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ABSTRACT 

In the usual model  of  the collective risk theory ,  we are interested m the severity 
o f  rum,  as well as its p robab i l i ty .  As a quant i t a t ive  measure ,  we p ropose  G(u, y) ,  
the p robab i l i ty  that  for given initial  surplus  u ruin will occur  and that  the deficit 
at the t ime o f  ruin will be less than y,  and the co r r e spond ing  densi ty  g(u, y).  First  
a general  answer in terms o f  the t r ans fo rm is ob ta ined .  Then,  assuming  that  the 
claim amoun t  d l s t r l buuon  is a c o m b i n a t i o n  o f  exponent ia l  d i s t r ibu t ions ,  we 
de te rmine  g; here the roots  o f  the e q u a u o n  that  defines the a d ju s tme n t  coefficient 
p lay a central  role. An explici t  answer  is also given m the case in which all c laims 

are o f  cons tan t  size. 
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1. INTRODUCTION 

In the fol lowing we shall use the model  and the no ta t ion  o f  Bowers el al. (1987, 
chapte r  12). Thus  we consider  a c o m p a n y  with imtial  surplus  U(0) = u, whose 
surplus  at t ime t is given by the expression 

( l )  U(t) = u + c t -  S(t),  t > O. 

Here c is the cons tan t  rate at which the p remiums  are received,  and S(t),  the 
aggregate  claims up to t ime t, is a c o m p o u n d  Poisson process  given by the 
pa rame te r  X (the expected number  of  c la ims per unit  t ime) and the claim amoun t  
d i s t r ibu t ion  P(x) .  It is assumed that  c conta ins  a loading.  Let T d e n o t e  the t ime 
o f  ruin (with the conven t ion  that  T =  oo, if ruin does not occur) ,  and let ~,(u) 

denote  the p robab i l i t y  o f  ruin cons idered  as a functaon o f  the init ial  surplus .  
It has been argued that  the p r o b a b i h t y  o f  ruin is a very crude s tabi l i ty  cr i ter ion.  

We are not just  Interested m the probabthty of  ruin,  but  we also want  to know 
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-y 

FIGURE 1 The interpretanon of g(u,y) dy 

how serious the s i tua t ion  is when ruin occurs. To obta in  a quantitat ive answer 
we in t roduce  the funct ion 

(2) G(u, y )  = P r ( T <  ~ ,  - y  < U(T)  < 0), 

which is a funct ion of  the var iables  u />  0 and y / >  0 and ~s the p robab i l i ty  that  
ruin occurs  and that the deficit at the t ime o f  ruin is less than y.  We shall also 
consider  the co r re spond ing  densi ty  

d (3) g(u, y )  = ~y O(u, y )  

whose existence will be shown in Secnon  6. Thus g(u, y )  dy is the p robab i l i ty  that  
ruin occurs and that  U(T)  will be between - y  and - y + d y  (see Figure 1). 
Theorem 12.2 of  BOWERS et al. (1987) tells us that  

(4) g(0,  y )  ~' [ I -  P ( y ) ]  
C 

Our  main goal  is to explore  g(u, y)  in the more  interest ing case when u is posmve.  

2. A FUNCTIONAL EQUATION 

Accord ing  to theorem 12.2 o f  BOWERS et al. (1987), the p robab i l i ty  that  the 
surplus  will ever fall below the initial  level u and will be between u -  x and 
u - x + dx when it happens  for the first t ime is 

_X [ 1 -  P ( x ) ]  dx. 
c 

We use this and the law of  total  p robab i l i t y  to see that  

S" i-  x G ( u - x , y ) [ l -  P ( x ) ]  dx+ X . . . .  [ 1 -  P ( x ) ]  dx. (5) G ( u , y )  Co c ,,, 

Note that  ~,(u) = G(u, oa). Thus the equa t ion  for 4'(u) o f  exercise 11 o f  BOWERS 
et al. (1987, chap te r  12) is a special case o f  (5). 
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Differentiating (5) with respect to y, we obta in  a funct ional  e qua uon  for g: 

f" = X  g(u  x , y ) [ l  P (x ) ]  d x +  x [1 P ( u + y ) ] .  
(6) g ( u , y )  c o c 

In the terminology of FELLER (1966), equat)ons (5) and (6) are renewal equat ions  
of the defectwe type. 

