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ABSTRACT 

A formula, originally presented by HALDANE (1938) 2, for the evaluation of the 
distribution of aggregate claims is examined and compared with some other ap- 
proaches. The idea is to apply a symmetrizing transformation to the original 
variable m order to make it suscepuble to be approximated by the normal 
distribution. 
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1.  I N T R O D U C T I O N  

1.1. A problem frequently faced in application-orientated risk theory is the 
numerical evaluation of the distribution functxon F(X)  of the aggregate amount 
X of  claims. It is conventionally expressed by the formula 

(1.1) F ( X ) =  ~ pkS~*(X), 
k = O  

where pk is the probabihty that the number of claims is equal to k, S is the 
distribution function of the individual claim sizes and S k* its kth convolution (see 
BPP, p. 51; this and similar quotations in the sequel refer to the Risk Theory 
book by BEARD, PENTIKAINEN and PESONEN, 1984). 

The claim numbers are often assumed to follow a simple Poisson distribution 
(in order to define notations some well-known basic formulae are recapitulated) 

(1.2) pk(n) = e-"n~/k! 

where n, the Poisson parameter, is the expected number of claims. A more 
general approach is to adopt the mixed Poisson distribution (BPP, p.33): 

i~  (nq) k (1.3) pk(n) = e-nq k! dH(q). 
0 

1 Presented originally at the Risk Theory Seminar m Oberwolfach 1984 and m an extended form 
at the Risk Theory Seminar of the American Risk and Insurance Assocmuon m Nashvdle 1985 
2 J B S HALDANE (1892--1964) first studied mathematics and later became Professor of 
Biometrics at Umvers~ty College, London, before moving to Indm m 1957 

ASTIN BULLETIN Vol 17, No I 



16 PENTIKAINEN 

The distribution function H introduces the so-called structure variation of the 
claim number probabilities into the model, indicating the time variation of the 
risk exposure, or the heterogeneity of  the risks inside the collective, or both. A 
popular H is the gamma function resulting in the negative binomial distribution 
(BPP, p. 40): 

where h is a shape parameter.  This alternative is usually called the P o l y a  case in 
distraction from the P o i s s o n  case (1.2). 

Note that for the approximanon formulae only the lowest moments of  H are 
necessary. Therefore, it is sufficient merely to estimate (or assume) them, not 
bothering about the analytic formulation of this function. 

1.2. Need to have approximation methods. The construction (1.1) is unfortunately 
so intricate that the direct computation of F i s  tractable only in special cases, even 
though the recently developed recursive methods (ADELSON, PANJER, GERBER, 
JEWELL & SUNDT, description of the method and references see BPP, Section 
3.8) as well as the Fourier t ransformation technique (BERTRAM, 1981) have 
made major  progress in solving this problem. Nevertheless, they have not 
removed the need also to have rapid and reasonably comfortable,  even though 
approximate,  approaches. This is due to the fact that the number of  the computa- 
tion steps needed for the recursive calculation grows quite massive in cases where 
the risk portfolio is large (as most insurer's portfolios are) and /o r  when the claim 
size distribution has a long tail. This can be a major handicap, in particular in a 
sophisticated problem complex such as the analysis of  long-term processes, 
simulations, etc. where the computation of F is needed frequently, say 1000, 
10000 or 100000 times for one single procedure. Then the problem is, above all, 
to minimize the computation time in terms of milliseconds (rather than in 
seconds?) to make the usual present day personal computers operational. 

Approximate methods can also have the merit of  providing an analytic, often 
perspicuous, relationship between the main variables controlling the processes. 

2. SOME EARLIER APPROACHES 

2.1. Normal approximation.  A classic approach,  based on the central limit 
theorem, is to approximate F ( X )  by the normal distribution: 

(2.1) F ( X )  = N ( x )  

where, denoting the mean and the standard devnation of  X by m x  and ax 

(2.2) x = ( X -  m x  ) /  ~x. 

This expression is asymptotically correct in the Poisson case but not generally, 
e.g. not in the Polya case. Its major  weakness is that it may crudely underestimate 
the risk of  large aggregate claims (see BPP, p.105). This is due to the fact that 
N as a symmetric function cannot successfully approximate any distribution 
which is notably skew. 
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2.2. Symmetrization. A way of overcoming the weakness of  the normal approx- 
imation is to transform the original variable X into an auxiliary variable Ynorm by 
using a suitably chosen function v 

(2.3) Ynorm = v(X) 

so that it makes the distribution (at least approximately) symmetric. Then pro- 
v~dlng that Ynorm IS standardized to have a zero mean and standard deviation 
unity, one can expect that it can be satisfactorily approximated by the normal 
distribution: 

(2.4) F(X)  =/~(Ynorm) = N(Ynorm). 

Depending on the choice of  the transformation v a family of  approximation 
methods is consmuted including those dealt with in this paper. An analysis of 
some of these transformations can be found for example in Box and COX (1964). 

2.3. NP approximation is obtained assuming v - I ( Y n o r m )  as a polynomial: 

(2.5) x= ( X -  mx)/ox = Ynorm + 'y(y2norm -- 1)/6 

where 'V = "yx ~s the skewness of  the original distribution (BPP, Chap. 3.11). 
The transformation (2.5) is applicable only for the long tail X >  mx of the 

distribution and therefore needs a modifying extension (BPP, Chap. 3.11) 
resulting m a three-piece formula. 

2.4. Other methods. There are a number of  approaches based on the principle 
of  replacing the original distribution by some suitable approximating function, 
which is conveniently computable.  Most of  them are obtained by equating the 
lowest moments, as is also the case in the above items 2.2 and 2.3. For instance the 
three-parameter gamma function P(ax + b, c) (BOHMAN and ESSCHER, 1964) or 
the Pearson functions (LAU, 1984) are suggested. OSCHWALD (1984) has recently 
presented an analogous transformation to (2.5) using the gamma function instead 
of the normal function. 

Unfortunately the range of applicability of  most of  these methods has been 
examined only by means of very few (and often "easy") examples, as yet. So far 
as is known, those methods which meet the demand of reasonable convenience 
and the requirement for computat ion speed, do not have the accuracy or the 
other merits which would not prevent the approaches to be dealt with in the 
sequel to be competitive. Further studies would be desirable, but are, however, 
beyond the scope of  this work. 

One of  the known approximations is stall worthy of special mention. ESSCHER 
(1932) introduced a method which makes use of  the whole range of the claim size 
distribution, not only of  some of  its moments.  BOHMAN and ESSCHER (1964) 
gave a number of  tests, which proved that the merits of  this method may not be 
very superior to those of  the gamma approximation.  However,  a recent (un- 
published) work of PUSA (1985) seems to indicate a good fit also in some cases 
where the other methods fail. A drawback of  the Esscher approach Is that it 
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employs an auxiliary variable h and the relevant quantitites F and X are available 
only as functions of this variable. To get the matching F and X it is necessary 
first to find the corresponding h, which seems to need an iteration process impair- 
ing the speed of the method. 

