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ABSTRACT

The Pareto-optimal design for profit-sharing 1s derived under general assump-
uons as to the utihty function of both the insured and the insurer. This
generalizes the result of Jones and Gerber and explains commonly used dividend
formulas 1n terms of risk aversion.
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1. INTRODUCTION

Experience rating in group life msurance arose because of the threat of self-
msurance on the part of the “good risks.” This antiselection was — and still 1s
— prevented by offering to the policyholder a profit-sharing plan in which 1t 1s
stipulated that the msurer will refund some part of the profit he makes on that
particular policy. This profit-sharing usage 1s also commonly used 1in most non-
Iife insurances and in reinsurance where the greater uncertainty about the total
claim distribution 1s reflected in higher safety loadings and therefore 1in higher
potential profits.

The repayment 1s defined by a dividend formula which expresses the refund 1n
terms of the claim experience. Several formulas are conceivable, but there are two
designs that are frequently used and have been studied by BERNHARDT and
ENDRES (1979), DRUDE and NIEDERHAUSEN (1973-1974), JONES and GERBER
(1974), ScHMUTZ (1985), STRICKLER (1982) and ZoPPI (1982):

(l) W=(CtP'—S)+, OLSI
2) W=8B(P —35)+, Bt
where W = the refund

P = P(l +0) with P the net premium
and 0 the safety loading

S = the total claim amount
and (x). = max(0, x)
In (1), the insurer refunds that part of the profit that exceeds some predeter-

mined constant (1 — «)P’, whereas 1n (2) the profit (P’ — §). 1s divided accord-
mng to some proportional rule
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Further restrictions on the parameters are obtained by stating that the expected
result of the insurer must satisfy a given solvency requirement. The parameter
values actually used are mostly a matter of bargaining.

The choice between the two designs 1s harder to tackle in a theoretical context.
One of the possible ways to deal with competing preferences is using utility func-
tions and looking for a Pareto-optimal solution (i.e a solution such that 1t can
not be improved for one of the two competitors without harming the other).

JONES and GERBER (1974) proved that the Pareto-optimal solution responds
to formula (1), in case the insured 1s risk-neutral and the insurer has a concave
utility function. The Pareto-optimal solution for the general case, which allows
both the insured and the insurer to have a concave utility function, will be derived
in this paper with the aid of optimal control theory

As was pointed out by the referees, this result can also be obtained as a special
case of the theorem of Borch. This approach will be demonstrated in the
Appendix.

2. NOTATIONS AND DEFINITIONS

Denote the utility function of the policyholder by u(x) and assume that the condi-
tions u'(x) > 0 and u"(x) < 0 are satisfied. Analogously, let v(x) be the utility
function of the insurer, with v’ (x) > Oand v”(x) < 0. Thus, both the insured and
the insurer are supposed to be risk-averse or risk-neutral. Their risk-aversion can
be measured by

&) Ru(x)= - ang Ri(x)= — 40

u'(x) v(x)
Let S denote the total claim amount and X = (P’ — §). the profit in the con-
sidered period. Note that the premium P’ 1s the risk premium supplemented by
a safety loading but without any loading for administration costs. The refund
that corresponds to gain x will be represented by W(x).
Denote by /i (x) and fs(s) the probability density functions of X and S. There
exists a close relationship between these two functions:

fx(0) = S: fs(s) ds and Sx(x)=fs(P' — x) for x> 0.

With these notations, and denoting by w, the mitial capital of the policyholder
and by w, the capital of the insurer, 1t 1s possible to express the conditions for
a Pareto-optimal solution in a more formal way.

DEFINITION 1 The clnvndend formula W(x) 1s Pareto-optimal 1f, for every
other 1efund formula W(x) for which

Elu(w,— P + W(X)] = Elu(wy~ P’ + W(X )] and
Elv(w.+ P' =S—W(X)] = Elv(w, + P' =S = W(X))],

both > signs can only be equalities.
It 1s easy to see that this 1s equivalent to the following defimtion.
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DEFINITION 2. The solution to the following optimization problem 1s Pareto-
optimal: maxmmize E[u(w,— P + W(X))] subject to the constraint
Elviwe+ P =S - W(X))] >c¢ (¢ an arbitrary constant), over the feasible
set of refund formulas.