Instead of  de termining g directly, we shall first find its t ransform y(r ,  y) ,  which 

is defined as 

(7) y(r ,  y)  = e r'' g (u ,  y )  du.  
o, 

We mult iply (6) by e "  and integrate over u from 0 to oo. On the lef t-hand side 
we get y ( r , y ) ,  if  we replace the variable tt by the new integrat ion varmble 

z = u - x we can simplify the resulting double integral on the r ight-hand side as 
follows: 

I f  X ~ e "( . . . .  ) g ( u  x , y )  e r' [I P(x) ]  dx  du 
Co  o 

X ~o e ~ g (z ,  y )  e rx [ l  P(x)]  dz  dx  
c o o 

X 
,y(r, y )  e "  [1 P(x) ]  dx.  

C 0 

The second term on the r ight-hand side can be written as 

f f v X e'" [ 1 - P ( u  + y)] du X e -  ~ e "  [ 1 - P(x) ]  dx.  
C o  c y 

This way we obta in  from (6) a hnear equat ion for y ( r , y ) :  

I f °° 3,(r, y )  k ~,(r, y )  e "  [1 P(x) ]  dx  + X ~v e,~ . . . .  e -  - [1 - P (x) ]  dx.  
c 0, c y 

Its solut ion ~s 

/[ s ] y(r,y)=(X/c) e-°' e "  [ l -  P(x)] d x  1-(X/c) e" [ I -  P(x)] d x  . 
..3.. 0 

(8) 

The remaining  task is to revert this t ransform to ob ta in  g(u ,  y ) .  In the following 
we shall look at a famdy of claim a m o u n t  d l s t r ibunons  in which this can be clone 
m a t ransparent  way. 

3. COMBINATIONS OF EXPONENTIAL DISTRIBUTIONS 

Let us assume that the claim a m o u n t  dis t r ibut ion ~s a combina t ion  of exponent ial  
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dastr~butlons, i .e.  that at has a probabil i ty density function o f  the form 

(9) p ( x )  = ~ AA3~e -~,', x > O, 
J=l  

with ~.j positive and 

(10) A~ + A2 + ... + A,, = 1. 

In the special case when all Aj are posltwe, we speak of  a mixture o f  exponential 
distributions. From (9) it follows that 

(11) 1 -  P(x)= ~ Aje -~,~, x>O. 
J=l  

We substitute this into (8) and obtain 

(12) 7(r, y )  = (k/c)  j=,~ e-~JY Aj]( ~j - r ) / [  l - (X/c) j=l ~ Aj]([3j - r)] . 

Applying the method of  partial fractions, we can write thas expression an the 
following form: 

(13) 7(r,y)= ~ ~ Cjke-~'Y/(rk--r). 
j = l  k = l  

Here r~,r2 . . . . .  r. are the zeros o f  the denomina tor ,  i.e. the solutions o f  the 
equatmn 

(14) (X/c) ' ~  A j / ( ~ j - r ) =  1. 
J=l  

It is assumed that the n roots are dastmct; o f  course some may be complex 
Conditaon (14) is the same as the condit ion that defines the adjustment  coefficient, 
see exercise 8 of  BOWERS et al. (1987, chapter 12). Thus the adjustment  coeffi- 
cient is one o f  the roots; without loss of  generality we may set r~ = R. 

