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ABSTRACT 

Estimation of pure premiums for alternative rate classes using regression methods 
requires the choice of a functional form for the statistical model. Common choices 
include linear and log-linear models. This paper considers maximum likelihood 
estimation and testing for functional form using the power transformation sug- 
gested by Box and Cox. The linear and log-linear models are special cases of 
this transformation. Application of the procedure is illustrated using auto insur- 
ance claims data from the state of Massachusetts and from the United Kingdom. 
The predictive accuracy of the method compares favorably to that for the linear 
and log-linear models for both data sets. 
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1. INTRODUCTION 

An important issue that arises in modeling claim frequency, claim severity, or 
pure premiums is the choice of an appropriate functional form for the statistical 
model. The importance of  this choice is illustrated in the classical work of BAILEY 
and SIMON (1960). This study compared the traditional multiplicative ratemaking 
method used in the United States and Canada with multiplicative and additive 
models estimated using the minimum chi-square method.* The results of analyzing 
Canadian automobile insurance loss ratios for driver and merit rating classes 
indicated that the additive model provided a better fit than the multiplicative 
procedures. The multiplicative methods also appeared to produce systematic 
overestimates for the highest risk merit rating and driver classes. 

The tendency of the traditional multiplicative method used in Canada to 
overestimate pure premiums for high-risk drivers was later debated by HOLMES 
(1970) and WILCKEN (1971). More recently, CHANG and FAIRLEY (1978, 1979) 
documented this tendency using data on average claims per exposure by driver 
class and territory for the state of Massachusetts. They also found that an additive 
model estimated using weighted least squares (with the square root of cell 

* The minimum chl-square method for estimating a multtphcatJve model had earher been considered 
by ALMER (1957). For a description of these and slmdar models and estlmanon techmques, see 
WEISBERG and TOMBERLIN (1982) and EEGHEN, GREUP and NIJSSEN (1983) 
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exposures as weights) did not produce overestimates for the highest risk classes 
and that the additive model fit the data better than either the traditional multiplica- 
tive method or a log-linear regression model. Similar results were obtained by 
FAIRLEY, TOMBERLIN and WEISBERG (1981) using auto insurance claims data 
for the state of New Jersey. Each of these studies emphasized the undesirability 
of  using methods that overestimate pure premiums for the highest rate classes 
in view of the problem of automobile insurance affordability. 

SANT (1980) analyzed some of the Massachusetts data employed by Chang 
and Fairley using a multiplicative model with additive errors. Weighted least 
squares estimates of this model produced smaller estimates for the highest risk 
classes than the traditional multiplicative method, but the additive least squares 
model still provided the best overall fit. Sant suggested that the latter result could 
be caused by the omission of interaction terms in the multiplicative model rather 
than an incorrect functional form. SAMSON and THOMAS (1984) focused on the 
influence of interaction terms in estimating additive and log-hnear models of 
pure premiums using data for a United Kingdom motor insurance account. In 
contrast to the previous studies, the log-linear model fit the data much better 
than the additive model. However, an additive model with interaction terms 
selected by stepwise regression provided a better fit than either the additive or 
log-linear models without interaction terms. 

A number of authors have considered other alternatives to purely additive or 
multiplicative models. BAILEY and SIMON (1960) estimated a model with both 
additive and multiplicative terms. CHAMBERLAIN (1980) fitted a multiplicative 
model to the residuals from estimating an additive model. Both methods generally 
failed to improve upon both the additive and multiplicative models in terms of 
goodness of fit. WEISBERG, TOMBERLIN, and CHATTERJEE (1984) analyzed a pure 
premium model with both additive and multiplicative terms. They also considered 
models that mvolved separate estimation of frequency and severity. Comparisons 
with purely additive and multiplicative models using Massachusetts and New 
Jersey data suggested that the functional form for the pure premium models and 
separate estimation of frequency and severity had relatively little impact on 
predictive accuracy.* 

