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ABSTRACT

We compare three modern methods for calculating the aggregate claims distribu-
tion with respect to their computation amount and accuracy* Panjer’s algorithm,
the approximation method of Kornya and the most recent, exact procedure of
De Pril. They are compared numerically in the case of actual Life portfolios. The
computation amount of De Pril’s method is much greater than that of the two
others, which do not differ substantially 1n this respect. The accuracy of Kornya’s
and Panjer’s methods is remarkably high in the examples considered. However,
as the accuracy of Kornya’s approximation method can be determined easily
in advance, this procedure turns out to be the most useful one for the problems
arising from practical work.
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1. INTRODUCTION

In the years since 1980 a remarkably large number of methods have been made
available to insurance mathematicians for calculating the aggregate claims
distribution of a portfolio numerically. In the monograph of GERBER (1979) one
can find those methods which were used up to 1980 and above all the models to
be examined 1n practice and theory, namely the so-called individual and (due to
LUNDBERG (1909)) the collective model of risk theory. Among the methods
developed after 1980, of which there 1s no summarizing description in the interna-
tional hterature, we would hke to quote as new ideas or applications the recursive
formula of PANJER (1981), the method of Fast Fourier Transform (FFT) of
BERTRAM (1981), the approximation method of KORNYA (1983) and the method
of DE PRIL (1986). For practitioners and theoreticians, the question arises which
of all these methods should be given preference 1n situations relevant in practice.

With regard to BUHLMANN (1984), who compared the algorithm of Panjer
with the FFT method, it is only necessary to analyse one of these two methods
in more detaill. We have chosen the Panjer algorithm, because our experience
proves that most practitioners choose the Panjer method. Therefore, the aim
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of this paper 1s to compare the methods of Panjer, Kornya and De Pril from a
practical point of view.

Such a comparison 1s feasible only in the case of Life portfolios; 1.e. 1n the
language of risk theory in such an individual model, where the claim amount
distributions of the individual pohcies are (individual) two point distributions
throughout:

(i) The method of Panjer first of all exactly determines under certain conditions
the aggregate claims distribution 1n a collective model. For a calculation of
an individual model, one has to transform this situation into a suitable col-
lective model (due to GERBER (1984) and Hipp (1985) there 1s an estimate
for the error which anises from this transition). The Panjer algorithm,
however, then enables the calculation (up to a checkable error term) of the
aggregate claims distribution 1n any individual model.

(i1) The method of Kornya evaluates up to a prescribed accuracy the aggregate
claims distribution in an individual model. The original method developed
by KOrRNYA (1983) took only Life portfolios into account, but it can be
generalized to an arbitrary individual model, as was shown by Hipp (1986).

(iin) The method of De Pril makes possible the exact calculation of the aggregate
claims distribution 1n the individual model, but only in the case of Life port-
folios. At present, a generalization to more general situations 1s not within
sight.

It 1s therefore precisely in the case of Life portfolios that all three methods can
be compared with one another The fact that in this case the methods of Panjer
and Kornya only lead to an approximation is no disadvantage from a practical
and theoretical point of view provided that error estimates for the inaccuracies
are sufficiently small.

In the following section we present the three methods in a unmiform way. In Sec-
tion 3 we then compare these methods by means of actual portfolios and port-
folios derived from these in order to answer the question of which method is the
best one for numerical computations. As practitioners, there is no need for us to
look at the portfolios given hitherto in actuarial literature, which in general are
both theoretical and small.

2. UNIFORM DESCRIPTION OF THF METHODS

For the individual model of a Life portfolio, choose finitely many mortality rates
g1, ...,q; and (up to a fixed monctary unmit) finitely many risk sums ¢ =1, ..., 1/,
such that each pohcy of the portfolio has a mortality rate g, jo € J, and a risk
sum o, /p < 1. Denote by n,, the number of all policies with mortahty rate ¢, and
risk sum +. The distribution function of a pohcy Y.yinacell (¢, y), I=1, . ,n,,is

l1—gq, 0K x<
Fyln) = {l v xX>=>1
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The distribution function
F(x)=prob(S £ x)

of the aggregate claim S can be expressed on the (usual) assumption of the
independence of all the policies by the convolution formula

F(x)= % F;"™(x)
L]

As 1s well known, for large portfolios it 1s impossible to carry out these con-
volutions numerically. Because the support of S1s contained in No, 1t 1s sufficient
for a computation of F to calculate

S(x)=prob(S = x), (x=0,1,...).

