim amount distribution
Po=q /(1 =g)A )P+ - +qn/((1—qn)A") Py.
The approximation H, for G is always on the safe side in the sense that for all
real ¢
(1) G(1,00) < H\(1,0).

In order to define Kornya’s approximations H, for G it is convenient to extend
the concept of compound Poisson distributions to finite signed measures M, i.e.
to countably additive set functions M satisfying

sup |[M(A)| <oo.
A
Define the n-fold convolution M*" of M by
M*0=5,, M*""D(A) = J J La(x+y)M*"(dy)M (dx)

and define the signed Poisson measure with Poisson parameter A € R and signed
claim amount measure M, by

M=e™ § AT/ (nYME".

n=0

Fori=1,...,Nand j=1,2,... define
¢y = (=1 (1/j)(qi/ (1 —q)Y
and for k=1,2,..., let

k
2 C

N
Ak=§ :

i=1j

N &k )
Ry=7% ¥ (cy/A)PY.
i=1y=1
Write H, for the signed compound Poisson measure with Poisson parameter A,
and signed claim amount measure R,. Notice that H, is the compound Poisson
distribution defined earlier. For arbitrary k=1 the signed measures are normed,
H,.(R)=1, but H, can be negative, F,{A) <0 for some sets A.
For k=1,2,... the approximations H} are defined as follows. Let
k

N
Uc= T (-1Y7'(1/)) T 4l(P=80)".
= =

The signed measure U, can uniquely be represented by

Uk=/\z:(Rt_5o)
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with A¥eR and R¥ a signed normed measure with R¥{0}=0. Let H} be the
signed compound Poisson measure with Poisson parameter A¥ and signed claim
amount measure R¥. Then

HY=H

N
_él (g:+ Q?/z)

A%
AF= § (q:i+4q3/2+q3/3)
R3=(1/A%) _; {(g:i+qh)P,—(1/2)q; P¥}

RE=(1/A%) T ((g:+a+ aDPi— (g} 2+ @)PE+(1/3)gIPF).

Notice that the computation of H, and H¥ can be done using fast Fourier
methods (see BERTRAM 1981) or the recursion algorithm (see PANJER 1981). The
characteristic functions of H, and H{ equal

exp(_; T (/) /0 —q.-))f(gl.i-n)
and
Nk _ _ .
€xXp (gl _él (-1Y"'(1/j)gl(gi = 1)’)

respectively, where g; is the characteristic function of P;. These characteristic
functions can easily be computed, and hence fast Fourier methods work.

Assume now that for some fixed positive h, the distributions P, are concentrated
on the positive integral multiples of b, i.e.

P{h,2h3h,..}=1, i=1,...,N.

Then for non-negative integral p we have the recursions
' p+i

(p+t1)HA{h(p+1)}=A ¥ rR{hriH {h(p+1~r)}

r=

and
p+l
(p+DHHA(p+ D =A% ¥ rR¥{A}HE{h(p+1~r)}
r=]
and the initial values
H {0}=exp(—A,) and HE{0}=exp (-A¥).

(c) In contrast to classical higher order approximations for G such as the
normal power method or Edgeworth-expansions, theoretical error bounds can
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easily be derived for the approximations H; and H¥. Well known error bounds
for the case k=1 are

@ sup |G(A4) - H(A) < I g}
(see GERBER 1984, p. 192, theorem 1.a) and
() sup |G(A) = H(AN<(1/2) T (a/(1- )

Smaller error bounds have been derived in Hipp (1985) for the distance between
the corresponding distribution functions:

N
(4) sup |G(-, 1) - H(-00, 1)]<5 ¥ ¢7/(1-g)C(P, a).
[ i=1
Here, «; is the mean of P, and C(P, r) is the concentration function of the

probability measure P at r> 0,
C(P,ry=sup P[x,x+r).

Finally, P is the compound Poisson distribution with Poisson parameter
N
A=(1/2) ¥ gq(1—gq)
i=1

and claim amount distribution
N
Py= Z ‘Ii(] - q.-)/(ZA)P,--
i=1

The right-hand side of (4) will often be considerably smaller than the right-hand
side of (2). Consider, e.g.
P{1}=1, gi=cN™V2 i=1,...,N

with a fixed constant c€ (0, 1). Then P is a Poisson distribution with parameter
eNY¥1—¢N~?)/2 and hence C(P, 1) is of order N~"* (compare (11) in Hipp
1985). So the right-hand side of (4), with &; = 1, is of order N™'*, too, while the
right-hand side of (2) equals c?.