FREIFELDER (1984) predicted the patterns of estimation errors that would be 
expected if the true model were additive and a multiplicative model were to be 
assumed in estimation and vice versa. Using the Massachusetts data employed 
by Chang and Fairley, he conducted chi-square tests to determine whether the 
error patterns for the methods were consistent with those predicted. The results 
suggested that both the traditional multiplicative method and the additive least 
squares model could be rejected for collision coverage and that the multiplicative 
method, but not the additive model, could be rejected for combined compulsory 

*WEISBERG, TOMBERLIN and CHATTERIEE (1984) also examined both the simple use of 
individual cell pure premtums and the use of Bayes methods that combined mdlwdual cell pure 
premiums with model estimates The use of cell pure premiums performed well m terms of predictive 
accuracy for the Massachusetts data, which had very large cells The Bayes estimates generally 
outperformed both the model-based estimates and the use of cell pure premmms. 
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coverages. The study is important because it relies on statistical testing in compar- 
ing functional forms. A limitation of the test procedure is that it only considers 
the signs of the errors and not their magnitude (cf. SAMSON and THOMAS (1984)). 
Furthermore, an alternative model is not implied when both the additive and 
multiplicative forms are rejected by this test. 

The choice between additive and multiplicative models of automobile insurance 
claims appears to have been of less concern to European researchers than it has 
in North America. Most European researchers also have focused on models of 
claim frequency and severity rather than pure premium models.* Despite these 
differences in emphasis, the choice of functional form is likely to be important 
in all types of claims modeling (see, for example, ALBRECHT (1983)). 

This paper considers estimation and testing for functional form in pure premium 
regression models. The procedure suggested by Box and Cox (1964) and extended 
by LAHIRI and EGV (1981) for the case of heteroscedastic disturbances is applied 
to Massachusetts automobile insurance claims data used by CHANG and FAIRLEY 
(1979) and to the United Kingdom data used by SAMSON and THOMAS (1984). 
The procedure allows for a continuum of functional forms based on the parameter 
of a power transformation. The additive (linear) and log-linear functional forms 
are special cases of the transformation. Maximum likelihood estimates of this 
parameter are obtained under the normality assumption. Likelihood ratio tests 
are used to test whether the linear and log-linear functional forms are consistent 
with the data. The normality assumption underlying the estimation method and 
hypothesis tests is examined, and the predictive accuracy of the alternative 
functional forms is compared. 

The study follows almost all previous work that has focused on the choice 
between additive and multiplicative models in that it deals exclusively with 
estimation and testing for functional form in pure premium models. The flexible 
functional form approach also could be applied to separate estimation of 
frequency and severity using a variety of distributional assumptions. Extensions 
in this direction would be desirable, since the relatively simple functional forms 
examined in this paper may only roughly approximate those that might be implied 
by explicit modeling of frequency and severity. 

Section 2 provides details concerning the models and estimation methods. 
Criteria for comparing performance of the models are described in Section 3. 
The illustrative results for the Massachusetts and United Kingdom data are 
presented in Section 4. Section 5 contains suggestions for further study. 

2. M O D E L S  A N D  E S T I M A T I O N  M E T H O D  

Subject to degrees of freedom considerations, the methodology illustrated in this 
paper could be employed for a pure premium model with any number of  factors, 
levels, interaction terms, or continuous regressors. For simplicity, the models first 
are described assuming that there are two factors, 1 and 2, with an unspecified 

* C o u r ' r s  (1984)  s u m m a r i z e s  m u c h  o f  this  work  Also  see EEGHEN,  G R E U P  a n d  NIJSSEN (1983)  
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number  o f  levels and  no in teract ion terms.  The addi t ive  or  (using the more  
c o m m o n  regress ion t e rmino logy)  l inear  mode l  may  be expressed  as: 

(2.1) p,~ = bl, + b2j + % 

where/~o is total  c la ims for cell zj d iv ided  by n o, the n u m b e r  of  exposures  in the 

cell, bt, ts the ettect of  the ith level of  fac tor  1, b2j is the effect o f  the j t h  level 
of  fac tor  2, and  e o is a d i s tu rbance  with zero mean.  

