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ABSTRACT

In the usual model of the collective risk theory, we are interested 1n the severity
of ruin, as well as its probability. As a quantitative measure, we propose G(u, y),
the probability that for given initial surplus & ruin will occur and that the deficit
at the time of ruin will be less than y, and the corresponding density g(u, y). First
a general answer in terms of the transform is obtained. Then, assuming that the
claim amount distribution is a combination of exponential distributions, we
determine g; here the roots of the equation that defines the adjustment coefficient
play a central role. An explicit answer 1s also given 1n the case in which all claims
are of constant size.
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1. INTRODUCTION

In the following we shall use the model and the notation of Bowers e al. (1987,
chapter 12). Thus we consider a company with intial surplus U(0) = u, whose
surplus at time ¢ 1s given by the expression

) Uty=u+ct—S(), t>0.

Here ¢ 1s the constant rate at which the premiums are received, and S{(¢), the
aggregate claims up to time r, is a compound Poisson process given by the
parameter \ (the expected number of claims per unit time) and the claim amount
distribution P(x). It 1s assumed that ¢ contains a loading. Let 7 denote the time
of ruin (with the convention that 7= oo, 1If ruin does not occur), and let ¥ (u)
denote the probability of ruin considered as a function of the initial surplus.
It has been argued that the probability of ruin is a very crude stability criterion.
We are not just interested in the probability of ruin, but we also want to know
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U(t)

2]

FIGURE 1 The interpretation of g(u, v) dy
how serious the situation 1s when ruin occurs. To obtan a quantitative answer
we ntroduce the function
2 Gu,y)=Pr(T< o, —y< U(T)<0),

which is a function of the variables ¥ > 0 and y > 0 and 1s the probability that
ruin occurs and that the deficit at the time of ruin is less than y. We shall also
consider the corresponding density

3) g, y) = di G, y)
y

whose existence will be shown in Section 6. Thus g(u, y) dy s the probability that
ruin occurs and that U(T) will be between — y and — y + dy (see Figure 1).
Theorem 12.2 of BOWERS et al. (1987) tells us that

@) 80, =2 (1= PO,

Our main goal 1s to explore g(u, y) in the more interesting case when u is positive.

2. A FUNCTIONAL EQUATION

According to theorem 12.2 of BOWERS er al. (1987), the probability that the
surplus will ever fall below the initial level ¥ and will be between v — x and
u# — x+ dx when it happens for the first time 1s

A [1- P(x)] dx.
c

We use this and the law of total probability to see that

(5) G(u,y)=% S Gu—x,y)[1 - P(x)] dx+% S » [1— P(x)] dx.
0 u
Note that Y (u) = G(u, «). Thus the equation for (1) of exercise 11 of BOWERS

el al. (1987, chapter 12) is a special case of (5).
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Differentiating (5) with respect to y, we obtain a functional equation for g:
Ao A
©  gwn=7 | st-x U= PW) dre (1= Put ).
[¢]

In the terminology of FELLER (1966), equations (5) and (6) are renewal equations
of the defective type.

Instead of determining g directly, we shall first find its transform v (r, y), which
is defined as

v 00

@) vy ) =OS e gu, y) du.

We multiply (6) by e™ and integrate over u from 0 to . On the left-hand side
we get y(r, y). If we replace the vanable u by the new integration varable
z=u— x we can simplify the resulting double integral on the right-hand side as
follows:

xQ Hi
% g OS e gu—x, pye™ [1 = P(x)] dx du
1]

=2 S OS e gz, y) e™ [1 -~ P(x)] dz dx

Co

=256 et - Py ax
0
The second term on the right-hand side can be written as

A S e [1— Plu~+y) du:%e"y Sw e’ [1 - P(x)] dx.
y

Co

This way we obtain from (6) a hinear equation for y(r, y):

v =230 | et =Pl dxe e [ e =P ax
C 0 C v

Its solution 1§

o0

v y)=(\c)e ” Sm e (1~ P(x)] dX/[l —(Ne) S
b g 0
)

The remarning task 1s to invert this transform to obtain g(u, y). In the following
we shall look at a family of claim amount distributions in which this can be done
1N a transparent way.

e {1 - Px))] dx] .

3. COMBINATIONS OF EXPONENTIAL DISTRIBUTIONS

Let us assume that the claim amount distribution 1s a combination of exponential
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distributions, 1.e. that 1t has a probability density function of the form
n
Q) p(x)= 3 AB,e ™, x>0,
J=1

with 3, positive and
(10) A+ A+ -+ A,=1.