2.5. Moment problem. One should keep in mind the fact that most of the methods 
referred to above give, when applied to the mixed compound Poisson function, 
the same approximating function to all those original distributions, which have 
the same three (or four) lowest moments determined by the mean, standard devia- 
tion, skewness (and the kurtosis) of  the claim size distribution. However, these 
moments do not fully determine the flow a function, hence there is "a funnel of 
doubt"  [Fi (x), Fu(x)] inside which the values of  the original distribution func- 
tions F(x)  are positioned for varying x values. F~ and F~ are the upper and the 
lower envelope curve, respectively, of  all those original distribution functions 
which fulfil the specifications of  the problem setting concerned. If the funnel is 
large, then there are always cases which markedly devmte from the approximating 
values, whichever of  the methods is used. 

GOOVAERTS & KAAS (1986) have recently provided a meritorious method of 
evaluating the range of  the variation subject to the condition that the lowest 
moments are fixed and the variable x is limited to some interval, e.g. [0, b] .  Some 
examples showed that the range in which the permitted F(x)  values may be posi- 
tioned is rather wide, in fact reducing the prospects of  finding suitable approx- 
imations based on the moments.  Fortunately, this result does not wreck the pros- 
pects of  finding reasonably useful approximations,  if the basic condition is taken 
of fixing a sequence of  the moments of  the claim size functton S (not of  the 
aggregate distribution as Goovaerts and Kaas propose) and of limiting the claim 
size Z (not the aggregate X)  to some finite interval. In fact, this is the proper 
problem setting for the NP method as well as for the methods to be discussed in 
the sequel. We will return to the moment  problem in Section 6.9. 

3. HALDANE APPROXIMATION 

3.1. The idea. The approach we are going to deal with was originally presented 
by WILSON and HILFERTY (1931) for an approximate evaluation of the gamma 
function. HALDANE (1938) extended it to the function classes which have 
suitably convergent sequences of  cumulants. In what follows we apply the 
method to the mixed compound Poisson function specified in Section 1.1, even 
though the most part of  the derivation is valid more generally. 

The method makes use of  the symmetrization as described in Section 2.2 
above. Haldane first adopted a power expression 

y = ( X / m x  ) h 

where h is an auxiliary parameter.  Then (truncated) expansions are derived for 
the mean my, standard deviation oy and skewness my of y. The symmetrization is 
achieved by assigning for the auxiliary parameter  h a value which equates the 
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skewness yy with zero. Putting 

(3.1) Y . . . .  = ( y -  my)/Oy = [ ( X / m x )  h - m y ] / @  

the transformation aimed at, corresponding to v m (2.3), is obtained. 
The derivation of the Haldane formulae is notably laborious, even though 

rather elementary methods only are needed. Therefore, we shall not give more 
than some intermediate expressions in the chain of treatments in order to provide 
a conception of how the results are found, the more so because the Haldane 
derivations do not result in any strictly rigorous estimates for the accuracy of the 
approximations nor for clear rules of their applicability, but rather only justify 
the expectation that in a certain environment the procedure may lead to acceptable 
outcomes. In fact, the discussion about the appropriateness of the approach ~s 
mainly based on tests where a number of distributions are calculated exactly and 
in parallel, by using the approximations that will be presented in the subsequent 
sections. Readers who are mainly interested in the practical results may well skip 
over to Section 3.4, at least at the first reading. 

3.2. Derivation of the formula. We aim to preserve, as far as possible, the original 
procedures and notations of Haldane even though some of the results, e.g. the 
value of the parameter h, could be obtained by more straightforward ways. 

The technique to be assumed operates partially the so-called cumulants, which 
are, as is well known from textbooks on statistics (e.g. KENDALL and STUART,  

1979, Section 3.12), the coefficients in the expansion of the cumulant-generating 
function log ~p(t) In the terms of (it): xl(tt) + x2( t t )2 /2!  + . . . .  where ~p is the 
characteristic function and i the imaginary unit. For the convenience of the 
reader, we recall the connecting equations between the lowest cumulants and the 
more commonly applied central moments, denoted by #,(i  = 1 , 2 , . . . ) :  

x z  = mx,  x2 = # 2 ,  u 3  = ~ 3 ,  x 4  = p.4 - 3#2 2. 

Another auxiliary variable is introduced: 

(3.2) x '  = X -  x l 

and substituted into (3.1) after which expansions for the moments of y about 
zero, denoted by /3r, are obtained as follows 

[[(-1-X~lh]~ I (  "~ x~lrh 1 (3.3) 3 , =  E y ' =  E 1 = E 1 Xl] J ,It'l/) 

= 1 + f(r, 2)  #2 #3 + f ( r ,  3) - -  + f ( r ,  4) - -  2.ul  3!x~ 4!x 4 

where, for brevity, 

(3.4) f ( r , j ) = r h ( r h -  l ) ( r h - 2 )  . ( r h - j +  1) 

and the Taylor series of the power function 

( l + x )  h = l + h x + h ( h - l ) x 2 / 2 ! + . . .  

+ . . 
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was applied. The # 's  are moments  o f x '  and, according to (3.2), central moments  
o f  the original variable X as well. It is now useful to adopt  the cumulants  x o f  
X as the current characteristics instead o f  the moments  ~t, because they give an 
essentially better convergence behaviour to the expansions. By using the relations 
referred to above between these sets o f  characteristics, equation (3.3) Is 
t ransformed as follows: 

(3.5) 13r = 1 + f ( r ,  2) ~u--z 2 + f ( r ,  3) x---L + f ( r ,  4) 3xz + X4 
2xl  6x~ 24x~ 

~ 2 X 3  -I(2 3 + 
+ f ( r ,  5) - i ~  + f ( r ,  6) ~ . . .  

The sequence 

(3.6) p, = ~ , /  ~ l 

is assumed to be reasonably convergent  when i increases (in the Poisson case p, 
Is o f  order n - ' + 1 ,  c.f. Section 5.1). 