The var iance  o f  e,j is a ssumed  to equal  s2(n,j) -d where  s 2 is cons tan t  across 
cells. Fo r  most  o f  the empir ica l  work,  d is cons t ra ined  to equal  one. In this case, 
equa t ion  (2.1) co r r e sponds  to the addi t ive  model  e m p l o y e d  by CHANG and 
FAIRLEY (1978, 1979) and  others.  In part  o f  the analysis ,  this cons t ra in t  is d r o p p e d  
and d is t rea ted  as an unknown  pa rame te r  to be es t imated.  A variety o f  o ther  
a s sumpt ions  concern ing  d i s tu rbance  var iance  could  be made.  For  example ,  the 
var iance  could  be re la ted  to the moments  o f  an a s sumed  under ly ing  d is t r ibu t ion  
for c la im f requency  and,  perhaps ,  severity (see BAILEY and SIMON (1960), SEAL 
(1968), WEISBERG and  TOMBERLIN (1982), and  ALBRECHT (1983)). 

Whe the r  ref inements  o f  this type would  be l ikely subs tant ive ly  to improve  
predic t ive  accuracy  is an empir ica l  quest ion.  In p re l iminary  work,  the l inear  
mode l  was es t imated  assuming  that  d i s tu rbance  var iance  was equal  to k ( b h  + 
b2j)/n,j where  k is a constant .  As shown by WEISBERG and TOMBERL1N (1982), 
this a s sumpt ion  would  be a p p r o p r i a t e  if  c la im f requency was Poisson d is t r ibu ted  
and  the d i s t r ibu t ion  o f  c la im severity was ident ica l  for each cell. A two-pass  
weighted  least  squares  regress ion p rocedure  was e m p l o y e d  with the first-pass 
es t imates  o f  b~, and  bEj used to construct  the weights for the second  pass. I te ra t ion  
until  convergence  would  have been poss ib le  (cf. SEAL (1968)), but  it would  not  
change  the es t imator ' s  a sympto t i c  p roper t ies  (see AMEMIYA (1973)). The para-  
meter  es t imates  and p red ic ted  pure  p remiums  for this me thod  were very s imi lar  
to those o b t a i n e d  using weighted least  squares  with the square  root  of  exposures  

as weights.  
The log- l inear  model  may  be expressed  as: 

(2.2) log (fifty) = b,, + b2j + e,j 

where  the same a s sumpt ions  are made  concern ing  e,~ as for the l inear  model .  
The log- l inear  model  has been used by CHANG and FAIRLEV (1978, 1979), 
FAtaLLY, TOMBERLIN and  WEISBERG (1981), and  SAMSON and THOMAS (1984).* 
It may  be expec ted  to p rov ide  pure  p r emium est imates  that  are s imi lar  to those  
that  would  be ob t a ined  us ing ei ther  the t r ad i t iona l  mul t ip l ica t ive  me thod  or  the 

* As was pointed out to the author by H Buhlmann and A Gisler, the bs m model (2 2) (and 
model (2.3) descnbed below) might be expected to depend on the number of exposures m the given 
cell. The treatment of these parameters as constants for cells of different sizes m this study ts 
reasonable m view of the large number of exposures an each cell m the data used In general, a 
theoretically preferable procedure for estimating models using transformed data would be to use the 
mean of the transformed values of the mdwldual data as opposed to using the transformed value of 
the mean This observation htghhghts the approximate nature of model (2 2) (and model (2 3) when 
c = 0) The Iog-hnear functional form could apply to the expected pure premmm for an individual 
exposure It could not apply to actual claims for an md~wdual exposure if zero claims were possible. 
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multiplicative least squares model employed by SANT (1980). Estimation o f  the 
log-linear model  is considerably simpler than multiphcative least squares, and 
the statistical properties o f  the estimates under  the normali ty assumption are 
well-known, in contrast  to those for the traditional multiplicative method.  