(1) The method of Panjer. To apply this method to the given situation one
must first of all assign a collective model to the individual model. This can be
done in various ways, but we have chosen the most standard procedure. We have
chosen a special compound Poisson distrnibution, which is defined by the

equations
J

A= Z Z q,my
t=1 =1
l 1 J .
G(X)=X 2 2 ey FP(x),
=1 y=1
where
0 0 x<i
1:’(0) x) = ’ =
s (%) 1, Xz

1s independent of ;. The density function g of the probability distribution G is
given by

g(l)=% t=12,..10),

where

J
M= 2 qmy.
J=1

The aggregate claims S in the individual model are therefore approximated by an
associated collective model

N

S=> X
1=1

where the “claim amounts” X, are independent and identically distributed with
distribution function G. The X, are also assumed to be independent of the “claim
number” N, which follows a Poisson distribution with parameter X. The density

f(x) = prob(S = x)
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of the distribution function of § can now be calculated (see PANJER, 1981):

J(0)=exp(~\),

and then recursively by

)\ mm_{_‘ 1} -
fx)= < 2,1 vgw) fix—v)  (x=1,2,...).
In case of large A, f(0) may numencally equal zero. For example, PANJER and
WILLMOT (1986) give two different methods (decomposition of the portfolio and
exponential scaling) to handle this problem.
For the error

sup | F(x) - F(x)|,
A
where F, F denote the corresponding distribution functions, GERBER (1984) and
Hirp (1985) have given error estimates.

(1) The method of Kornya. We assume ¢, < 1/3, y=1, ..., J, and define for
any K€N

AK) =

In view of
AK)—0 for K— «
one can find to any given accuracy € > 0.a K € N satisfying

exp(A(K)-1<ge

For such a fixed K, consider the special polynomial

« (=Dk*! )k+l [ J a A v (. k]
Q( )(U) Z Z Z & [(1 _QJ> ! (1 _QJ>

t=] y=1

— Z bl(”K) m

m=0

where
K (_1\h L J A
b= 3 (-1 > Z '7u< 4 >
k=1 k =1 y=1 q./
and
nn m} 1 A+l A
(K) _ (G Y n ( 4 ) m<IK
" A DA k Z 7 1-q,) '

denote the non-vanishing Taylor coefficients of Q).
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The simple recursion formula

ad®™ = exp 6§©

n
K 1 (K K
al(l )=; Z 'nan—l)u I(Il ); nz ls
m=1

then leads to the coefficients of the power series of exp Q) (u), 1.e.
exp Q) = 2 alur,
n=0
Finally, iIf one defines

A
F® )= 25 1ai®],

n=0
then the result of KORNYA (1983) states that
| F(x) = F¥(x)| < exp(a(K)) -1 € e
holds for all x < 2 .

(ui) The method of De Pril Putting

J q k
A,kz(—l)“':Zn,,< J ) u=1,.,Lk=1,
J=1 1-gq,

the result of DE PRIL (1986) states that
J

1
SO = Hl 1 (1-g)"
=1y

1 min{/,x) [v/1]

f=- 2 Auw flx=kn)

X =1

holds for all x < 2 n,,.

3. NUMERICAL COMPARISON

As all of the methods will turn out to be sufficiently precise, we only need to look
at the computation amount as an obvious measure of their usefulness. The
amount of computation can be quantified as the number of floating point opera-
tions, counted separately as bar operations (additions and substractions) and dot
operations (multiphications and divisions), or as the computation time (CPU
time). We must emphasize that CPU time depends heavily on computer type, pro-
gramming language and style, and that the turnaround time may be many times
longer. The following measurements have been carried out on programs written
in VS APL on an IBM 4381 under VM/CMS.

Crucial for the computation amount 1s not only the size of the portfolio but
also the number of values of the aggregate claims distribution to be computed.
Given a certain step width A (e.g. a fixed number of monetary units) the values
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of F(0), F(A), ..., F(L - A) are to be computed for a certain natural number L.
In the following examples we have chosen L so that L - A is about the size of
u+ 3 o, where p and o denote the mean and standard deviation of the aggregate
claims distribution, which can easily be computed beforehand.

In the algorithms of Panjer and Kornya, the computation amount depends
on I, J, K (Kornya only) and L, but not on the portfolio size. The number of
bar and dot operations (BO resp. DO) can be expressed explicitly. For large L
we have, 1n the case of Panjer’s algorithm, approximately BO = DO = /- L;
in the case of Kornya’s algorithm, approximately BO=DO = K- /- L.
De Prnl’s algorithm needs about BO =L -H; - (0.5-L+ J—-1)+J and
DO=L -H/ -5 -L+J+15)+L- -(J+1)+ M- 1, where

J
M=Z Z”u
!

=l_/=l

is the number of policies and

is the /th harmonic number.

The first example derives from a real Life insurance portfolio. It consists of
104,652 risks aged from 15 to 74 with risk sums from DM 2,000 to DM 200,000
in steps of DM 2,000 (that is /=100, J=60). The expected aggregate claim
amounts to p=DM 4537 million, the standard dewviation is ¢=DM
0.511 million. The aggregate claims distribution is to be computed for a value of
L = 3,000 which corresponds to an amount of DM 6 million or approximately
u+ 3 -0 and comprises 99.6% of its mass.