Finally, the central moments  o f  y are the characteristics which are necessary 
for the t ransformat ion  aimed at. They  are calculated by means of  the well-known 
general relationship between the central moments  and the moments  about  zero 
(#2 = 132 -/321, etc.). After  elementary but quite tedious operations,  and observing 
that the expression (3.5) can be expressed in terms of  the cumulant  ratios p,, the 
following expansions result: 

m y  = E y  = 1 + ~ h ( h  - 1)02 + ~ h ( h  - l ) ( h -  2)[403 + 3 ( h -  3)02] 

(3.7) + ,Xsh(h - l)(h - 2)(h - 3)[204 + 4(h - 4)0203 + (h - 4)(h - 5)023] 

#2(Y) = xz(y)  = oy 2 = h202  + ½ h E ( h  - l)[203 + (3h - 5)022 ] 

+ l ~ 2 h 2 ( h -  l ) [ ( 7 h -  l l ) p 4 + 4 ( h - 2 ) ( 7 h -  1 2 ) p E p 3 + 2 ( h - 2 ) ( 7 h E - 3 0 h + 3 2 ) p 2 3 ]  

kta(Y) = ~3(Y) = h3[03 + 3(h - 1)022] 

+ ½ h 3 ( h  - 1)[304 + 3(7h - 10)p203 + (17h 2 - 55h + 44)023] 

~4(y) = p..4 ( Y )  - -  3 / . t 2 2 ( y )  = h4104 + 12(h - 1)0302 + (h - l)(16h - 20)023]. 

Terms only having the order three or less were accepted. (I am grateful to my col- 
league Mr. H. Simberg for the correct u4.) 

We are now enabled to fix the parameter  h. For the aimed at symmetrlzat ion 
o f  the t ransformed distribution its skewness should be made to vanish, or, what 
is the same, x3(y) should be equal to 0. For the sake of  computa t ional  conve- 
nience, only tts leading term will be equated to zero. Hence 

= jp3/Pz = 1 3 x  z . (3.8) h I -  I 2 xt~3 

3.3. Trans format ion  A. Haldane now states that, when the above value o f  h is 
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subst i tu ted into equat ions  (3.7), the s t andard ized  var iable  

(3.9) Ynorm = ~ -- m.v)/Oy 

is "a lmos t  no rma l ly  d i s t r ibu ted"  with a zero mean and s t anda rd  devia t ion  unity.  
Ha ldane  calls this f o rmu la  " T r a n s f o r m a t i o n  A "  as d is t inguished f rom another  
t r ans fo rma t ion  to be deal t  with shor t ly .  

3.4. Fo r  the risk theory appl ica t ions ,  where the mixed c o m p o u n d  Polsson func- 
t ion is to be a p p r o x i m a t e d ,  it is convenient  to take  the basic character is t ics  (see 
BPP ,  p.54):  

Mean = m x  = X l 

(3.10) S t anda rd  devia t ion  = ax = .]xz 

Skewness = "rx = ~3/ox 3 

of  the or iginal  d i s t r ibu t ion  as the entries of  the ca lcula t ions .  Accept ing  the terms 
o f  the o rde r  o f  at most  two and in t roducing  as an auxi l iary  quan t i ty  

(3.11) s = o x / r n x  

the H a l d a n e  a p p r o a c h  A can be writ ten in an opera t ive  form 

(3.12) h = i - ] ' y x / s  

my = 1 - ~h ( l  - h ) [ l  - ~ ( 2 -  h ) ( l  - 3h ) s2] s  2 

oy = hs,[[l - ~(1 - h ) ( l  - 3h)s  z] 

Y,o~,, = [(1 + x s )  h - my] /Oy  

F ( X )  = N(ynorm). 

The  lower case x refers to the s t andard ized  var iable  (2.2). The  third degree quan-  
tities u3 (and "/3) were e l iminated  for  compu ta t i ona l  convenience by using (3.8). 

Note  that  the m o m e n t  t~(.v) was not needed in this context .  It was derived in 
(3.7) because it will be useful in later  sections.  

The above  formulas  are fairly c o m f o r t a b l e  for c o m p u t e r  p rog ra mming .  Ex- 
amples  will be given la ter  and the app l i cabd l ty  discussed,  but  before  tha t  we will 
make  some further  remarks  and present  an extended version o f  the 
t r ans fo rma t ion .  

3.5. Negat ive  h values. Ha ldane  l imited the range o f  val idi ty  to posi t ive h values 
only.  Examples  show tha t  the fo rmula  also works  in cases where h turns  negative.  
However ,  negative values seem to appea r  m the area  where the skewness is 
excessive and the goodness  o f  fit is unsa t i s fac tory .  

3.6. The case h = 0. Special  a t ten t ion  is called to the case when h ~ 0. Then Ynorm 
has the limit 

(3.13) Ynorm = [ ln( l  + xs )  + ½s 2 - ~ $ 4 ] / [ s x / ( 1  - ½ s 2 ) ] .  



22 PENTIKAINEN 

3.7. Wilson and Hilferty applied, as mentioned already, essentially the same 
transformation as Haldane for the evaluation of  the gamma function and arrived 
at a constant value of 1/3 for the parameter h. On the other hand we know that 
the original distribution can be approximated by the gamma function which is ob- 
tained by equating the mean, standard deviation and skewness with the cor- 
responding characteristics of the distribution to be approximated. Hence we can 
expect that the Wilson-Hilferty formula may also approximate the original 
distribution. The result can be written as follows (see BPP, p.71) 

(3.14) F ( X )  = F(a  + x j a ,  c~) 

= N[c l  + c2(x  + c3)1/3] 

where x is the standardized variable (2.2) and 

el ~ 6 _ [ 2 \  2/3 2 
. . . .  6 3, c2= J ~ )  ; c 3 = - .  

This formula is very comfortable for computer programming as is also its in- 
verse. Therefore, it is tested m parallel with the Haldane and NP approximations 
in what follows. 

3.8. A link to Ihe NP formula can be found by expanding y . . . .  in (3.12) in terms 
of (xs)  as a Taylor series and then expressing h by means of ~: 

(3.15) 
ynorm = [(1 + XS) h -- my]/Oy 

= [1 + h x s +  ½ h ( h -  1 ) X 2 S 2  + . . .  - -  I - -  ~ h ( h -  l)s 2 -  . .  ] / ( h s -  . .) 

= X +  ½(h- 1)s(x 2 -  1 ) + . . .  

= x -  ~ v ( x  2 - 1 )  + . . .  

But this is just what is also obtained If y in (2.5) is expanded m the terms of x 
(see BPP, p. l l7, eq. (3.11.14)). Hence it can be expected that the Haldane and 
the NP formulas are close to each other at least in the area of the best con- 
vergence. This will be confirmed by examples given later. 

4. HALDANE'S TRANSFORMATION B 

Haldane also experimented with another formula, which is derived introducing 
two parameters  h and g (instead of only one, h, above). They are assigned values 
which minimize both the skewness and the kurtosis of  the transformed variable. 
The new parameter g is chosen so that the original variable X is first transformed 
to another variable which has g as its mean and consequently also as Xl: 

(4.1) X"  = X +  g -  x l .  

Then the transformation y = ( X / m x ) a  is replaced by 

(4.2) y = ( X " /  E[ X"  ] )h = [1 + ( X -  Xl ) /  g ] h 
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The t ransformat ion (4.1) does not affect higher cumulants than xi. Hence all the 
results are still valid, if Xl is replaced by g everywhere. 