For the presentation of error bounds for H, and H¥ corresponding to (2) and
(4) we need some notation. Fix k=1, and for i=1,..., N define

7= (1/(k+1))q:/(1 "q,'))kﬂ(l ~q:)/(1 —2q,-)

and
Cri=(1/(k+1))(2qi)k+l/(1_2qi)-
Let
T=_§ Tis 0'=§0',-,
N N
§=3 (e"—-1), 8*=_Z (e? —1).
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The error bounds corresponding to (2) are

(5) sgpIG(A)—Hk(A)Ise’—l
and
(6) sup |G(A)—- Hf(A)|se”—1.

The error bounds corresponding to (4) are

) sup |G(=<0, ) = Hi(=0, 0] <5 T (e~ )C(P,2a)

(8) supIG( 0, t) — H (=, )|(1-8)<5 z (e =1)C(P,(k+1)a;)
and
(9) sup|G(-0, 1)~ Hf(—o0, )|(1-8%)<5 g (e =1)C(P, (k+1)a,).

The probability measure P occurring in the concentration function is the com-
pound Poisson distribution defined above. The numbers 7; in (7) have to be
defined with k= 1. In (5)-(9) we tacitly assumed that

qi<1/2; i=1,...,N.

Comparing (5) and (8) with (6) and (9) one might expect that the approximations
H, perform better than HF. In our numerical illustration this is not true. Notice
also that the mean of H¥ and the mean of G coincide, while the mean of H,
and the mean of G are different.

Finally, Kornya’'s approximations H, can be used for approximate computation
of the stop loss premium

J (x-2)"G(dx)

in the individual model. Under the assumption
qi<1/2, i=1,...,N

we obtain the following error bound:

(10)

4[ (x—z)+G(dx)—J. (x—z)"H,(dx)
=(e"—1) J (x—2)"G(dx)
+er L ai(qi/(1- gD (1-q.)/ (1 - 24)).

Notice that for fixed N, Q,,..., Qu, the approximations H, and H¥ converge
to G when k tends to infinity. The error bounds (5), (6) and (8), (9) converge
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to zero when k tends to infinity. Hence if an upper bound for the error is given
we can choose k such that the error of approximating G by H, (or by H¥) is
smaller than the prescribed upper bound. The computation time which is needed
for the numerical computation of H, or Hf, e.g. with Panjer’s recursion algorithm
in the arithmetic case, is linearly increasing with k.

2. NUMERICAL ILLUSTRATION

We consider the small portfolio of GERBER (1979, p. 53, table 3). The following
table shows the values G(—0, x), H,(~c0, x), H¥(—o, x) for k=1,2,3 and
x=1,...,20.

x G H, H, H, H¥ H¥ H%

1 0238195 0229700 0.238496 0238183 0246597 0238473  0.238206
2 0252929 0244014 0253249 0.252916  0.261393  0.253210  0.252940
3 0.340663 0.328876 0.341094 0.340645 0.348145 0.340851 0.340667
4 0453846 0438079 0.454416 0453823 0459370 0453872  0.453840
5 0564555  0.547070 0.565265 0.564526  0.569766  0.564611  0.564555
6  0.660883 0640235 0.661712 0.660847  0.662625  0.660717  0.660869
7 0722431 0703134 0723259 0722394 0723633 0722303  0.72242]
8 0791453  0.770973 0.792362 0791413 0789060 0791157  0.791436
9 0846270 0828072 0.847221 0.846230  0.843637 0846108  0.846270

10 0.889418 0.871906 0.890284 0.889376 0.884958 0.889120 0.889402
11 0.919525 0.904912  0.920386 0.919482 0.915537 0.919389 0.919525
12 0.943054  0.930424 0.943877 0.943012 0.938845 0.942970 0.943058
13 0.961336  0.950689 0.962039 0.961299 0.957189 0.961242 0.961338
14 0.973846 0.965402 0.974490 0.973809 0.970338 0.973842 0.973853
15 0.982556 0975869 0.983125 0.982522 0.979556 0.982596 0.982565
16 0.988468 0.983358 0.988918 0.988436 0.986061 0.988510 0.988472
17 0.992620  0.988711 0.993002 0.992594 0.990656 0.992680 0.992626
18 0.995335 0992455 0.995640 0.995311 0.993832 0.995401 0.995339
19 0.997076 0.994992 0.997317 0.997054  0.995956 0.997142 0.997078
20 0.998193 0.996704 0.998376 0.998175 0.997370 0.998250 0.998193