The Box  and C o x  (1964) procedure,  as extended by LAHIRI and EGV (1981) 
to allow for heteroscedasticity,  posits that for some value o f  the parameter  c , / ~ )  
will be linear in b~, and b2~, i.e.: 

(2.3) po=(c) -- bt, + b2j + e u 

where 

(2.4) p(,/) = (p~ -- 1 )/c. 

When c = 1, model  (2.3) is equivalent to the linear model.  Since the limit -~ =(c) u l  P~j 

as c goes to zero is log (p,j), it is equivalent to the log-linear model when c = 0 .  
To facilitate explanat ion of  the estimation procedures  used, models (2.1), (2.2), 

and (2.3) may be described as: 

(2.5) y, j=bll+b2t+ Z (b , , -b~l )Ol ,+ ~ (b2j-b2~)D2j+eq 
t # l  J ~ l  

- : ( c )  where y,: equals p,j, log (/~,:), or p,j , D~, is a d u m m y  variable that equals one 
for the ith level o f  factor 1 and zero for all other levels, and D2j is a d u m m y  
variable that equals one for the j th  level o f  factor  2 and zero for all other  levels. 
Since (2.5) is linear in bit + b2~ and the coefficients on each d u m m y  variable, it 
can be estimated using s tandard linear methods.  Estimation o f  (2.5) will not 
provide estimates o f  each bt, and b2j, but it will yield estimates of  b~, + b2~ for 
each cell. These estimates can be used to predict  the mean pure premium for 
each cell.* 

The linear and log-linear versions of  (2.5) may be estimated directly using least 
squares. If  the e~s are assumed to be normally distributed with mean zero and 
variance s2(nu) -g, the concentrated log-likelihood function for the Box-Cox  
model is given by (see LAHIRI and EGY (1981)): 

(2.6) L = K - ( d / 2 ) ~ l o g ( 1 / % ) + ( c - l ) ~ l o g ( p , j ) - ( N / 2 ) l o g ( g  2) 

where K is a constant,  N is the total number  o f  cells, ~2 is 1 / N  times the residual 
sum of  squares from the application of  weighted least squares to equat ion (2.5) 
using n~/2 as the weight for cell ij, and the summat ion  is over all cells. Hence, 
the coefficients in (2.5) influence L through their impact  on £2. 

If  it is assumed that d equals one, maximum likelihood estimates o f  the 
coefficients and c may be obtained by searching within some reasonable range 
for the value o f  c that maximizes L. The procedure  used in this s tudy was to 

* The om~sslon of one dummy vanable for one level of each factor m (2 5) makes the resultant 
design mamx nonsmgular The choice of the level that is omitted ts arbRrary and does not affect the 
predicted values 
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specify a range for c and calculate the value of L at 0.05 increments for c within 
this range. If the maximum value occurred at an endpoint, the range was modified 
until an internal maximum was obtained. When d is allowed to vary, maximum 
likelihood estimates of the coefficients in (2.5), c, and d may be obtained by 
searching for values of c and d that maximize L. The zig-zag iterative search 
technique due to OBERHOFER and KMENTA (1974) and employed by Lahiri and 
Egy was used in this case. 

3. C O M P A R I S O N  C R I T E R I A  

BAILEY and SIMON (1960) suggested four criteria that rate relativities or, more 
generally, a pure premium estimation procedure should meet that have commonly 
guided later researchers in selecting between competing methods. These criteria 
include (1) credibility, (2) minimal departure from the raw data (goodness of 
fit), (3) the prediction error for each subgroup can reasonably be attributed to 
chance (random prediction errors), and (4) the predictions should be balanced 
for each major class and in total. 

The estimation technique for the linear and log-linear models involves minimiz- 
ing the sum of  squared errors using the data weighted by the square root of the 
number of  exposures in each cell. It thus reflects the relative credibility of 
experience in each cell. The log-likelihood that is maximized for the Box and 
Cox procedure also reflects the number of exposures across cells. 