The parameters h and g are now determined by equating the leading terms of  
~3 and x4. This implies that 

12x~x3 16x] - -  9U2X4 
(4.3) g = h - 

20u ~ - 9 X E X 4  ' 20u 3 2 - -  9 X E X 4  " 

By using the characteristics (3.10) and, in addit ion,  the kurtosis yzx 
( =  x4/o  4 = ~ / a  4 -  3) of  the original variable X and further introducing, for 
brevity, the auxiliary coefficients 

(4.4) b = ~s "yx - ] ' r2x / ' yx ;  c =  ~4yx- 3 y z x / ' g x  

the H a l d a n e  t r a n s f o r m a t t o n  B can be written as follows 

(4.5) 

h = c / b  

my = 1 - ½ c ( b -  c ) [ l  + ~ ( 2 b -  c ) ( 3 c -  b)] 

CrY = I CC[ "J[ 1 + ~-(b -- c)(3c - b)] 
..Vnorm = [(1 + b x )  h - m y ] / a y  

F ( X )  = N(Yno~m) 

where the lower case x again refers to the standardized aggregate claim (2.2). 
Haldane made some reservations concerning the applicability o f  this t ransfor-  

mation,  mainly providing for the posltlVlty of  h. If  the denominators  o f  (4.3) are 
vanishing, the formulas become invalid. 

5. ON THE A P P L I C A B I L I T Y  OF T H E  H A L D A N E  E X P A N S I O N  

5.1. General conditions for convergence of the expansions. Haldane assumed 
that the variable X is inherent f rom a collective, the risk volume of  which can 
be described by a parameter  n. In our  risk theory applications,  n can be just the 
expected number  o f  claims as provided in Section 1.1. Fur thermore,  Haldane 
assumed that the cumulants  x, for t =  1 ,2 ,3  and 4 are o f  the order  n when n 
grows large and that cumulants  for  i > 4 are o f  the order n ' -4  or less. Haldane 
states that the expansions concerned are asymptotical ly convergent when n is 
large enough,  i.e. the t ransformat ions  can be applied in large collectives. 

In the Poisson case the cumulants  are x, = na,,  a, being the ah  moment  about  
zero o f  the claim size variable. Hence, the Haldane condit ions are satisfied in so 
far as the moments  a, are finite. On  the other hand the asymptot ic  behaviour o f  
the Polya case does not fulfil the condit ions.  Moreover ,  the volume parameter  n 
is always finite, often rather small, in practical apphcat ions.  Then the Haldane 
criterion does not suit, because the convergence o f  the relevant expansions may 
be poor,  even though they may asymptotical ly converge. Furthermore,  one 
should appreciate that the convergence o f  the expansion itself does not  guarantee 
full accuracy because there are other,  deeper, aspects involved, e.g. those which 
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we already discussed prehminarily in Section 2.5 about the moment  problem. 
Fortunately, and unexpectedly, the tests given in the following sections seem to 
prove that the approximation outcomes are also fairly satisfactory in numerous 
cases where the convergence criterion would suggest failure. Therefore, we do not 
feel that it is useful to explore the problem of  the convergence of the Haldane 
expansions other than that a convergence indicator will be introduced in Section 
5.3 below. Otherwise the original paper is again referred to. 

5.2. Measures of  deviation from normality were suggested by Haldane, making 
use of the residue skewness and kurtosls which remain as they are reduced by the 
symmetrization procedure. Hence (cf. (3.7)) 

Measure I = "r' = x 3 ( y ) / a ]  
(5.1) 

Measure 2 = 3'~ = x 4 ( y ) / @  

where the value (3.8) is to be assigned to h. 
The same formulas are valid also for the transformation B, when h is taken 

from (4.3) and ~ is replaced by g; it is also obtained from (4.3). 
These measures will be illustrated by examples in Section 6. 

5.3. Cumulant ratios. A crucial condition for the convergence of the expansions 
(3.7) is a rapid convergence of the sequence of the cumulant ratios p,, defined by 
(3.6). Therefore, the author experimented with the indicator 

(5.2) 0 = P4/P3 

as an alternative measure for applicabil i ty. I f  0 is small, it implies that the higher 
cumulant ratios can be expected to be negligible. Values of  t9 are given in the con- 
text of  test examples and an overall view is provided by Figure A.7 (Appendix 2). 

6. EXAMPLES 

6.1. Tests. The approximation methods dealt with m the previous sections are 
tested by calculating a great number of  numerical examples on the one hand by 
using the exact recursive formula, and on the other hand the NP, Wilson-  
Hilferty (briefly WH), Haldane-A (HA) and the Haldane-B (HAb) approaches. 
Both the Poisson case and the Polya case, having differing shape parameters h, 
were examined experimentally. The claim size distribution was the truncated 
Pareto or log-normal or their mixtures or could also be freely chosen (and given 
manually to the computer).  Because the recursive technique (see details in BPP, 
Section 3.8) is applicable merely for discrete distributions, the claim sizes were 
discretized permitting only integer values Z - -  1 + td(l = 0, 1,2 . . . . .  I )  where d 
and I are freely eligible positive integer parameters.  

The tested distributions, 54 in total, were chosen to cover broadly the area that 
is usually applied in risk theory considerations, and also to provide comparisons 
between the approaches. Regretably, it is not possible to print all the data. 
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Typical cases only were picked for the tables and diagrams given in Appendixes 
1 and 2. A comprehensive collection of  the data will be deposited in the Library 
of the Actuarial Society of Finland (Address: Bulevardi 28, 00120, Helsinki 12). 
Copies are available upon request. 

6.2. Appendix l exhibits exact F values and the approximated ones in parallel. 
Numerical values for the convergence criterions proposed above are also given in 
the side column of each distribution box of each of the tables. Discussion of the 
outcomes will be deferred to Section 7. 

6.3. Figures A.1 and A.2 (Appendix 2) graphically present two of  the distribu- 
tions of Appendix 1 to provide a clearer illustration. The deviations between the 
relevant curves are so slight that they are scarcely discernible in cases where the 
distribution is not markedly skew. Therefore, the tails of Figure A. l(a)  are plot- 
ted in a magnified scale in Figure A.l(b).  

6.4. The effect of  discretization. The deviations between the exact and the ap- 
proximated values are partially due to the fact that the approximating functions 
always, more or less, deviate from the exact one and partially to the fact that the 
"exact" F is discrete but the approximating functions are continuous. This is 
clearly seen in Figure A.l(b).  In order to eliminate the effect of this discrepancy 
from the tabulated outcomes, such as given in Appendix 1, the discrete F curves 
were replaced by a broken line which connected the midpoints of the upward 
steps. If this kind of smoothing of the discrete results is not made the comparison 
deviations depend on where, for the purpose of comparison, the selected values 
of  the x variable are positioned on the x-axis. As seen in Figure A. l(b) the effect 
may be larger than the "genuine" deviations are, and depends on whether the test 
point happens to fall immediately before or after a step. 