The coefficaents Cjk can be calculated as follows. We multiply ~,(r, y )  by 
(r,. - r)  and let r --* r,.. If  we do this m (13), the coefficient o f  exp(-13jy)  is Cj .... 
In (12) we divide the denomina tor  by ( r m - r )  and let r -Dr  .... Since the 
denomina tor  vanishes for r = rm, this operat ion gives minus the derivative o f  the 
denomina tor  at r .... Thus the coefficmnt o f  exp ( - t3 jy )  is 

(15) Cj,,, = A~/(~j - r,.) A d ( ~ l -  r,.) 2 . 
I 

Once the roots have been determined,  the coefficients can be calculated easxly 
from this formula.  

The inversion of  (13) is simple: one verafies that 

(16) g ( u , y ) :  ~ " ~  Cjke-~'Ye . . . . .  
J=l  k=l  

satisfies (7); therefore expression (16) as the desired solution 
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These results can also be used to determine the probability of ruin. Since 

(17) 

if follows from (16) that 

(18) 

where 

(19) 

¢(u)  = g(u, y)  dy, 
0 

¢ ( u )  = ~ Ck e . . . . .  , 
k = l  

c ,  = ~,, CMdr. 
J= l  

Formula (18) can be found in CRAMt~R (1955) and more recently in BOWERS et 
al. (1987); in both cases the discussion is limited to mixtures of exponential 
distributions A related discussion can be found m DICKSON and GRAY (1984). 

The class of mixtures of exponential distributions is somewhat hmited; for 
example, the mode of such a distribution is necessarily at 0. On the contrary, the 
family of combinations of exponential dxstnbutnons is rather rich, though not 
every choice of A j,/3j gives a probabnhty density function. A subset of this family 
consnsts of the sums of n independent exponential (/3j) distributed random 
variables wlth unequal parameters (see FELLER (1966, problem 12 of chapter 
1.13)). An elegant proof can be obtained by looking at the moment-generating 
functions and applying the method of partial fractions. Taking the limit 13j -+/3, 
one obtains the V(n,[3) density. One may also show that the Gamma distribution 
with arbitrary values of the non-scale parameter, say n - 6 with 0 < 6 < 1, is in 
the closure of this class. It is sufficient to show that such a Gamma distribution 
is a mtxture of Gamma distributions wtth non-scale parameter n. The definmon 
of the Gamma funcnon implies 

i 
oo e _ t ~ l s -  i 

x -6= - -  dt 
0 r (6)  

Using this we may write tlae Gamma ( n -  6, 1) density as: 

x " - ~ - t e  - ~ _  [ ° ° ( t +  l ) " x " - l e  -(¢+°x t ~ - ~ ( t + l ) - " F ( n )  
dt. 

F ( n -  5) 0 J P(n)  F ( n -  6) F(5) 

We shall show in the following section that a mixture or combination of  Gamma 
distributions can be handled in quite the same way as a combination of 
exponential distributions. 

4. COMBINATIONS OF GAM M A DISTRIBUTIONS 

The advantage of considering combinations of exponentials rather than just mix- 
tures lies in the fact that this class also contains distributions with mode not equal 
to zero. Another way to include such distributions Is to consider mixtures, or 
combinations, of Gamma distributions with integer-valued non-scale parameter. 
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To avoid unnecessarily complicated formulae, we shall limit our discussion to the 
case where this parameter equals two, but generahzation to other integer values 
is straightforward. We shall not g~ve all details of the proofs in this section. Note 
that as the Gamma distribution can be written as a limit of comblnatmns of 
exponential dlsmbutions, no new situations are added when an exphclt 
express,on for g ( u , y )  can be found. 

Consider the following density function p(x):  

(20) p(x)  = k As~jr xe-a'x, x > O, 
J = l  

with 13, posinve and 

(21) Ai + Az + ... + An = I. 