With regard to goodness of  fit, an ideal procedure might be to analyze forecast 
errors for a period following the estimation period. While this has been done in 
some studies (e.g., JOHNSON and HEY (1971), CouTrs  (1984), and WEISBERG, 
TOMBERLIN and CHAVFER.IEE (1984)), the more common procedure of comparing 
actual and predicted cell means during the estimation period is used in this paper. 
Two measures of overall fit are employed: 

Mean Squared Error = ( 1 / N )  ~ n,j ( ~5~ - j6,~)2 

Mean Absolute Error = ( 1 / N )  ~ n o 11~,~ - t~o ] 

where ~,j is the predicted value of po, the true pure premium. 
The predicted values are calculated from: 

Linear: /~,j = f  

Log-Linear: /~,j = exp ( f +  ~2/(2n~)) 

BoxandCox :  1 3 , j = ( c f + l )  t/c, c ¢ 0  

where f equals the predicted value of po, log (fly), and/~cf) using the weighted 
least squares estimates of the coefficients in (2.5) for the linear, log-linear, and 
Box and Cox models, respectively. The predictor for the linear model will be 
unbiased and that for the log-linear model will be consistent if the assumptions 
underlying either model are satisfied. The predictor for the Box and Cox model 
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generally will not be consistent (unless c = 0, in which case the log-linear predictor 
is used).* As discussed by NELSON and GRANGER (1979), there is no closed 
form for the optimal, consistent predictor for general c. While it could be 
calculated numerically, this was not done. Simulation results described by 
NELSON and GRANGER (1979) suggest that using numerical methods to obtain 
consistent predictions with the Box and Cox procedure may have little impact 
on predictive accuracy if the assumptions underlying the model are satisfied. 

The principal motivation for considering the Box and Cox estimator is that by 
allowing the functional form to be determined by the data, it may produce 
predicted values with smaller mean absolute or mean squared errors than the 
linear and log-linear models. Its forecasting performance for economic time series 
has been decidedly mixed, as is illustrated by the results of NELSON and GRANGER 
(1979). However, these authors suggest that its weak performance may be due 
to the extreme nonnormahty of the economic time series that they analyzed. The 
normality assumption may be more appropriate (i.e., violated to a lesser degree) 
for cross-sectional models of automobile insurance pure premiums. 

If  the normality assumption and certain regularity conditions were to be satisfied 
(see LAHIRi and EGY (1979)), a likelihood ratio test could be used to test whether 
the null hypothesis that either c = 0 or c = 1 is consistent with the data. For 
example, letting ~m,x denote the value of c that maximizes L, the statistic 2[L(c = 
cm,x, d = 1 ) - L ( c  =0 ,  d = 1)], which has a limiting chi-square distribution with 
one degree of freedom, provides a test of  the null hypothesis that c = 0 against 
the unconstrained alternative, given that d = 1. Analogous tests could be conduc- 
ted for the null hypothesis that c = 1 and to test hypotheses concerning the 
magnitude of d. 

To provide evidence of whether the normality assumption is reasonable, stan- 
dardized residuals from the weighted least squares regression for each model 
were calculated. Skewness and kurtosis statistics for the standardized residuals 
were compared to their 0.05 critical values under the null hypothesis of  normality.t  
The skewness and kurtosis statistics are given by: 

Skewness = m3/m32/2 
and 

Kurtosis = ( m4/ m22) - 3 

where m k =  ( l / N )  ~ (~,j - ~)k, t~,: is the standardized residual for cell /j, and ~ is 
the mean of the ~,js. 

Three procedures were used to check for nonrandom errors. First, in view of 
the evidence that the log-linear functional form may systematically overstate 

* Since the Iog-hnear prediction formula ts used for the Box-Cox method when c = 0, the Iog-hnear 
model cannot really be wewed as a special case of the Box-Cox model m terms of pred~ctton 

t These tests must be considered approximate, since the standardized residuals will not be indepen- 
dent. If the standardized residuals were to appear htghly nonnormal,  a possible alternative to the 
normality assumptton and maximization of L might simply be to search for the value of c that 
minimizes ~2 
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actual cell means for cells with the highest average claims, the predicted values 
and prediction errors for the three cells with the highest predicted values are 
compared for each model and data set. Second, based on these results and 
inspection of the prediction errors by cell, additional models are estimated that 
include interaction terms to mitigate systematic patterns in the errors. Third, the 
maximum absolute standardized residual for each model is compared to the 0.05 
estimated upper bound tabulated by LUND (1975) for this statistic under the 
normality assumption. This test may provide evidence of whether the error for 
at least one of the cells cannot be attributed to chance. 