Information about the steps of  F is provided in the last columns of  the tables 
of Appendix 1 where the half of the step height ( = dF070) is given. It proved to 
be mostly larger than the approximation errors in the preceding columns as long 
as the skewness remained moderate. It depends on the actual relevant problem 
setting as to whether or not it should be regarded as appropriate to add both the 
errors. 

Note that the discretization results in inaccuracy also if a continuous original 
claim size distribution, such the Pareto one, is replaced by a step function. This 
feature was discussed in BPP (Section 3.8c). Because both the exact method and 
the approximating methods were based on the same discretized claim size 
distribution, this inaccuracy did not appear in our tests. 

6.5. Figure A.2 represents an extreme case where the skewness is large. Then all 
the approximations turn out irregular and lose their applicability particularly at 
the tails of the curves. 

6.6. Figure A.3 attempts to provide a summarizing survey over a sample of 
distributions. The relative errors (dNP°/0, dWH%,  etc. in Appendix l) are 
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grouped according to different skewness ranges and argument  values x = - 2 ,  2 
and 3 respectively and then shown in the specified diagram boxes. For  example 
all the relative errors o f  the Haldane-A approximat ion for x = 3 and the skewness 
less than 0.3 are placed upon the "po in t "  HA-a  in the top-most  r ight-hand box. 
The points inherent f rom the same distribution are connected by the lines m 
between. 

This figure is meant to provide a rapid visual compar ison of  the tested ap- 
proaches.  A narrow bundle o f  the connecting lines indicates a good overall fit o f  
the formula  concerned.  

6.7. The measures of  deviation (5. I) are investigated in Figure A.4. This and the 
remaining figures are limited to the Haldane-A method only. 

The tested cases for x = - 2  and x =  3, respectively, are displayed in the 
diagram by using the measures 1 and 2 as coordinates.  The relatwe errors 
[ dHA°7° I are indicated by symbols,  as shown in the figure. 

As expected, the fit is good  for small measure values. Another  useful observa- 
tion ~s that the measure values are well correlated, i.e. the points are clustered at 
a straight line. This suggests that it is sufficient to use only one o f  the measures, 
preferably the measure 1. 

6.8. Convergence properties are studied in Figures A.5, A.6 and A.7. The tested 
cases were first placed in Figure A.5 by using the standardized x and the skewness 
as coordinates.  The tests were made only for a sequence of  discrete x 
values = - 2 ,  - 1.5, - 1 . . . .  ,4.  For  clarity, the points, such as in Figure A.4, 
were not plotted in the final diagram, but the zones where the errors [ d H A %  I 
having some specified magnitudes are positioned were used instead. For  example, 
in the area below the zone boundary  desxgnated by I only cases that have 
I dHA°/0 [ less than 1070 are found,  and below the 3-boundary  only cases having 
[ d H A %  [ less than 3o70, etc. More exactly, the points o f  the boundary  numbered 
by N ( N =  1 ,3 ,5 ,  10 or 25) were determined according to that sample case for 
which the relevant x-value had the error I dHA%I. . .> N %  and the lowest 
skewness. Note that cases having [ d H A %  I < N %  may be also found above the 
N-boundary ,  even though they are mainly clustered below. 

The fit is good  as long as the skewness is relatively small. This is a well-known 
feature about ,  for example, the applicability o f  the NP method (BPP,  Section 
3.1 lc). Note that l - F is very small for x > 3.5 if the skewness is not  excessive 
Hence the poor  relative accuracy In the lower right-hand corner is seldom 
harmful  m applications. 

The somewhat  zigzag course of  the zone boundaries is due to fact that the 
goodness o f  fit is sensitive to the selection o f  tested distributions. Of  course, if 
another  set o f  distributions were chosen, a more  or less differing course for the 
boundaries would result. However ,  the number  of  tests, 54, was already so large 
and the selections so variable that it is not likely that any very essential differences 
would appear.  

Figure A.6 represents the dependence o f  the error [ dHA°70 I on the measure 1 
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using the same display technique as Figure A.5. This diagram contains the same 
information as Figure A.4, but in another shape and extended to more x values. 

Finally, Figure A.7 describes the effect of  the cumulant ratio convergence 
depicted by the same technique as applied in Figures A.5 and A.6 and by using 
the ratio t9 (cf. (5.2)) as a measure candidate. 

6.9. The moment problem that was discussed m Section 2.5 was explored by 
varying the claim size distribution subject to the conditions that its mean, stan- 
dard deviation and skewness: 

(6.2) (1) mz,  oz, and 'yz are fixed, 
(2) the claim sizes are limited to integer values 1 . . . . .  Zmax and 
(3) the claim number distribution pk(n )  is fixed. 

These conditions determine a family of  the mixed compound distribution func- 
tions that all are approximated by one and the same NP, WH or HA. We 
illustrated the problem in Section 2.5 by saying that the functions to be approx- 
imated and fulfilhng the conditions (6.2) are spread in a more or less wide "funnel 
of doubt" confined by the upper and lower envelope curve. If the funnel is broad 
for the relevant argument values x, this implies that there is no single curve which 
could approximate well all of the original curves, i.e. the approximation problem 
based on the characteristics of (6.2) has no satisfactory solution despite the 
method used. Unfortunately, evaluation of  the envelope curves proved retrac- 
table. However, in order to get a grasp of  the magnitude of the funnel at the tails 
of the distribution a lower limit was experimented with as follows. 

Some of the test cases presented in Appendix 1 were chosen as examples. The 
values of the mixed compound Poisson function Fwere then calculated for those 
two distributions that fulfil the conditions (6.2) and have maximal and minimal 
kurtosis respectively, or what is an equivalent provision, maximal or mimmal 
fourth moment of the claim size distribution. Then also the kurtosis of the ag- 
gregate claim distribution is maximized and minimized respectively. It can be 
reasonably expected that these are the extreme distributions at the tails among all 
those permitted by the conditions. 

It proved that, m the exemplified cases, these distributions were the most 
dangerous and least dangerous respectively in the meaning defined by 
GOOVAERTS et al. (1984), Section 4.4 (suitably choosing their limit constant ~). 

Table 1 exhibits two examples, one connected to case 3 of  Table A.I  and 
another connected to case 7. Among all of the distributions having the same 
characteristics as the selected case those two that have the minimal and maximal 
kurtosis respectively were sought, and then the exact F was calculated for them 
also. 