For all approximations K the actual error

E(K)=sup|G(-o0, 1)~ K(—0, t}|

* together with bounds (5) and (6) are shown in our next table.

K H, H, M, H¥ H¥ H¥
E(K) 0.020648  0.000951  0.000043  0.008402  0.000295  0.000017
(5) or (6) 0.040015 0001395 0000058  0.160690  0.010060  0.000785

In this small portfolio the concentration function is quite large. Hence (7), (8),
and (9) do not yield reasonable error bounds here.
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3. PROOFS

Relation (1) follows from the fact that a Bernoulli random variable X with
P{X =1} = p is stochastically smaller than a Poisson random variable with para-

meter p/(1—p).
For the proof of (3) it suffices to consider the case N =1 and to show that

S';J‘P H,(A)-Q,(A)= (g,/(1 _ql))l/z'

This follows from H,{0} =< Q,{0} (see (1)),
xe ‘=x/(1+x), x=q,/(1—¢,)>0,
and
1—e 7 (1+x)=x%/2, x=q,/(1—¢q,)>0.

For the proof of (5)-(9) we introduce exponentials for finite signed measures M.
If M has characteristic function

f(n)= J "™ M(dx)

then exp (M) is the finite signed measure with characteristic function exp (f(¢)).
For exp (M) we have the explicit representation

exp (M) = § (1/n)M*".
n=0

Notice that for finite signed measures M,, M,, the signed measure exp (M, + M,)
is the convolution of exp (M,) and exp (M,). In the following we shall always
assume that

q:<1/2, i=1,...,N.

In this case, the set function

N o©

Mo=T % (=1Y"'(1/j)(q:/ (1 = g)Y (PF = 8o)

i=1j=1

is a finite signed measure, and
exp (M) = G.

For finite signed measures M we shall write M = M — M~ for the Hahn-Jordan

decomposition of M, and |[M|=M*+M"~, |M| =|M|R).

3.1. LemMA. For measurable functions f and finite signed measures M,
exp (|[M|) — 8, is a (positive) measure, and

(a) H S(x)(exp (M) - 80)(dx)| < J. L)l (exp (|M]) = 80)(dx)

(b) lexp (M) = 8, < '™V -1.
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Proor. (a) Notice first that

J'f(x)(exp (M)~ 8o)(dx)| < J |f(x)|lexp (M) — 8o|(dx).

Hence it suffices to show that for arbitrary measurable sets A
|(exp (M) = 8,)(A) < (exp (IMI) = 85)(A).

This inequality is true for A ={0}, and for sets A with 0 A we have
[(exp (M) —8o)(A)| =< Zl (1/n)|MJ*"(A)

=exp (|M|)(A) = (exp (IM|) - 8,)(A).
(b) With (a) we obtain

lexp (M)~ 8ol < (exp (IM]) - 8) ®) = ¥ [[M]"/n!

el

= eMI_

Proor OF (5). Notice that H, =exp (R,) with
N &k )
R, = 'Z_' j; ¢ ( PF —&,).
Hence
G — Hy=exp (M;)—exp (R.) =G * (8,—exp (R, — M,)).

Because of

G — Hill < || exp (R — Mo) = 8ol
we obtain with Lemma 3.1b})

|G~ Hill<exp (|Mo— R[) - 1.

Now ||M,— R, {| <7 implies the assertion.

Proor or (7) AND (8). Fori=1,..., N let

R = ¥ (=1Y"'(1/ )@/ (1= D)y (P¥ = &)

Hi’)=cxp(R(kl))
M=Q,% - %*Qu * Hi*V % x HN

RO= 3 (-1Y*'(1/)(g/ (1= )Y (PF - &)

j=1

97
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and
N
A =max sup | G(=0, 1) = Qn * M (=0, 1)].