With respect to the balance criterion suggested by BAILEY and SIMON (1960), 
only the linear model will generally produce predicted values that are balanced 
overall and by class. An estimation method to minimize weighted squared predic- 
tion errors subject to balancing constraints later was suggested by BAILEY (1963) 
and analyzed by JUNG (1968) and AJNE (1974). The motivation for the balance 
criterion evidently is that it is reasonable to assume full credibility for certain 
partitions of  the data. Within the context of  statistical modeling of  auto insurance 
claims, however, there would appear to be no persuasive reason to assume that 
the deviation of actual experience from the average true pure premium for any 
particular subset of data or for all exposures is zero (cf WEISBERG and TOMaER- 
LIN (1982)). NO attempt is made to compare the models on the basis of the 
balance criterion. 

4. ILLUSTRATIVE RESULTS 

The Box and Cox procedure is illustrated in this section using data for two 
coverages from two countries. The first data set includes numbers of exposures 
and average claims per exposure for combined compulsory coverages (third-party 
liability and personal injury protection) in the state of Massachusetts during 
1976. These data, which are reported m CHANG and FAIRLEY (1979), are cross- 
classified for seven driver classes and fifteen territories, yielding a total of 105 
cells.* The total number of exposures exceeds 2.4 million with 481 exposures in 
the smallest cell. 

The second data set, which is reported in SAMSON and THOMAS (1984), contains 
analogous information for a large United Kingdom motor insurance account. 
The data are for collision coverage during 1977. They are cross-classified by area 
(rural, semi-urban, and urban), vehicle type (small, medium, and large or power- 
ful), age of  driver (17-24, 25-30, and over age 30), and amount of no claim bonus 
(none, medium, and full), yielding a total of  81 cells. The total number of  
exposures exceeds 1.7 million with 530 exposures in the smallest cell. 

Estimation results for the Massachusetts data under the assumption that d 
equals one are shown in Table 1. The left-hand side shows results when the 

* The dnver classes are (1) driver over age 65, (2) dnver between age 25 and 65, (3) business use 
of vehtcle, (4) unmamed female dnver under age 25, (5) married under age 25, (6) unmarried male 
non-owner under age 25, and (7) unmarried male owner under age 25 
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TABLE 1 

M O D E L  COMPARISON FOR MASSACHUSETTS DATA 

$39 

Statistic 

Without Interaction With Interaction 

c = 0  c = l  ~ , x  = 0  45 c = 0  c = l  , 3 ~  = 0 45 

Log-Likehhood 
Mean Squared Error 
Mean Absolute Error 
Maxxmum I,al 
Skewness of 
Kurtosis of 
Largest /~s ( 3 - f f  ts 

m parentheses) 

-356  46 ~ -361 25 ° -344  29 -349 49 a -353.84 a -338.85 
40 17 18 73 17 73 22 05 16 26 14.46 

2 52 1.99 1 91 2 22 1 94 1.82 
2 75 3 69 b 2 95 2 99 3 95 b 3 26 
0 30 0.84 ° 0 52 c 0 38 0 73 c 0 59 c 
0 04 2 90 c 0 27 0 18 2 90 c 0.57 

247 44 168 27 193.56 184 28 169 89 175 23 
(78 47) ( - 0  70) (24.59) (15 31) (0 92) (6 26) 
212.49 155 53 172 13 181.12 156 85 159.51 
(69 16) (12 02) (28 80) (30 87) (13 52) (9.26) 
205 35 154 28 168 42 168.04 155.71 155.11 
(42 27) ( - 8  80) (5 34) (21 58) ( - 7  37) (11 78) 

Null hypothesis that c = 0 or c = 1 rejected at 0 05 level. 
b Maximum absolute standardized residual exceeds 0.05 upper bound 

Null hypothesis of normahty rejected at 0 05 level 

models are estimated without any interaction terms for territory and driver class.* 
The results clearly indicate the poor fit in terms of mean squared error and 
systematic bias for the log-linear model (c = 0) that were noted by CHANG and 
FAIRLEY (1979). While the skewness and kurtosis statistics for the standardized 
residuals do not reject the normality hypothesis, the three largest/~s substantially 
exceed the corresponding cell means. 