It proved that the funnel of doubt is very narrow as long as the skewness is 
moderate and the individual claim sizes have a reasonably low upper limit. This 
confirms the earlier experience that the mixed compound Poisson distribution is 
robust under these provisos. On the other hand the funnel ~s rather large for large 
skewness values. This confirms the fact that there cannot be any approximation 



28 PENTIKAINEN 

TABLE I 

F(x) resp. I - F(x) 

x - 2  2 3 4 

Mm 0 01612 0 02881 0.00309 0 00021 
Case 3 0.01620 0 02880 0 00312 0 00022 ~x = 0.24 
Max 0.01632 0 02879 0.00318 0 00023 

Mm 0 00105 0 04327 0 01142 0 00243 
Case 7 0 00330 0 03758 0 01253 0.00417 ~x = I 08 
Max 0 00507 0 03089 0 01236 0 00571 

based on the three lowest characteristics (6.2) which would fit in all cases and for 
the whole relevant range of the variable x. 

Note that the three curves representing the parallel distributions, as given in the 
table, intersect each other. That means, for example, that the most dangerous 
curve is most dangerous only for rather high values of x. The requested funnel 
of doubt is obviously constituted as an area between the envelope curves in a 
rather complicated way. Further study of this interesting problem was deferred 
to a later date. 

The smoothing mentioned above in 6.4 has also some effect on the breadth of 
the funnel, although not an essential one. If for example the height of the step 
is regarded m the numbers of Table 1 for the case 3 and x = 4, the minimum and 
the maximum should be replaced by 0.00020 and 0.00024 respectively. Similarly, 
the numbers corresponding to x = 4 of the latter example should be replaced by 
0.00238 and 0.00580. 

7. DISCUSSION 

7.1. On accuracy. It would be, of course, highly desirable to find ways to deter- 
mine rigorously the accuracy of the proposed approximations. Unfortunately, 
this has not been tractable as yet. Therefore, we have to collect experience by 
testing various distributions. If a method turns out to have consistently accept- 
able accuracy in numerous and relevant areas of application well covered by the 
tests, then the use of the method may be justified m practical calculations. The 
Figures A .4 -A.7  are aimed to provide a survey in concentrated form of the 
expected accuracy. Three alternative indicators were introduced: the skewness, 
the Haldane's measure and the convergence of the cumulants. Obviously the 
skewness is most convenient, because it has to be calculated as one of  the entries 
of the approximation calculations. 

7.2. H o w  accurate should the method  be? In deeming the usefulness of  the ap- 
proximation one should also appreciate the fact that in many cases the basic data 
are highly uncertain. In particular this concerns the structure function H (1.3) 
and its parameters. These choices may have a great effect on the process to be 
evaluated. If  the initial data are inaccurate, then it is meaningless to demand 
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essentially greater accuracy from the calculation technique, at least if this can be 
done only at the cost of  greatly complicating the calculations. On the other hand, 
the collectives concerned are often fairly large and the top risks are cut away by 
reinsurance. Then the skewness may seldom exceed 0.1 or 0.2 and the inaccuracy 
involved with the approximation formulas obviously scarcely spoils the 
outcomes. 

The situation is different for problems where long chains of computations are 
needed, e.g. in the calculation of integrals having F in the lntegrant. Then one 
should beware of an accumulation of errors. 

7.3. An appropriate tool for simulations. Before proceeding further with the 
discussion about approximation methods attention is called to an attractive 
feature of the formula of type (2.4). It can be of  special benefit for simulations 
where random numbers are generated, which are distributed according to the 
mixed compound Poisson law. This is a problem frequently appearing in advanced 
model building. The approach is simply first to generate normally distributed ran- 
dom numbers r and then to transform them by the inverse of the symmetrizing 
function (2.3): X =  v- l(r) (see BPP, Section 6.8). 

The number of the necessary random numbers can be very great. Then it is 
important that the inverse transformation v - t  is convenient to program and is 
fast. We proposed the NP formula in BPP (Section 6.8.3). The present experience 
suggests either the WH or HA-A transformations. In particular the WH formula 
is very handy (which was already recognized in exercise 6.8.1 of  BPP). 

7.4. Observations. Appendix 1 and Figure A.3 are the most convenient for the 
evaluation and comparison of the four tested methods. 

If the skewness is moderate, i.e. no more than 0.3, and if an inaccuracy of 
some ± 2 per cent is tolerable, then all four methods are acceptable. However, 
the Haldane-B showed, by far, the narrowest range of the relative error, the 
Haldane-A being obviously the next best. 

The situation is greatly different for the skewness values 0.3-1.  Then the 
Haldane-B falls for x = 3 (note the different scale for the different lines of  Figure 
A.3!). By the way, a similar observation was also made when the long version 
of the NP formula was investigated (PENTIKAINEN, 1977). These approaches, 
which are based on four characteristics, kurtosis included, instead of three 
characteristics (mean, standard deviation and skewness), proved to have superior 
accuracy for slightly skewed distributions but do not tolerate markedly skewed 
cases. 

When the skewness exceeds unity, then all of  the methods already show great 
irregularities and soon turn out to be useless. The lower example of Table 1 
(Section 6.9) suggests that no method that is based only on the three lowest 
characteristics can be good for all greatly skewed distributions. 

A general observation is that the short tall (x < 0) shows considerably worse 
results than the long tail. 

For the reasons referred to above it seems doubtful whether the Haldane 
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variant B is useful, in particular regarding the fact that it is markedly more com- 
plicated than the A variant. Haldane himself also observed that it gives 
sometimes poorer results than the simpler A formula. 

Some rules of thumb are sometimes proposed to guide the use of the approx- 
imations (e.g., BPP, 3.11e). Our latest studies do not suggest any such simple 
rules. Instead, it is much more effective to use Figure A.5 (or Figures A.6 or A.7) 
as a kind of "map" where the possible accuracy can be evaluated, and just in the 
enwronment of  concern. If, for example, only positive x values are needed for 
some particular interval, then the area of applicability is wider than if negative 
x values are also needed. 

Note that even though the general shapes of  the error zones in Figures A.5, A.6 
and A.7 are similar, it does not imply a full similarity in the test outcomes. For 
instance, the 0 indicator would suggest a poor accuracy in case 4 of Appendix 
1, but the skewness and Haldane measures still indicate acceptability as seen in 
the side column of the table. 

'7.5. The Wilson-Hilferty formula ~s clearly simpler and also somewhat faster 
than the Haldane-A. However, its tolerance for medium size and large 
skewnesses is poorer, as seen from Figure A.3. If the skewness is moderate, this 
formula may be appropriate at least m cases where very great speed is necessary. 

7.6. The NP method has as its special merit the analytic form (2.5) for the long 
tail. It is of frequent use in many risk theory considerations (see e.g., BPP, 
Chapter 4). If only the long tail is of concern, then the NP method is the simplest 
and is also fairly competitive with the other methods concerning the accuracy, 
with the proviso that the distribution is not very skew. 