In the special case when all A, are positive, we speak of a mixture of exponential
distributions. From (9) 1t follows that

h
an 1—- P(x)=2, A4, e %, x> 0.

J=1

We substitute this into (8) and obtain

(12) y(r, ¥)=(Ne) 2, e'”’"'Af/(B,—r)/[l - (\o) E, A,/w,—r)].
J=1 J=

Applying the method of partial fractions, we can write this expression 1n the
following form:

n n
(13) y(ry) =2 kZ Cue ™ (ri ~ ).

J=1 k=t
Here ry,ry, ..., rs are the zeros of the denominator, 1.e. the solutions of the
equation

(14) (\e¢) 2‘ AJ(B,—r)=1.
1=

It is assumed that the » roots are distinct; of course some may be complex
Condition (14) is the same as the condition that defines the adjustment coefficient,
see exercise 8 of BOWERS ef al. (1987, chapter 12). Thus the adjustment coeffi-
cient is one of the roots; without loss of generality we may set r; = R.

The coeffictents Cy can be calculated as follows. We muluply v(r, y) by
(rm — r) and let r = r,,. If we do this in (13), the coefficient of exp(—8,y) is Cyn.
In (12) we divide the denominator by (r,, —r) and let r—r,. Since the
denominator vanishes for r = r,,, this operation gives minus the derivative of the
denominator at r,,. Thus the coefficient of exp(—-8,y) is

(15) ernzAJl(ﬁj—rm)/IZ:l Al/(Bl—rm)z-

Once the roots have been determined, the coefficients can be calculated easily
from this formula.
The inversion of (13) i1s simple: one verifies that

(16) glu, )= 2, 2 Cue Prent

J=1 k=1

satisfies (7); therefore expression (16) 1s the desired solution
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These results can also be used to determine the probability of ruin. Since

oo

(17 vy = | ey dy,
0

if follows from (16) that

(18) Y(u) = ZHJ Ck e ™Y,
k=1

where

(19) Cy = Z:l Cjk/BJ-
/=

Formula (18) can be found in CRAMER (1955) and more recently in BOWERS et
al. (1987); 1n both cases the discussion is hmited to mixtures of exponential
distributions A related discussion can be found 1n DICKSON and GRAY (1984).

The class of mixtures of cxponential distributions is somewhat hmited; for
example, the mode of such a distribution is necessarily at 0. On the contrary, the
family of combinations of exponential distributions is rather rich, though not
every choice of A4,, 3, gives a probability density function. A subset of this family
consists of the sums of #n independent exponential (f3,) distributed random
variables with unequal parameters (see FELLER (1966, problem 12 of chapter
1.13)). An elegant proof can be obtained by looking at the moment-generating
functions and applying the method of partial fractions. Taking the limit 8, — 3,
one obtains the I' (n, 8) density. One may also show that the Gamma distribution
with arbitrary values of the non-scale parameter, say n — 6 with 0 < 6 < I, 15 1n
the closure of this class. It is sufficient to show that such a Gamma distribution
1s a mixture of Gamma distributions with non-scale parameter n. The defimtion
of the Gamma function 1mplies

w _~n,b-1
x" %= S e L
0 ')

Using this we may write the Gamma (n — 8, 1) density as:

Xn—b— le—r* Sw (’+ l)nxn—le—(l+l)x ’6— l(f+ 1)—n1—w('1) d,
r'(n-58 o I'(n) I'(n-35) T'(5) ’

We shall show 1n the following section that a mixture or combination of Gamma
distributions can be handled in quite the same way as a combination of
exponential distributions.

4. COMBINATIONS OF GAMMA DISTRIBUTIONS

The advantage of considering combinations of exponentials rather than just mix-
tures lies 1n the fact that this class also contains distributions with mode not equal
to zero. Another way to include such distributions 1s to consider mixtures, or
combinations, of Gamma distributions with integer-valued non-scale parameter.
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To avoid unnecessarily complicated formulae, we shall limit our discussion to the
case where this parameter equals two, but generalization to other integer values
1s straightforward. We shall not give all details of the proofs in this section. Note
that as the Gamma distribution can be written as a limit of combinations of
exponential distributions, no new situations are added when an explhcit
expression for g(u, y) can be found.