From (8) one obtains after some calculatmn: 

(22) y ( r , y ) =  

(k/c) ~ Aj(13, r)-------~(/3fy-f3,yr+2/3,-r) l - ( k / c )  ~ A, 2 1 3 , - r ]  
a=, - , = ,  ( ~ a - r ) 2 J "  

Again applying the method of partial fractions, we can rewrite expression (22) 
in the following folm: 

2n 

(23) Y(r,Y) = k ~ Cjk(y) e-&Y/(rk-r) .  
J = l  k = l  

Note that in this case we obtain coefficients Cjk depending on y. Here r~, r2, ..., r2,, 
are the zeros of  the denominator of (22), i.e. the solunons of the equation: 

2/3, - r 
(24) i - ( k / c )  2..a A j -  0. 

,=1 (/jS - r) 2 -  

Once more we assume all these roots to be distinct, although the more general 
case presents no insuperable dlfficulues. One of the roots equals the adjustment 
coeffiment. In the same way (15) was derived, one has: 

Aj ( / j fy - / j jyr , , ,+ 2/3,-r,,,)/ "-'=)_a t A, 3/3,-r,,  
(25) Cjm(y) - (/jj _ r,,,)2 t (13,- r,,,) ~" 

Inversion of (23) leads to 

k 2 n 
(26) g ( u , y ) =  ~ Cjk(y) e-~'Ye . . . . .  

J = l  k = [  

Again the probability of ruin can be obtained as: 

2 i i  

(27) ~ ( u ) =  ~ C~ e ..... , 
k = l  
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where  

f ° 
(28) C ~ =  C j , ( y )  e -~jy d y =  Aj  3 - 2rk A j  3/3j-  rk 

j=l  0 J = l  (/3.1 - rk) / j= l  (/3~ - -  r k )  3 "  

The  above  e x p o s i t m n  can be genera l ized  to o the r  integer  va lues  of  the non-sca le  

p a r a m e t e r ,  and  also to a rb i t r a ry  posi t ive  real values .  

5. ILLUSTRATIONS 

EXAMPLE 1. S u p p o s e  that  n = 2, A~ = A2 = ~, /3~ = 3, /3, = 7, X = 1 and  
c =  I/3;  these are the speci f ica t ions  o f  ex amp l e  12.10 of  BOWERS et al (1987). 

The  roots  o f  e q u a t i o n  (14) are  r~ = R = 1 a n d  rz = 6. T h e n  we o b t a i n  f rom (15) 
the  fo l lowing  coefficients:  

Ci i  = 9/5 Ct2 = - 3 / 1 0 .  

Cz, = 3/5 Czz = 9/10. 

T h u s  

g(u,  y )  =-9 e -  3,.-,_ + _3 e -  7. . . . .  3 
5 5 10 

l n t e g r a t t o n  over  y gwes 

24 . l _ 6 u 

4' (u)  = 35 e -  + e 

which is the result  f o u n d  by BOWERS et al. (1987). 

- - _ _  e_ 3y_6u + __9 e_7~_6u 
10 

EXAMPLE 2. Let ),. = I, c = 1 a n d  

p ( x ) = 1 2 e -  3 " - 1 2 e  -4 ' ,  x ~> O. 

This  d i s t r i b u t i o n  has n o n - z e r o  m o d e  l n ( 4 / 3 ) =  0.288,  and  m e a n  7/12 = 0.583. In 

this example  fit = 3 , f l 2 = 4 , A t = 4 , A z =  - 3  The  roots  o f  (14) a r e r ~ = R =  l a n d  
r2 = 5. This  leads to the fo l lowing  coefficients:  

T h u s  

C t t  = 3 C t z  = 1 

Czl = - 3 / 2  C2z = - 3 / 2 .  

g ( u , y ) = 3 e _ 3 Y _ U  . . . .  3 e _ 4  ...... +e_3V_su  3 e -4" -5" -  
2 2 ' 

which we can  use to o b t a i n  

5 e _ t ,  _ _ _  ¢~(u) = ~ 

EXAMPLE 3. Let X = I, c = I, a n d  

p ( x )  = 1 ( 5 e -  2~ 
A 

1 - 5u e 
24 

- 1 2 e - 4 '  + 1 5 e - 6 ' ) ,  x > ~ 0 .  
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Thus  n = 3, .st = 2,.8z = 4 , /33  = 6,  A t  = A 3  = 5 / 4 ,  A z  = - 3 / 2 .  From (14) we find 
r~ = R = 1 and a pair o f  conjugate  complex roots:  rz = 5 + l, r3 = 5 - i. From (15) 
we get 