7.7. In conclusion we summarize our present conception about the usefulness of  
the studies' approaches by means of a diagram as follows: 

NP WH HA HAb 

Flnalyt ic I Long SIrnu- Whole 
formula l tall latlon range 

7.8. Finally let us note that the exact and approximate methods complement each 
other in a happy way. The exact methods (and possibly direct simulations, see 
BPP, p.239) are most appropriate for small collectives, and the approximate for- 
mulas for the large ones. 
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APPENDIX I 

E X A M P L E S  

n = Poisson pa ramete r .  
h = Po lya  pa ramete r .  
ha = Ha ldane  pa rame te r  (3.8). 

m, a, `7, 3'2 are the mean, standard 
deviation, skewness and kurtosis 
of  the aggregate claim X. 

r, (t = 1,2) is the risk indexes a , /a [  indicat ing the heterogenei ty  o f  the claim size 
d is t r ibu t ion  (see BPP,  p.54). 
F = d . f .  o f  X for x < 0  and I - F  for x >  0 (1.1). 
x = s t andard ized  aggregate  claim size (2.2). 
d F %  = ha l f  o f  the step o f  F i n  per cent at the points  where the discret ized p roba -  
bd i ty  mass is concen t ra ted  ( = 5 0 ~ [ F ( x + ) - F ( x - ) ]  divided by F ( x + )  or 
I - F ( x  - )). 
NP = F approximated by the NP formula, dNP% its deviation from F in per 
cent. WH, HA and HAb are the corresponding outcomes for the 
Wdson-Hilferty, Haldane A and Haldane B formulas 
Ln(.,. , .),  the log normal claim size distribution having the mean, standard devia- 
tion and the skewness given in parentheses. 
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Pareto(.) Pareto claim size distribution with index given in parentheses (see BPP, 
p.74). 
M is the greatest value o f  the discretized claim size and d is the interval between 
the consecutive non-zero points (see Section 6.1). 
IA and 2A are the measures of deviation defined by (5.1) for the Haldane A and 
1B and 2B for the Haldane B. 
v = ,o4/,03 = an indicator for the speed of convergence of the cumulant. 

Case  1 n h m o "r "r2 h a  r2 r j  

200 0 0 0 1998 4 145 9 0 080 0 007 0 633 I 07 I 25 

Ln(10, 3, 5) 

M =  3 1 , d =  I x F NP WH HA HAb dNP% dWH% dHA% dHAb% dF% 
I A = - 0 0 0 0 1  - 2 0  0.0205 00205 00205 00205 00205 - 0 1  01 - 0 0  - 0 0  0 9  
2A= +00009 - 1 5  00646 00646 00645 00646 00645 01 - 0 0  - 0 0  - 0 0  07  
I B = - 0 0 0 0 1  - 1 0  01586 01588 01586 01587 01586 01 - 0 0  0 0  - 0 0  05  
2 B = - 0 0 0 0 0  1.0 01586 01587 01586 01587 01586 0 0  - 0 0  0 0  - 0 0  05  
v = 0 0 0 6  20  00249 00249 00249 00249 00249 0 1 0 0  - 0 0  0 0  0 8  

3 0  00019 00019 00019 00019 00019 04  05  - 0 1  O0 10 
4 0  00001 00001 00001 00001 00001 10 17 - 0 5  0 0  12 

Case  2 n h m o 3' V2 ha  r2 r3 

100 0 100 0 787 1 116 9 0 224 0 071 0 497 I 21 I 72 

Mixture 

M = 3 1 , d =  1 x F NP WH HA HAb dNP% dWH% dHA% dHAb% dF% 
I A =  - 0 0 0 0 8  - 2 0  00164 00163 00164 00163 00164 - 0 5  03  - 0 3  - 0  I I 3 
2 A =  +00039 - 1  5 00599 00605 00599 00599 00599 0 9  - 0 0  - 0 0  - 0 0  10 
I B = - 0 0 0 0 2  - 1 0  01582 01597 01580 01583 01582 0 9  - 0 1  0 0  - 0 0  07  
2 B = - 0 0 0 0 0  10 01583 01587 01581 01583 01583 0 2  - 0 1  0 0  - 0 0  0 6  
u = 0 0 4 8  2 0  00284 00286 00284 00284 00284 05  0 0  0 0  0 0  0 9  

3 0 0 0029 0 0029 0 0030 0 0029 0 0029 0 4 0 8 - 0 4 0 I 1 1 

4 0  00002 0 0 0 0 2  0 0 0 0 2  00002 00002 - 0 3  2 9  - 1 3  01 13 

Case  3 n h m o "y "t2 ha  r2 r3 

1000 2000 141 3 194 0238 0 100 0424 1 39 359 

Pareto(3) 
M = 2 1 , d = l  x F NP WH HA HAb dNP% dWH% dHA% dHAb% dF% 
I A = - 0 0 0 2 3  - 2 0  00162 00159 00160 00160 00161 - 1 9  - 1  1 - 1 4  - 0 5  81 

2A= +00175 - I  5 00595 00601 00594 00594 00594 0 9  - 0 2  - 0 2  - 0 2  62  
1 1 3 = - 0 0 0 0 4  - 1 0  01578 01598 01580 01581 01577 12 01 0 2  - 0 1  4 3  
2 B = - 0 0 0 0 0  10 01579 01587 01581 01582 01578 0 4  01 01 - 0 1  36  
v = 0 0 5 8  20  00288 00289 00288 00288 00288 0 4  - 0  1 - 0  I - 0  I 47 

3.0 00031 00031 00031 00030 00031 - 2 1  - 1 7  - 2 3  - 0 3  60  

4 0  00002 00002 00002 00002 00002 - 8 2  - 5  1 - 7  2 - 0 4  6 4  
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Case 4 n h rn o 3.' "yz h a  r2 r3 