Consider the following density function p(x):

n
20) p(x)= Z A,foe‘af’, x>0,
J=1
with 8, positive and
21 A+ A+ -+ A= 1.
From (8) one obtains after some calculation:

22) v y)=
-6,y

B r)

r

(\c) Z A, 5 "2

—— (By - B,yr+26,—r)/[l—(x/c) ; A, TR

Again applying the method of partial fractions, we can rewrite expression (22)
in the following form:

n 2n
(23) ¥(r,y)= Zl kzl Cie(») e'ﬁf}'/(rk -r).
J= =

Note that in this case we obtain coefficients Cjx depending on y. Here ry, r2, ..., r2n
are the zeros of the denominator of (22), i.e. the solutions of the equation:
(24) - (Me) 3 A4, 22—

J=1 (B,-r)?
Once more we assume all these roots to be distinct, although the more general
case presents no insuperable difficulties. One of the roots equals the adjustment
coefficient. In the same way (15) was derived, one has:

—I'm

25 C’m -
@59 G (B,—r,.,)

(BA—)Z (Bfy —Byyrm + 28, — r,,,)/L Ay SR T
] 'm

Inversion of (23) leads to
n2n -8,

(26) g, y)= 2, kZ Cik(y) e™™e™ ",
J=1 k=

Again the probability of ruin can be obtained as:

2n

N yuy= D, Ck e” ™",
k=1
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where

n

09 ci=% [ e =% 4 3‘2r‘/5f/ﬁ; a i

2 J
J=10 =1 By —re)f /=i (B, — r«

The above exposition can be generalized to other integer values of the non-scale
parameter, and also to arbitrary positive real values.

5. ILLUSTRATIONS

EXAMPLE I. Suppose that n=2, Ai=A;=}, B1=3, B2=7, A=1 and
¢ =1/3; these are the specifications of example 12.10 of BOWERS et al (1987).
The roots of equation (14) are ry = R =1 and r; =6. Then we obtain from (15)
the following coefficients:

Ci=9/5 Ci2= —3/10.
Cu=3/5  Czn=9/l0.

Thus
9 - 3v=u 3 -7y =-n 3 -3y=-6u 9 -7y ~6u
,y)==e "+ = - e - +—=e " .
gl y) =3 5 ¢ 10 10
Integration over y gives
24 - l —6n
= —_— - —
v(u) 35 € 3¢

which is the result found by BOWERS er al. (1987).

ExampLL 2. Let A=1,¢=1 and
p(x)=12e7 3"~ 12¢7 %", x=0.

This distribution has non-zero mode In(4/3) = 0.288, and mean 7/12 = 0.583. In
thisexample 8, =3,8:=4, A\ =4, A; = —3 Therootsof (14)arer; =R =1and
ra=5. This leads to the following coefficients:

Cu=3 Cu=1
Co=-3[2 Crp = —3/2.
Thus

glu,yy=3e ¥ "¢
which we can use to obtain
¢(H) =_5_ e—u _ i e—5u-
8
EXAMPLE 3. Let A=1, c=1, and

p(,\')=%(5e’2‘ S 12e7 T 1570, x>0,
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Thus n=3, 81 =2,62=4,B3=6, 4, = Ay = 5[4, A, = —3/2. From (14) we find
r1= R =1 and a pair of conjugate complex roots: r, =5+ 1,r3 =5 —i. From (15)
we get

75 520 520
Cn= &g (2= @tegh 7 G e
30 _ 6 a2, o % @
Co=-ggr 2=~ gt 2% gt
15 3530 3530
Ci= & 2= BTt T gt

Substituting all these parameters into (16), we get an answer that is quite accept-
able, if the calculations are done 1n complex mode. Alternatively, we remember
that

— N

e'"'=cos u+1sin u; e""M=cos u—1sinu

and observe that the coefficients C,» and C,; are conjugate complex. This way we
see that

Cpe "+ Cae” 7" =2e *“{Re(Cp) cos u + Im(Cp) sin u}
and the answer can be written in the following form:
g(u, y) = (75/68)e™2¥~" ~ (30/68)e™** " + (15/68)e™ &¥ "
+ e~ 2773 ((5/34) cos u+ (20/34) sin u)}
— e~ 47941 (36/34) cos u + (42[34) sin u}
+ e~ 8734 ((35/34) cos u — (30/34) sin u}.