One natural constraint on the set of all possible designs for W(x) is

O W) x

as the insured will not pay a surplus in case of bad experience and the insurer will
not pay more than he gains in order to stay solvable.
Using the notation itroduced above, the problem can be stated as follows:

P w
Max S u(w,— P+ W(P' = 5$))fs(s)ds + S u(w, — P ) fo(s)ds
w o P’
subject to

0 W(x)gsx

I)’ [==]
S v(w, + P’ —s— W(P' —s))fs(s)ds + S viwe+ P —58)fs(8)ds 2 ¢
0 P
where ¢ must be smaller than or equal to E[v(w.+ P’ —S)] 1n order to get a

non-empty feasible set of refund formulas.
An equivalent formulation of this problem is:

(4) VX S; u(wy~ P+ W(x))fx(x)dx
subject to

® O Wix) s x

© S: v(w, + x = W) /x(x)de 2 k
and

(7) k< S; v(we+ P’ = 5)fs(s)ds
where

k=c— K viwe+ P’ ~5)fe(s)ds
Jp

In the following secion we will derive the solution to this problem, where the

maximum 1s sought over the family of all piecewise continuous functions on
{0,P'].

3. THE PARETO-OPTIMAL DESIGN

THEOREM. Depending on k, the solution to the problem (4) under the con-
straints (5), (6) and (7) takes one of two possible forms in which the k*, x|" and
X3 will be defined in the proof.
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If k< k*
®) Wix)=x x < xt
0SS W) x x>xf

where W{(x) is determined by the differential equation

Ru(w, + x — W(x))

©) Wix)= Ru(Wu— P + W(x))+ Ruo(we + x — W(x))

with the boundary condition W(x') = x1.

If k2 k*
a0 W(x)=0 x < x5
0K Wx)<x x>x3

where W(x) 1s also determined by the differential equation (9) but with the
boundary condition W(x3)=0.

PROOF. The problem can easily be solved via optimal control theory, see e.g.
KAMIEN and SCHWARTZ (1981), if we rewrite the constraint (6) as:

' (xy=vwe + x— W(x) fx(x) with z2(00=0 and Z2(P') Z k.

The Lagrangian for this problem 1s:
L=u(wy— P+ W) fx(x)+ Mx)(w, + X = W(x))fx(x)
+ B (X)W (x) + B2{x)(x — W(x))

where A(x) 1s a continuous function and §,(x) and §,(x) are piecewise con-
tinuous functions, such that for all x € [0, P'] where the 3, are continuous, the
following conditions are satisfied:

(1

(12) M= -5

(13) AMPHYZO0 and ANMP)HY=0 1f 2(P)Y>k
(14) BUNW()=0,  Bi(x) >0

(15) Ba(x)(x— W(x)=0,  falx)>0.

As all the concavity requirements are satisfied, the optimal W(x) is then found
by maximizing L.

We will assume in the sequel that fy(x) > 0, because the values of x where
Sfx(x) =0 are of no interest to this problem. It follows from (11) and (12) that
A(x) 1s a constant function of x because the Lagrangian does not depend on z.
We will denote this constant by A.

We must distinguish two cases

(a) If constraint (6) 1s not binding, then 1t follows from (13) that A = 0. The con-
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dition to maximize L with respect to W is then:
(16) u'(wy— P+ W{x))fx(x) + Bi(x) = B2(x) = 0.

From (14) and (15) it is immediate that W{(x) = 0 can never be optimal 1n this case
and that W(x) = x will be the optimal solution. This 1s to be expected: 1f the
restriction that the insurer puts on his expected utility is not binding, the utility
of the policyholder will be maximized by refunding as much as possible.

(b) Now consider the more realistic case that (6) is binding, then X is uniquely
determined by the equation

N
(17) SO (wy + x — W) fx(x)dxc = k

where the optimal solution W(x) 1s expressed in terms of . Then W(x) = x will
be optimal if

(18) Hi(x)=u"(wy,— P +x)—Xv'(w) 20
and W(x) =0 is optimal 1f
(19 Hiax)=u'(w,— P')=— X' (wy+ Xx) £0.

Because H, 1s a continuous decreasing function in x and > 1s a continuous

increasing function in x, and since H,(0) = H2(0), (18) and (19) can not occur

simultaneously and one of these conditions has to be satisfied up to some x. So

either

W(x) = x for x < x{" where x{ 1s the solution of

(20) H1 (X) =0

or

Wi(x)=0 for x < x3 where x3 1s the solution of

250 H>(x)=0.

If 0 < W(x) < x then the solution 1s determined by

(22) u'(w,— P+ W(x))— ' (w,+ x— W(x))=0.