75 5 20 5 20 
Ci i  = 6-8; C12 = ~.~-q.- ~ 1 ,  C 1 3 =  68 68 

30 36 42 36 42 
C 2 r -  6 8 '  C 2 2 -  68 681; C 2 ~ = - ~ + ~ t  

15 35 30 35 30 
C31 = 6--8 ; C 3 2 -  68 6 i ' ;  C33= ~-~ + ~-~ t 

Substi tut ing all these paramete rs  into (16), we get an answer that is quite accept- 
able, if the calculat ions are done  in complex mode.  Alternatively,  we remember  
that  

e "~ = c o s  u + l  s in //; e - r e = c o s  u - I  s in  u 

and observe that  the coefficients Cgz and Cj3 are conjugate  complex.  This way we 
see that  

Cjz e . . . . .  + Cj3 e -  r'" - - 2 e -  S"[Re(Cs2)  cos u + lm(Cj2)  sin u] 

and the answer  can be written m the following form:  

g (u, y )  = (75 ]68) e -  zy - ,, _ (30/68) e -  4y - u .jr ( 15/68) e -  6y - u 

+ e-ZY-5" l (5 /34)  cos u + (20/34) sin u] 

- e -4Y-4U[  (36/34) cos u + (42•34) sm ul  

+ e - 6  .... 5 , [ (35/34)  cos u - ( 3 0 / 3 4 )  sin u ] .  

F rom this and (17) we get 

65 e _ 5 ,  I ~  1 11 1 ~ ( u ) = ~  e - " -  c o s u + ~ s i n u  . 

EXAMPLE 4. Suppose we have good est imates of  the first three moments  
of  a claim distr ibution.  We want  to est imate the d~stribuuon of  the severity 
of  ruin using a combina t ion  of  two G a m m a  (2,/3) densities, i.e. a distr ibution 
with density: 

p ( x )  = At321e-:S'~x + Az.sz2e-t32~x. 

To determine the unknown parameters  of  p ( x )  by the method o f  moments ,  we 
have to get Al ,  A2,3 t  and 32 f rom the following set o f  equat ions:  

-~- + A2 2 A l +  A z =  1, At .st ~ = E [ X ] ,  

~12 ~ 24 24 A i  + A2 ~ = E [ X 2 ] ,  AI  "E-Y+ ~ 
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Wri t ing  A = A i, bj = l /3j and qj = E [ X S ] / ( j  + 1)!, the equa tmns  can be rewri t ten 
in a s impler  fo rm as: 

A b , + ( l - A ) b 2 = q , ,  A b 2 + ( l - A ) b 2 = q 2 ,  A b ~ + ( l - A ) b 3 = q 3 .  

The first two equat ions  yield 

A = q~ - b2 b~ - q 2 -  qlb2 
bj - b2' ql - b2 

Assuming  wi thout  loss o f  general i ty  that  3~ <~ 13z, we must have A /> 0, o therwise  
p ( x )  is negative for large values of  x. By the above  equanons ,  this imphes  
q~ <~ 1132. Note that  a value A E [0, 1] is ob ta ined  if and  only if the rat io  
Var [  X ] / ( E l  X}  )2 exceeds the value t co r r e spond ing  to a G a m m a  (2,/3) density.  