From this and (17) we get

x//(u)=163—56 e —e o {SLI cos u+é—;sin u}.

EXAMPLE 4. Suppose we have good estimates of the first three moments
of a claim distribution. We want to estimate the distribution of the severity
of ruin using a combination of two Gamma (2, 8) densities, 1.e. a distribution
with density:

p(x)= ABle P x + AyB3e 5 x.

To determine the unknown parameters of p(x) by the method of moments, we
have to get A1, A2, 3, and B from the following set of equations:

A+ Ay=1, A2+ A ZE[X],

B B2
A1£2+A2£2=E[X2], A|2—§+A22—§=E[X3],
B1 B3 61 b
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Wnting A = Ay, b,=1/8,and ¢, = E[ X’]/(y + I)!, the equations can be rewritten
in a simpler form as:

Abi +(1 — A)ba=qn, Ab3+ (1 — A3 =qo, Ab}+(1 — A)b3 = g5.
The first two equations yield

C]l—bz qz—QIbz
a=4-% 295
by — by T - b2

Assuming without loss of generality that 8; < 32, we must have A > 0, otherwise
p(x) is negative for large values of x. By the above equations, this imphes
g: < 1/B;. Note that a value A€ [0,1] is obtained if and only if the ratio
Var[ X]/(E1 X])? exceeds the value } corresponding to a Gamma (2, 8) density.

Substituting the above expressions in the third equation, we obtain a quadratic
function of b», with the following roots:

by = @92 = 03) £ (G192 = ¢3)° ~ g2 = 41)(9193 = 42)]
2gT - @) ‘

A simular system of equations must be solved if one wishes to fit a combination
of two exponential distributions to three given moments, or to a given mean,
mode and variance.

Another necessary condition for p(x) to be non-negative is that either
p(0) >0, or p(0)=0 and p'(0) = 0 must hold. By fitting moments, this condi-
tion 1s sometimes violated, as can be seen by taking a distribution with mean and
variance 6, and third central moment 36.

To make comparison possible with results previously obtained, assume that the
moments of the distribution to be estimated are those of an exp(1) distribution,
so mean and vanance are 1, and the third central moment equals 2. We obtain
the following values for the parameters of p(x):

A=Ay=%, Bi=3-3=1268, B,=3+ 3=4.732.

The mode of this distribution equals 0.235. Taking A =1, and ¢ =2, we find the
following roots for (24):

ri=0.506 (This 1s the adjustment coefficient. For this value of the premium
rate c, the adjustment coefficient of an exp(1) distribution equals
0.5)

ry=1.765, ry = 3.544, rs =5.685.

The coefficients Cjx(y) for use in (26) can be obtained as:

Cii(¥)=0.147y + 0.066, C31(y) = 0.218y + 0.458,
Ci2(y)= —0.099y — 0.054,  Ci(y)=0.158y —0.193,
Ci3(¥) = 0.629y + 0.663, Ci(y)= —0.088y — 0.031,

Cis(y) = 0.506y — 0.424, Cia(y) = 0.029y +0.016.
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The probability of ruin, obtained from (27) and (28) 1s:
) =0.517¢ 2% _0.070e™ ' 7" + 0.089¢ * >4 — 0.036¢” * **.

The probability of ruin corresponding to the exp(l) distribution and this value
of ¢ equals

Yw)=05e"°%",

The maximum deviation of the ruin probability obtained with the approximating
combination of Gammas and the exponential(1) ruin probabality is 0.004.

6. A DIRECT METHOD

Equations (5) and (6) are defective renewal equations and can be solved (at least
in principle) without the use of transforms. With the notation

29) =2 1= ()

we can write equation (5) as

u+y

(s Gy = | Gu-xyhodx+ | neoax
0 "
By successive substitution we obtain first the following formal solution:

i oo H—=x+y

(30) G, )= S S KT (x) S h(z) dz dx.
0 n=0 u-—x

A rigorous proof follows from the following interpretation (combined with the

law of total probability):

H=-t+y

h*"(x) 3 h(z) dz dx

is the probability of the event that the nth record low of the surplus process is
between u — x and ¥ — x + dx and that ruin occurs with the following record low,
such that the deficit 1s less than y; see theorem 12.2 of BOWERS ef a/ (1987).

Expression (30) shows that G(u, y) has indeed a density g(u, y). Taking
derivatives we obtain

31 g(u,y)=OS ZO ROk = x+ y) dx.