The linear model ( c =  1) without interaction terms eliminates the systematic 
bias for the high-risk cells and provides a substantially better fit than the log-linear 
model, as was found by Chang and Fairley. However, the standardized residuals 
for the linear model are poorly behaved. The skewness and kurtosis statistics 
indicate significant positive skewness and very heavy tails relative to the normal 
distribution. In addition, the maximum absolute standardized residual exceeds 
the 0.05 upper  bound, and the value of the log-likelihood is less than that for 
the log-linear model. 

The estimated optimal value of c (Cmax) for the model without interaction terms 
is 0.45. Application of the likelihood ratio test would result in rejection of the 
null hypothesis that c = 0  or that c = l ,  but the significant skewness of  the 
standardized residuals for this case suggests caution in interpreting the results 
of these tests. Both the mean squared error and mean absolute error are lower 
for t~ma~ = 0.45 than for c = 0 br c = 1. Thus, the Box and Cox procedure gives 
the best overall fit for these data. However, the positive values o f /~ - /~  for the 
largest/~s also occur for the Box and Cox model, although the problem is much 
less severe than for the log-linear model. 

* The /~2s using the exposure-we,ghted and c transformed data were about 0 95 or greater for all 
of the models shown m Tables 1 and 2. 
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TABLE 2 

MODEL COMPARISON FOR UNITED KINGDOM DATA 

Stattsttc 

W~thout Interaction Wtth Interactton 

C=0 c = l  Crank=--0 1 C=0 C=I  Cma~=0 15 

Log-Ltkehhood 
Mean Squared Error 
Mean Absolute Error 
Maximum lal 
Skewness of t2 
Kurtos~s of 
Largest/~s ( / ~ - p  ts 

m parentheses) 

-200 72 -246 22" -199 56 -168 44" -218 96 a -165 91 
2.75 7 27 2 58 1 32 3 71 1 26 
0 87 1.80 0.84 0 51 0 89 0.48 
3 36 b 2 40 3 28 2 86 2 38 2 87 

- 0  65 c 0.42 - 0  58 ¢ -0.24 0 26 - 0  30 
0.64 - 0 3 4  052 002 - 0 2 7  - 0  12 

87 90 62 24 90 74 93 51 66 21 84 62 
( - 0  93) ( -26 60) (1 91) (4 68) ( -22  62) ( - 4  21) 

79 19 58 35 82 37 82 82 61 12 76 13 
(6.42) ( -14  42) (9 60) (10 05) (-11 65) (3 36) 
72 32 58 09 73 76 75.03 60.60 70.64 

( -048 )  ( -1471)  (096) (223) ( -1220)  ( -216)  

° Null hypothesis that c = 0 or c = I rejected at 0 05 level. 
b Maximum absolute standardized residual exceeds 0 05 upper 
c Null hypothems of normahty rejected at 0 05 level 

bound 

Table 1 also contains the results of estimating the three models when two 
interaction terms were included in a rough attempt to mitigate the problem of 
positive values f o r / ~ - p  for the high-risk classes under the log-linear and Box 
and Cox models. The first interaction term was for the married under age 25 
driver class and the three territories (numbers 13, 14, and 15 in the CHANG and 
FAIRLEY (1979) paper) with the highest average claims per exposure. The second 
was for the two male under age 25 driver classes and the same three territories. 
The inclusion of the interaction terms results in lower mean squared and mean 
absolute errors for all three models. The reduction is especially pronounced for 
the log-linear model. The value of 3m,~ remains 0.45. The largest ~rs for the Box 
and Cox model compare favorably with those for the linear model, although 
still exceeds p in each case. 