Algorithm BO DO CPU seconds Error esumate
Panjer 298.049 307,150 4 200 210"
Kornya (K = 95) 1,530,560 1,378,250 9 748 3310°%
De Pnl 24,121,798 24,443,487 = 500 0

Qwing to lack of computer capacity, we had to omit the actual computaton of
F with De Pril’s algorithm and could only count the number of operations.

To estimate the accuracy of Kornya’s algorithm, we used the formula from
Section 2; to estimate the error of the distribution computed according to Panjer,
we added the distance between the Kornya and Panjer distribution to the Kornya
bound, applying the triangle inequality. According to Section 2 it is possible to
estimate the error of the collective model following Hipp (1985), but for this
another application of Panjer’s algorithm 1s needed and the computation amount
increases considerably. (What is more, Hipp’s estimate is rather pessimistic,
especially in the case of large portfoli0s.)
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This example demonstrates the usefulness of the above given formulae for the
number of FLOPs of Kornya’s, Panjer’s and De Pril’s algorithms. Owing to dif-
ferent program structures, the number of FLOPs per second differs somewhat for
the algorithms

A consideration concerning the choice of step width A: halving A doubles both
L and /1. From the formulae given above, 1t follows as a rule of thumb that all
the algorithms need four times the previous computation amount.

We will now examine the performance of DePnl’s algorithm in comparison
with Panjer’s and Kornya's if apphed to smaller portfolios To achieve this, we
take subportfolios from the example above, consisting of the 7/ youngest age
classes and the J smallest sum classes. For Kornya’s algorithm we choose K =§;
L 1s again determined from p and o.

Cast 1 I=J=10, 10,953 rishs, 4 =DM 137,346, 0 = DM 45,861, L =250, 99 99% of mass

Algorithm BO DO CPU seconds Error estimate
Panjer 2,304 3,065 0 231 105 10"
Kornya (K = 5) 13,060 11,525 0327 56 107"
De Pri} 97,334 112,744 4 250 0

Casc !l /1= J=15, 27,687 risks, = DM 467,757, 0 = DM 99,046, L = 400, 99 89% of mass

Algonithm BO bo CPU seconds Error esumate
Panjer 5,719 6,935 0 386 110 107
Kornya (K =35) 31,215 27,625 0 549 13 o~ "
De Prud 281.928 319,060 9779 0

Casg Il /= J=20, 46,698 risks, u= DM 945,215, 0 = DM 156,920, L = 700, 99 68% of mass

Algorithm BO DO CPU seconds Error estimate
Panjer 13,509 15,630 0750 114 107
Kornya (K= 35) 72,120 65,750 1 030 25 100"
D¢ Piil 923,999 991,118 22 878 0

Our last example is a Life portfolio generated from scratch. [t consists of 1,019
risks with sums ranging from DM 2,000 to DM 50,000 (step width is 2,000, i.e.
I =25) and ages ranging from 15 to 64 years (J = 50). The mortality is 50% of
the German mortalty table ADSt 60/62 mod. To avoid a voluminous table, the
class sizes n,, are defined by the somewhat artificial formula

n,=[0.5+ max{0, 1.7 - exp(—0.0005-(4:* + ;2)) + 0.5-cos(t + J)}]
1<ig25 1<y<50.

([ x] denotes the largest integer less than or equal to x). The aggregate claims
distribution was computed for L = 100 (approximately u + 3 - g, 99.5% of mass).
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Algorithm BO DO CPU seconds Error cstimate
Panjer 3,349 3,675 0 104 6710 "*
Kornya (K = 3) 11,375 4,825 0 158 23 10°°
Kornya (A = 5) 16,525 5.150 0174 Jj4 107"
De Pl 36,504 43,470 3180 0

4. CONCLUSIONS

De Pnil’s algorithm, which gives exact results, 1s a remarkable progress in theory,
but involves much greater computation amount than the two other methods.
Panjer’s algorithm gives an approximation to the aggregate claims distribution
in minimal time. Its accuracy is sufficient for most practical purposes, but 1t can
only be estimated at some additional expense.

Kornya’s algorithm needs more computations than Panjer’s, but it allows us,
given K, to estimate its accuracy, or, if we ask for a specific accuracy, to compute
K. In each example the actual CPU ume was only slightly higher than that for
Panjer’s algorithm. The accuracy of Kornya's algorithm, if applied to small port-
folios, is so high that it computes practically the exact distribution.

Kornya’s algorithm turns out to be a method for computing aggregate claims
distributions which is well suited for both small and large Life portfolios.

AUTHORS’ NOTE

M. Vandebroek and N. De Pril informed us at proof-stage that they have drawn
a stmilar conclusion, where the exact method of De Pril is taken as a basis for
a new approximation procedure. This paper will be published 1n a special 1ssue
of the Bulletin of the Royai Association of Belgian Actuaties, dedicated to the
80th birthday of Professor E. Franckx.
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