In the following section we shall illustrate the application of (31) in a particular
case.

REMARK. If we set y = o in (30), we obtain a well-known representation for
the probability of ruin (the so-called “convolution formula™).
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7. UNIT CLAIM AMOUNTS
Suppose that all claims are of size one. Thus, by (29),
A(x) = \Nc if0< x< 1 0 otherwise.
We can write this defective probability density as
h(x) = af(x),

where o= Ac and f(x) 1s the umform (0,1) density There is an exphcit
expression for the n-fold convolution of f:

n — S n IR RY; _ '-i_l
(32) [ = . 1)!2‘; (j)( D (x= 37

This formula can be found 1in FELLER (1966, theorem 1, I 9), and a very elegant
dernivation 1s given by SHIU (1985). We prefer to write it as

S (/\)=B;J>%m(—l) (x=n%

Then

o

Z h*n(x)z ZO anf*u(x)

d oo n
- -1 Joon n
&2 2 ——(n A (et e=
Interchangmg the order of summation, we obtain more simply:
S d (—a) > oa' -
33 R (x x =Y. Y )i
(33) ngo (== f_z ¢ J)+"L=J oy Gt

25 (e

dv,

Note that this 1s 1n fact a fimite sum, as terms with y > x vanish. If we substitute
this expression 1n (31), the integration can be limited from x=(w+ y—- 1), to
x=u, where h(u — x + y) = «. The resulting integral is trivial; for v > 0 and
0 < y <1, we obtain

houd _ J
G sey=a P T oy
J=0 J-

PN Y;
- Z( o) (u+y_l_j)j+en(ll+}’—1—j)-'

APPENDIX COMPUTER IMPLEMENTATION

Implementation of the algorithm suggested in Section 3 on a computer involves
mainly elementary operations on polynomuials. To solve (14), however, we must
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have a routine to compute all roots, real as well as complex, of a real polynomial.
Any textbook on numerical mathematics contains material on this; see for
instance STOER (1972). Also, any library of numerical routines such as the NAG
or the IMSL Iibrary provides adequate software. One may also consult the ACM
algorithms. Note that only for n > 5 may the need to iteratively compute complex
roots arise. One of the roots is the adjustment coefficient, so at least one of the
roots 1s real. In case all coefficients A, are positive, one may show that all roots
of (14) are real and non-negative. In this case, ssimpler algorithms will suffice, for
instance the Newton—Maehly algorithm described in STOER (1972, pp. 220-221).

An algorithm to compute complex roots of real polynomials that can be pro-
grammed easily, even using an electronic spreadsheet, is the method of Bairstow.
For a motivation of the method, see STOER (1972, pp. 226—227). Its main advan-
tage is that no complex arithmetic is involved. A disadvantage is that convergence
cannot be guaranteed PRESS er al. (1986) recommend a two-step procedure: first
find approximations to all roots and then “polish” the roots found using Bair-
tow’s method.

This method works as follows. First write (14) as the following polynomial
equation:

1

(A1) ar"+ar"T o+ apor+ay=0.

Next determine a quadratic divisor r2 + pr + g, where p? —4g < 0, as follows.
Choose a starting point (g, p) and calculate the vector (Bo, B, ..., B,) by means
of the following recursive scheme:

Bo = ay,
Bl =da, — pBO’
B: = a; — pBy — gB,,
(A2) :
B._1=an-1— an—Z - an—J,
Bn =dan — an—l - an-Z
Similarly, compute the vector (Co, Ci, .., Cn-1) as follows:
Co = By,
Ci = B, — pCo,
(A3) .Cz=Bz—pC| - qCo,

Cn.—Z =B,.2— pCu-3~qCn-a,
Cu-r = - pCh_2—~gCn_s.
With the auxihary quantities
D=Ci_2~ CaoiCa-s,
(A4) P=Bn-1Cn-2— BaChn-3,
Q=B.Cr-2- Bn-1Cr-\,
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we find the next approximation (q, p) as:

(AS5) p=p+ P|D, qg=q+ Q|D.

Now restart the algorithm with these values of ¢ and p until the old and new
values of ¢ and p differ by less than the prescribed precision. A divisor
r*+ pr+ g of the left-hand side of (14) gives two complex conjugate roots. Hav-
ing divided out this factor, run the algorithm again to determine the other roots.
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