100 1500 500 179 0463 0279 0569 1 21 1 87 

Ln(5, 3,4) 
M = 2 1 , d =  I ~. F NP WH HA HAb dNPOTo dWH% dHA~o dHAb~o dFgTo 

I A =  - 0 0 1 3 3  - 2 0  00088 00097 00094 00080 00085 103 74  - 8 5  - 2 5  142 
2 A = + 0 0 2 1 4  - 1 5  00506 00532 00504 00499 00501 53  - 0 2  - 1 4  - 0 9  85  
I B = - 0 0 0 4 4  - 1 0  01572 01630 01558 01575 01570 37  - 0 9  0 2  - 0 2  53 
2 B = - 0 0 0 0 5  10 01576 01587 01566 01578 01574 07  - 0 6  01 - 0 1  37  

v = 0 2 1 5  20  00337 00343 00337 00338 00338 I 7 - 0 2  0 2  0 I 4 8  

3 0 00050 00051 00051 00049 00050 3 I 3 2 - 0 4  05  5 6 
4 0  00005 00006 00006 00005 00005 4 9  112 - 2 4  10 6 2  

Case 5 n h m o '7 "rz h a  r2 r~ 

I00 0 100 0 170 4 34 2 0 593 0 679 0 016 3 03 36 93 

Parelo(2) 
M = 6 1 , d = 3  x F NP WH HA HAb dNPOTo dWH~o dHAO/o dHAbO/o dF~o 
I A =  - 0 0 2 5 0  - 2 0  00078 00067 00059 00067 00071 - 1 4  1 -25  I - 1 4 4  - 9  1 62  
2 A =  +00582 - I  5 00456 00492 00,:1-43 00447 00447 79  - 2 8  - 2 0  - I  1 4 5 
I B =  +00196 - 1  0 0 1506 0 1658 0 1538 0 1522 0 1510 10 I 2 I I 1 03  2 9 
2 B = - 0 0 0 3 5  10 01529 01587 01554 01541 01529 38  16 08  0 0  0 9  
0 = 0 0 0 6  20  00362 00372 00361 00359 00358 28  - 0 1  - 0 6  - 0 9  23 

3 0  00,068 00064 00064 00066 00069 - 4 9  - 5 4  - 2 1  14 25  
4 0  00011 00009 00009 00010 00012 - 1 7 4  - 1 2 2  - 0 8  119 27  

C a s e  6 n h m a "~ "yz h a  rz r3 

25 0 20 0 47 6 17 5 0 779 0 976 0 297 2 15 13 25 

Pareto(2) 
M = 3 1 , d =  1 r F NP WH HA HAb dNPOTo dWH% dHA% dHAb% dFOTo 

I A =  - 0 0 0 9 2  - 2 0  00028 00035 00018 00020 00022 287 - 3 5 4  - 2 6 5  - 2 2 0  229 
2 A =  +00115 - I  5 00354 00434 00341 00344 00346 226 - 3 6  - 2 7  - 2 2  II 8 
I B = + 0 0 0 5 2  - 1 0  01478 01712 01495 01491 01489 159 12 0 9  08  65  
2 B = - 0 0 0 0 2  10 01526 01587 01533 01530 01528 39  0 4  02  01 33  
v = 0 0 0 6  2 0  00394 00411 00392 00391 00391 43  - 0 7  - 0 9  - I  0 4 I 

3 0 00084 00084 00083 00083 00083 I 0 - I  2 - 0 8  - 0 6  4 3 
4 0  00015 00014 00015 00016 00016 - 5 4  - 0 0  I 8 29  4 9  

Case 7 n h m o 7 'V2 h a  rz r~ 

750 750  1220 308 1082 2703 - 0 4 2 9  377 8437 

Parelo(2) 
M =  121,d=4 .~ F NP WH HA HAb dNP% dWH% dHA% dHAb% dF% 
I A =  +04175 - 2 0  00033 00009 00000 00006 00011 - 7 3  1 - 1 0 0 0  - 8 3  1 - 6 7  8 100 
2A= +05406 - I  5 00322 00342 00145 00209 00204 60  - 5 5 2  - 3 5  1 - 3 6 5  59  
t B =  +06058 - 1 0  01357 01834 01384 01307 01207 352 20  - 3 7  - I |  I 38  
2 B = - 0 2 4 0 5  10 01376 01587 01491 01419 01285 153 84  31 - 6 6  21 
u = 0 6 3 0  20  00376 00470 00431 00407 00379 25 1 147 83  07  19 

3 0  00125 00119 00112 00116 00139 - 4 9  - 1 0 4  - 7 3  11 3 1.6 

4 0  00042 00027 00028 00035 00068 - 3 5  5 - 3 4 0  - 1 6 5  63 7 1 9 



34  PENTIKAINEN 

Case 8 n h m a 7 "y2 h a  r2 r j  

250 500 427 166 I 628 5801 - 0 3 9 4  329 5461 

Pareto(2) 
M = 9 1 , d = 3  x F NP WH HA HAb dNP% dWH% dHA% dHAbOTo dFOTo 
] A =  +1 4047 - 2 0  00004 00000 00000 00000 00000 - 9 5 8  - 1 0 0 0  - 1 0 0 0  - 9 9 4  418 

2 A =  +10048 - 1 5  00178 00197 00000 00024 00026 107 - 1 0 0 0  - 8 6 5  - 8 5 5  162 
1 B = + 2 2 8 4 3  - 1 0  01190 02180 00950 00892 00702 832 - 2 0 1  - 2 5 0  - 4 1 0  89  
2 B = - I  5625 10 01280 01587 01399 01248 00983 240 93  - 2 5  - 2 3 2  37  
o = 1 3 8 7  20  00370 00562 00473 00395 00291 518 277 67  - 2 1 4  34  

3 0  0 0 1 4 0  0 0 1 8 4  0 0 1 5 8  00139 00119 3 1 4  126 - 0 9  - 1 4 7  24  
4 0  00069 00057 00053 00054 00065 - 1 8  1 - 2 4  1 -21 4 - 6 4  1 8 

APPENDIX 2 

FIGURES 
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FIGURE A I(a) The case 3 of  Appendix 1 presented as a graph The step curve represents the exact 
F T h e  k e y  p a r a m e t e r s  a r e  n = 100, h = 200,  3' = 0 24 
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FIGURE A l (b )  The  t ads  o f  the curves  o f  F igure  A l ( a )  p lo t ted  m a magn i f i ed  scale 
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FIGURE A 2 The  case  77 o f  A p p c n d l x  1 The  key p a r a m e t e r s  are  n = 75, h = 75, ~ = I 08 
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FtougE A 3. The relative errors dNP%,  d W H % ,  d H A %  and d H A b %  (see Appendix l) grouped 
according to speofied skewness and x values (see Secnon 6.5 for further explananons) 
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FIGURE A 4 The  relat ive e r ro r s  d H A %  o f  the H a l d a n e - A  f o r m u l a  d i sp l ayed  a c c o r d i n g  to abso lu t e  
values  o f  the  measu re s  I a n d  2 as def ined by  (5 1) The  o r d e r  o f  [ d H A %  I is ind ica ted  

b y  the  s y m b o l s  g w e n  m the g r a p h  
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FIGURE A 5 
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The zones o f  the re lauve e r rors  I d H A %  [ acco rd ing  to the a r g u m e n t  x and  the measure  I 
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FIGURE A 7 
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The zones of the relative errors I dHAg0 I according to the argument x and the cumulant 
convergence  md)cator  v (see the exp lanat ions  of  Appendix  I) 
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