Subst i tu t ing  the above  expressions  in the third equat ion ,  we obta in  a q u a d r a n c  
funct ion of  b2, with the fo l lowing roots :  

b2 = ( q ~ q z  - q3)  +-- , j [  ( q ~ q 2  - q 3 )  2 - 4(qz  - q Z ~ ) ( q t q 3  - q2z)] 
2(q~ 2 - q2 )  

A similar  system of  equa t ions  must be solved if one wishes to fit a combina t i on  
o f  two exponent ia l  d i s t r ibu t ions  to three given momen t s ,  or  to a given mean,  
mode  and var iance.  

Ano the r  necessary condi t ion  for  p ( x )  to be non-negat ive  is that  ei ther 
p(0)  > 0, or  p(0)  = 0 and p ' ( 0 )  >1 0 must  hold.  By fitting moments ,  this condi -  
tion ~s somet imes  v io la ted ,  as can be seen by tak ing  a d i s t r ibu t ion  with mean and 
var iance 6, and third central  m o m e n t  36. 

To make  compar i son  possible with results previous ly  ob ta ined ,  assume that  the 
momen t s  o f  the d i s t r ibu t ion  to be es t imated  are those  of  an exp( l )  d i s t r ibu t ion ,  
so mean and var iance are 1, and the third central  moment  equals  2. We obta in  
the fol lowing values for the pa ramete r s  o f  p ( x ) :  

A i = A 2 = ½ ,  3 1 =  3 -  ,13 = 1 . 2 6 8 ,  B 2 = 3 + , 1 3 = 4 . 7 3 2 .  

The mode  o f  this d l s t r ibu tmn equals  0.235. Tak ing  X = 1, and c =  2, we find the 

fol lowing roots  for (24): 

r~ = 0.506 (This is the ad jus tmen t  coefficient.  For  this value o f  the p remium 
rate c, the ad jus tmen t  coefficient o f  an exp( l )  d i s t r ibu t ion  equals  
0.5.) 

r2 = 1.765, r3 = 3.544, r4 = 5.685. 

The coefficients Cjk(y)  for use in (26) can be ob ta ined  as: 

C{t (y)  = 0. 147y + 0.066, 

C~z(y) = - 0 .099y - 0.054, 

C{3(y) = 0.629y + 0.663, 

C[4 (y)  = 0 .506y - 0.424, 

C~l (y)  = 0 .218y + 0.458, 

C~z(y) = 0 .158y - 0. 193, 

C:~3 (y)  = - 0 .088y - 0.031, 

C~4(y) = 0.029y + 0.016. 
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The p robab i l i t y  o f  rum,  ob ta ined  f rom (27) and (28) is: 

~,(u) = 0 .517e-  0 5o6, _ 0 .070e-  t 365,+ 0 .089e -3  5441, _ 0 .036e -5  685, 

The p robab i l i ty  o f  ruin co r re spond ing  to the exp( I )  d is t r ibut ion  and this value 

o f  c equals  

~b(u)=O.5e -°  51'. 

The max imum devia t ion  of  the ruin p robab i l i ty  ob ta ined  with the app rox ima t ing  
combina t i on  of  G a m m a s  and the exponen t i a l ( l )  ruin p robab i l i ty  is 0.004. 

6. A D I R E C T  M E T H O D  

Equa t ions  (5) and (6) are defect ive renewal equa t ions  and can be solved (at least 
in principle)  wi thout  the use o f  t r ans fo rms .  With  the no ta t ion  

(29) h(x )  =-X [1 - P ( x ) ]  
C 

we can write equa t ion  (5) as 

S S . . . . .  
( 5 ' )  G(u, y)  = G ( u -  x, y)  h (x )  dx + h(x )  dx. 

0 I1 

By successive subs t i tu t ion  we ob ta in  first the fol lowing formal  solut ion:  

(30) G(u, y ) =  h*"(x)  h(z)  dz dx. 
0 1 1 = 0  I I - -  I" 

A r igorous  p r o o f  follows from the fol lowing in te rpre ta t ion  (combined  with the 

law o f  total  p robabi l i ty ) :  

i 
l l  - -  I -.[-y 

h*"(x)  h(z)  dz dx 

is the p robab i l i ty  of  the event that  the nth record  low of  the surplus process is 
between u - x and u - x + dx and that  rum occurs wIth the fol lowing record low, 
such that  the deficit is less than y; see theorem 12.2 o f  BOWERS et al (1987). 