Differentiating (22) with respect to x, the following equation 1s obtained

(23)  w'(wu— P+ W(x)W' (x)- N"(we+x— W(x)(1 - W(x)=0,

By solving (22) for A and inserting this expression for \ 1n (23), (9) is obtained.
As W(x) 1s a decreasing function of A and of &, X\ 1s increasing with £. So we

can translate the conditions for the different solutions in terms of k. Denote by
k* the k-bound belonging to the special case

(24) H(0) = Hy0)=0 or =0z P)
v'(w)

Then the conditions (18) and (19) are equivalent with & < k* and k = k*, which
proves the theorem.
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REMARK. [t may not be clear how this solution can be computed, because of the
unknown \. As the relationship between & and X\ 1s rather complex, the easiest
way to obtain the solution is as follows: express xi or x; and the solution of the
differential equation (9) in terms of A. I[nsert this solution in constraint (6) and
by trial and error the value of \ belonging to the given k-bound can be found.

4. SPECIAL CASES

In the special case where the insured is nisk-neutral, R,(x) =0, the solution 1s
given by

Wiix)=1 or W(x)= x + constant for x > x*.

From W(x) € x 1t follows that the constant has tc be negauve.

If k < k™ the constant must be zero, whereas for k > k* the boundary condi-
tion 1s W(x3) = 0 and thus the constant must equal — x5° So 1n any case the first
design (1) 1s opumal, which 1s the result that was found by JONES and GERBER
(1974).

For the more realistic case, where the insurer is assumed to be risk-neutral and
the insured 1s risk-averse, the optimal dividend formula 1s derived from
W'(x)=0, and thus W(x) = constant for x > x". So the optimum takes the form
of

Wix)=x x<xi

Wi(x)= xrox>x
with the limiting case

W(xy=0 for all x.

Note that this case, which corresponds to the most intuitive 1deas with respect to
the utility functions of an insurer and an nsured, has a Pareto-optimal solution
that has not been considered before.

S. EXAMPLE

We assume that both the mnsured and the insurer have exponential utility
funcuons:

u(xy= l_—ex—il(—-_(ul and  u(x) =1 SxR= ex;;)( —bx)

In this case the risk aversion coefficients are constant:
R,(x)=a and Ru(x)=b

It follows from the theorem that a Pareto-optimal refund formula is either of the
type
*
X X< X
Wix)=
X+ (x—xl*) x> x
a+b
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W(x)

(xl*rxl*)

v
%

(Xz*,o)
Frouvre |
or of the type
” 0 Y< X
X)=
) b (x— x7) x> A0
a+b N .

These results are illustrated in Figure 1.
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APPENDIX

We will demonstrate how the same result can be derived by applying Theorem
2 of BUHLMANN and JEWELL (1979) which generalizes Borch’s theorem to
exchange functions that are subject to constraints.

Denote by X (x) and X2(x) the amounts the policyholder and the insurer get
in case the gain is x and there is no profit sharing. Analogously, denote by Y;(x)
and Y>(x) the amounts after the profit sharing (cfr risk exchange) Remark that
we have to consider only the cases where there is profit and thus can denote
everything in terms of x. Table 1 gives an overview of the situation. Denote by
(Y (x)=u(w,— P + Y (x)) and by 5(Y2(x)) = v(w, + Y2(x)).

For the unconstrained case, Borch’s theorem provides us with the optimum as
the solution of

k' (Y1) = kat'(Y2)
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TABLE 1
X, (x) Y. (x) Constrainis on Y,(x)
Policyholder 0 W(x) 0 Y () x
Insurer X x— W(v) O x)s x

where k; and k; are positive constants Differentiating this equation, we obtain
KW' (x)u"(w,— P+ W(x))=ka(1 = W (x)Hv"(w. + x — W(x)).
If we divide this equation by the former, we get
Ri(wy + x— W(x))
R.(wy— P + W(x))+ Ru(w,+ x— W(x))

For the constrained case Theorem 2 of BUHLMANN and JEWELL (1979), page
249, states that W(x) s an optimal solution i1f and only if there exists a positive
function A(x) such that

K (Yi(x)=Ax) ifo<Yi(x)<x
k20" (Y2(x)) = A(x) f0< Ya(x) < x
kag' (Yi(x) <A(x) i Yi(x)=0
ka0 (Ya(x)) S A(x)  if Ya(x)=0
ka'(Yi(x) 2 A(x)y if Yi(x)y=x
k20'(Y2(x)) 2 A(x) if Y2(x)=x.

Wix)=

Remark that some signs are reversed compared with their theorem because we are
dealing with utility functions instead of disutility functions.

Let W(x) be a solution of the differential equation in the unconstrained case
and let

0 if W(x)<0
Wi(x)= W(x) f0g W) v
X if x< W(x).

It 15 easy to see that W(x) fulfills the above theorem with A{x)=k,u'(W(x)).
Hence W(x) 1s an optimal solution.

Note that 0 < W' (x) < 1 and that therefore W (x) will attain either the bound-
ary f(x) = x or else the boundary f(x) = 0 at some point. Thus the solutions are
of the same type as described by our theorem.
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