Then

A< sup J Mi(~0, 1= 5)(Q, ~ H{")(ds)

i=1

Fori=1,..., N and treR we have

H M;(—0, t=5)(Qi~ H{")(ds)

= U M, * Q,(-o0, 1 — 5)(exp (R’ — R"”) - 80)(ds)
= H ((M; * Q= G)[t—s, 1)+ Gt —s, 1))(exp (R’ — R*) - §,)(ds)

SJ (A+Glt=s5,0))exp (IR = RY) = 8,)(ds)=1,+1,, say.
Lemma 3.1b) yields I, <A{e™ —1). In order to compute an upper bound for I,
we fix a positive r and notice that for s=0
Glt—s,0)=(1+s/r)C(G,r).

Furthermore,
J s(exp (IR~ RO = 8,)(ds)] = eI*"~="" J S|RY~ R'|(ds)

s e (k+ \)1e;.
This implies
L=s(ei—14+e (k+1)10;/r)C(G, r).
With r=(k+1)a; we obtain
L<(e”"-1)C(G, (k+1)a,)

and hence
A(l-8) < § (e =1C(G, (k+1)a;).

Asin Hirp (1985, p. 231, (24)), we obtain the following upper bound for C(G, r):
C(G, ) =(#*/2)C(P,r).
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Hence

N
A(1-8)=(7%/2) ¥ ("~ 1)C(P, (k-1)a;)
i=1
which proves (8).
If k=1, then for i=1,..., N the signed measures M, * Q, are (positive),
measures, and therefore the above mentioned methods can be applied to derive
an upper bound for C(M, * Q,, r). We obtain with r =2¢;

U M; * Q;(—0, t — s)(exp (R{? ~ RYV) — 8,)(ds)

= ’I M; * Qi[t~s, t)(exp (R(li)_ RU)) — 8)(ds)

<C(M;*Q,1) J (1+5/r)(exp (IR{” = RY|) - 8,)(ds)

<(7*/2)C(P,2a;)(e" —1+ e a;27,/r)
< (7?/2)C(P,2a;) (e —1).
This proves (7).
The proofs for (6) and (9) are modifications of the above proofs.
Proor oF (10). For arbitrary x, z and positive y we have
(x+y-z)"<(x-z)"+y.

This implies

” (x=2)"(G=Hy)(dx)| = ” (x+y~2)"G(dx)(exp (R — Mo) — 8)(dy)

sj (x-z)+G(dx)”eXp (R — My) ~ 8|

+ J yiexp (Ri = Mo) — 8o|(dy)

=I;+1,, say.

Lemma 3.1 yields the following bounds:

L=(e"-1) J' (x-2z)"G(dx)

I,< J yexp (|[Re—Mg|)(dy)<e” J Y| R — M|(dy).
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From

J.}'IRk—Mol(dy)S % 1 (1/)) T (q/(1—q)Y J- yPF(dy)
J=k+

i=1

N

=¥ a{q/(1 —‘Ii))k+l(1 -q,)/(1-2q,)

i=1

we obtain the asserted inequality (10).

REFERENCES

BERTRAM, J. (1981) Numerische Berechnung von Gesamtschadenverteilungen. Blatrer der Deutschen
Gesellschaft fiir Versicherungsmathematik, 18, 175-194.

GERBER, H. U. (1979) An Introduction 1o Mathematical Risk Theory. Huebner Foundation, R.D.
Irwin Inc., Homewood, IL.

GERBER, H. U. (1984) Error Bounds for the Compound Poisson Approximation. Insurance: Mathe-
matics and Economics, 3, 191-194.

Hirp, C. (1985) Approximation of Aggregate Claims Distributions by Compound Poisson Distribu-
tions, Insurance: Mathematics and Economics, 4, 227-232.

KorNyA, P. S. (1983) Distribution of Aggregate Claims in the Individual Risk Theory Model. Sociery
of Actuaries: Transactions, 35, 823-858.

LoEVE, M. (1977) Probability Theory. I. 4th Edition. Springer, New York.

PANJER, H. {1981) Recursive Evaluation of a Family of Compound Distributions. ASTIN Bulietin,
12, 22-26.

CHRISTIAN HipP
Mathematisches Institut der Universitdt Koln, Weyertal 86, D-5000 Koln 41.