Analogous results for the United Kingdom data, again assuming that d equals 
one, are shown in Table 2. For the models without interaction terms, the log-linear 
model substantially outperforms the linear model in terms of predictive accuracy. 
The value of Cma~ is -0.1,  so that the Box and Cox and log-linear models give 
similar results. The skewness of  the standardized residuals for the log-linear and 
Box and Cox models is negative and results in rejection ofthe normality hypothesis 
at the 0.05 level. In contrast to the results for the Massachusetts data, the hnear 
model al~pears to produce systematic bias. Each of the three largest/~s is substan- 
tially less than the cell mean. The corresponding results for the log-linear and 
Box and Cox models provide little evidence of bias. 

As noted by SAMSON and THOMAS (1984), there were clear patterns in the 
prediction errors for the linear and log-linear models without interaction terms. 
These patterns also were present for the Box and Cox model. Based on their 
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discussion and on inspection of these patterns, three interaction terms were 
included. This modification substantially reduced the evidence of nonrandom 
errors across cells. The first two terms were for drivers in semi-urban and urban 
areas with powerful vehicles, respectively. The third was for urban drivers of 
powerful vehicles with full no claim bonus. 

The results shown in Table 2 indicate a substantially better fit when these 
interaction terms are included, and the normality hypothesis for the standardized 
residuals cannot be rejected for any of the models. The Box and Cox procedure, 
with ~ma~ equal to 0.15, produces the lowest mean squared error and mean absolute 
error. The log-linear model is a close competitor, however. Application of the 
likelihood ratio test indicates rejection of the hypothesis that c = 0 or that c = 1. 
The three largest ~s for the Box and Cox model are approximately equal to the 
cell means and are lower in magnitude than are those for the log-linear model. 
The linear model still produced/~s that are considerably less than the cell means. 

The Box and Cox procedure also was used to estimate the models with the 
interaction terms for both data sets without constraining d to equal one. Selected 
estimation results are set forth below. 

Massachusetts data: L = -165.017, ~ = 0.15, d = 1.2 

United Kingdom data: L =  -338.224, ~= 0.5, t~ = 1.15. 

The values of L and ~ are quite similar to those shown in Tables 1 and 2. In 
neither case is the null hypothesis that d = 1 rejected at the 0.05 level on the basis 
of a likelihood ratio test. Moreover, the predicted values and standardized 
residuals for the unconstrained cases were very similar to those for the constrained 
cases. 

5. C O N C L U S I O N  

The results suggest that estimation and testing for functional form in automobile 
insurance pure premium models using the Box and Cox procedure may provide 
more accurate predictions than simply assuming either a linear or log-linear 
model. Future work should apply this technique to additional data to determine 
whether ~t is able consistently to improve predictive accuracy. If possible, this 
work should evaluate the accuracy of model predictions using data for a period 
subsequent to the estimation period. It would be desirable to extend the method 
to models of claim frequency, severity, or both. Consideration also might be 
given to using numerical methods to derive consistent predictions for the Box 
and Cox model. Moreover, if the procedure is applied to estimate pure premium 
models and the normality assumption is clearly violated, it might be desirable to 
analyze performance of the method when the transformation parameter is chosen 
on the basis of a minimum squared error criterion. 

The results also highlight the need to refine procedures for selecting interaction 
terms for pure premium models. Judicious selection of even a few interaction 
terms may be able significantly to improve overall predicuve accuracy and mitigate 
or possibly eliminate bias in predicted values. Analyses of issues such as why 
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the ratio of  average claims for high-risk drivers to average claims for low-risk 
drivers in urban areas tends to be less than the corresponding ratio in rural areas 
may provide guidance in this regard. Alternatively, additional analysis of  the 
ability of stepwise or other regression selection methods to produce models with 
improved predictive accuracy is needed, and the feasibility and potential advan- 
tages of  using the Box and Cox procedure in conjunction with such methods 
should be explored. 
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