Express ion (30) shows that  G ( u , y )  has indeed a densi ty  g(u , y ) .  Taking  
derivat ives  we ob ta in  

(31) g ( u , y )  = h * ~ ( x ) h ( u -  x +  y)  dx. 
0 n~O 

In the fol lowing section we shall i l lustrate  the app l i ca t ion  of  (31) in a par t icu lar  
c a s e .  

REMARK. If  we set y = oo in (30), we obta in  a wel l -known representa t ion  for 
the p robab lh ty  o f  ruin (the so-called "convo lu t ion  fo rmula" ) .  
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7. UNIT CLAIM AMOUNTS 

Suppose that all claims are of  size one. Thus,  by (29), 

h ( x )  = XJc ff 0 < x < l; 0 otherwise. 

We can write thts defective probabil i ty density as 

h (x)  = a f ( x ) ,  

where oe= X/c and f ( x )  is the umform (0, 1) density There is an exphclt 
expressmn for the n-fold convo lunon  of  f :  

(32) f '*"(x)  (n 1)~ ,=o 

This formula can be found m FELLER (1966, theorem 1, I 9), and a very elegant 
derivation is gaven by SH1U (1985). We prefer to write it as 

1 
f * " ( x ) = - -  7- ( -  I ) J ( x - j ) ' { .  

( n - j ) ! j t  a x  d=o 

Then 

h*"(x) = Z 
n=O n=O 

dx ,,=0 a=o (n - l ) t y !  

Interchanging the order o f  summat ion ,  we obtain more simply: 

d (-c~)a ( x -  J )+,  (rTZT) ! ( x - J ) ~ .  -a (33) h * " ( x )  -dx j !  
n=O J=O = 

d ~, ( -  oe) j 
( x _ j )g+e ~( ' -J)- = - -  ~ 

dX j=o 

Note that this is m fact a fimte sum, as terms with j > x vanish. If we substitute 
this expressmn m (31), the integrauon can be limited f rom x =  (u + y -  1)+ to 

x =  u, where h ( u -  x + y ) =  u. The resulting integral is trivial; for u >t 0 and 
0 < y < 1, we obtain 

(34) g(u,  y )  Od ~ (--o~)J ( U -  g 
= j ) + e ~ ( " -  j )  + 

j=o J! 

( . +  y _  i _ j ) 4 e . ( , ,  + > . - , _ . ) .  
j=o J! 

APPENDIX COMPUTER IMPLEMENTATION 

Implementat ion o f  the algorithm suggested m Section 3 on a computer  involves 
mainly elementary operat ions on polynomials .  To solve (14), however,  we must 
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have a routine to compute all roots, real as well as complex, of a real polynomial. 
Any textbook on numerical mathematics contains material on this; see for 
instance STOER (1972). Also, any library of numerical routines such as the NAG 
or the IMSL hbrary provides adequate software. One may also consult the ACM 
algorithms. Note that only for n /> 5 may the need to iteratlvely compute complex 
roots arise. One of the roots is the adjustment coefficxent, so at least one of the 
roots IS real. In case all coefficients A ,  are positIve, one may show that all roots 
of (14) are real and non-negative. In this case, simpler algorithms will suffice, for 
instance the Newton-Maehly algorithm described in STOER (1972, pp. 220--221). 

An algorithm to compute complex roots of real polynomials that can be pro- 
grammed easily, even using an electronic spreadsheet, is the method of Balrstow. 
For a motivation of the method, see STOER (1972, pp. 226--227). ItS main advan- 
tage is that no complex arithmetic is revolved. A disadvantage is that convergence 
cannot be guaranteed PRESS e t  a l .  (1986) recommend a two-step procedure: first 
find approximations to all roots and then "polish" the roots found using Bair- 
tow's method. 

This method works as follows. First write (14) as the following polynomial 
equation: 

(AI) a o r "  + a~r  " - L  + . . .  + a . - ~ r +  a . = 0 .  

Next determine a quadratic divisor r 2 + p r  + q ,  where p 2 _  4q < 0, as follows. 
Choose a starting point (q, p)  and calculate the vector (B0, B~ .. . . .  B.) by means 
of the following recurslve scheme: 

B o :  ao, 

B t  = a l  - p B o ,  

B2  = a2 - p B i  - q B o ,  

(A2) 

B , , -  t = a . -  t - p B . - 2  - q B , , -  3, 

B .  = a .  - p B . _  l - q B . _  2 

Similarly, compute the vector ( C o ,  C~ . . . .  C . - l )  as follows: 

Co = B0, 

C~ = B i  - p C o ,  

C2  = B2  - p C i  - q C o ,  
(A3) 

C n -  z = B . -  2 - p C . - 3  - q C . - 4 ,  

C , , -  I = - p C . -  2 - q C . -  3. 

With the auxiliary quantities 

D =  C 2 . - 2  - C n - l C n - 3 ,  

(A4) P = B n - I C n - 2  - B n C . - 3 ,  

Q = B n C . - 2  - -  B . - i C . - t ,  
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we find t he  nex t  a p p r o x i m a t i o n  (q,  p )  as:  

(A5)  p : =  p + P/D,  q : =  q + Q/D.  

N o w  re s t a r t  t he  a l g o r i t h m  wi th  these  va lues  o f  q a n d  p u n t d  the  o ld  a n d  new 

va lues  o f  q a n d  p d i f f e r  by  less t h a n  the  p r e s c r i b e d  p r e c i s I o n .  A d i v i s o r  

r z + pr  + q o f  t he  l e f t - h a n d  s ide  o f  (14) gives t w o  c o m p l e x  c o n j u g a t e  r o o t s .  H a v -  

ing dlv~ded ou t  th i s  f a c t o r ,  r u n  t he  a l g o r i t h m  a g a i n  to  d e t e r m i n e  the  o t h e r  r o o t s .  

REFERENCES 

BOWERS, N L , GERUER, H U , HtCKM,XN, J C , JONES, D A and NESBtTT, C J (1987) Actuartal 
Mathemattcs, Society of Actuaries 

CraMEr, H (1955) Collective risk theory - -  A survey of the theory from the point of view of the 
theory of stochastic processes The Jubdee Volume of Skandta. 

DIchSON. D C M and GRAY, J R (1984) Exact solutions for rum probabdl[y m the presence of 
an absorbing upper bamer Scandtnavtan Actuartal Journal, 174-186 

FEH.Er, W (1966) An lntroductton to Probabdtty Theory and tts Apphcatzons vol 2 Wdey 
PRESS, W H , Ft.ANNE~Y, B P , TEUKOI_SKY, S A and VE'f~ERLING, W T (1986) Numerscol 

Rectpes -- The Art of Sctenttfic Computing Cambridge Umvers~ty Press, Cambrtdge 
SHiU, E S W (1985) Convolutton of Umform Dtstrtbutton Techmcal Report, UmversJty of 

Mamtoba 
SroEr, J (1972) Emfuhrung m dte Numertsche Mathemattk I Sprmger-Verlag, Berhn 

HANS GERBER 

Ecole des H . E  C., 
Swttzerland. 

Umversltd de Lausanne, CH-IOI5  Lausanne-Dorzgn y, 

MARC J. GOOVAERTS 

Kathol ieke Umversttett  Leuven,  

B-3000 Leuven, Belgtum. 
lnst t tuut  voor Aktuarte le  Wetenschappen,  

ROB KAAS 

Untversttett van Ams te rdam,  Jodenbreestraat 23, N L - I O l l  N H  Ams te rdam,  

Netherlands 




