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ABSTRACT

A model for the claim number process is considered. The claim number process
1s assumed to be a weighted Poisson process with a three-parameter gamma
distribution as the structure functuion. Fitting of this model to several data
encountered 1n the hterature 1s considered, and the model 1s compared with the
two-parameter gamma model giving the negative binomial distribution. Some
credibility theory formulae are also presented.
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1. INTRODUCTION

In this note we consider a model for the claim number process Our model 15 a
weighted Poisson process with a three-parameter gamma distribution as a struc-
ture function. This has been considered earlier by DELAPORTE (1960), see also
KUPPER (1962). This 1s equivalent to the fact that the claim number process con-
sists of two independent component processes, a Poisson process and a negative
binomial process The Poisson component may be thought of as the common
part for all risks, and the negative binomial component as the individual con-
tribution of a particular risk. This means that we can write the number of claims
in time t, N, as the sum of two components,

N/= Nll+ N217

where N, has a Poisson distribution with the expected value ¢, say, and N5, has
the negative binomial distribution. We consider here the fitting of our model to
real data using the method of moments and the maximum likelihood estimation.
Unfortunately the maximum likehhood estimators for the parameters cannot be
obtained in a closed form. Hence, they are calculated via maximization of the
likelihood function numerically.

We test the hypothesis Hy:y =0 against the one-sided alternative H, v > 0.
This tests the existence of the Poisson component in the model. We derive also
some credibility theory formulae for our model. The corresponding formulae for
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the two parameter model can be found 1n SEAL (1969). The flavour our model
gives to credibihity considerations is the fact that even the best claim history, 1.¢€.
no claims at all, does not lead to zero premium in the mit. This 1s due to the
existence of the background ntensity which gives rise to the Poisson process.

2. DEFINITION OF THE MODEL

We assume that the claim number process N, >0, 1s a weighted Poisson
process, i.e , if the claim intensity 1s A, then the conditional process (N | A)z0
1s a Poisson process. If the intensity A has the distribution function U, then

© no =Nt

(1 Dty = P(N;=n)= S ()")—f dU(N).
0 n:

We now assume that

)] dUN) = (A =)' g7 * " (a),

when X\ > v, and zero otherwise, with positive «, 8 and . This amounts to the
fact that A has the three-parameter gamma distribution I' (@, 8. v), sec JOHNSON
and KoTz (1969). From (2) 1t follows that the intensity has a strictly positive
lower bound v. By substituting (2) into (1) we obtain

_ O Tk+a) (B N[ L N ot Tre
(3) pn(’)" Z <,+B> <[+B> (n“k)! .

i=o T{a)k!
Formula (3) exhibits p,(¢) as the convolunon of a negative binomial and a
Poisson distribution.

From this or directly from (2) we may observe that the intensity A can be
written as the sum A =y + A, where v is a positive real number, and A, has the
usual two-parameter gamma distribution I'(«, 8). The interpretation of these
components 1s

v = background Poisson intensity which is common for all risks
A = addinonal individual intensity that varies from one risk to another

With this interpretation we can assume that the process N, itself consists of two
mutually independent component processes Ny, and Nz, where N, 15 a Poisson
process with intensity y and N, 1s a weighted Poisson process whose intensity A
has the distribution T'(«, 3). Then

(4) Ny = Nll + NZI’

where N, ~ Po(yt) and Ny ~ NB(«,B/(t+ 3)). Here ~ stands for “obeys the
distribution”, Po means the Poisson distribution and NB means the negative
binonual distribution.

The moments of N, may be obtained from the theory of doubly stochastic
Poisson processes. The stochastic intensity A has the moments

EA= % +v,  Var(A)=«of8%,  E(A-EN))=20/f".
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With the help of the moments of A the moments of N, can be written as
ENI = IEA
Var(N;) = 1* Var(A) + (EA

E(N,— ENYY=E((A - EA)Y) + 3% Var(A) + (EA,

(see SNYDER 1975). By substitution we then obtain
EN, = (/B + )1
(5) Var(N,) = (afB>)1% + (o] B + )i
E((N,— EN)®Y = Qa/B8%)* + BB + (afB + y)1.

These could have also been obtained by using the representation (4).

3 FITTING THE DISTRIBUTION

We say that a parameter vector (o, 8, y) 1s feasible if all the components are
positive Analogously we say that an estimator 1s feasible 1f all three components
are positive We consider here three alternatives for fitting the distribution (3) to
data For convenience we take =1

Method 1

We consider first the method of moments Let the first three sample moments be
£ (the sample mean), s (the sample variance) and X3 (the third central sample
moment), the two latter calculated with weights 1/(n — 1) Equating these with the
population moments (5) we obtain

B=2(5- /(s - 35>+ 2%),
(6) G =(s* - )82,

Necessary and sufficient conditions for the feasibility are
sP>% K> 2te-s?

The first condition imphes that the sample vartance has to be larger than the
samplc mean This 1s due to the presence of the negative binomal part n the
modecl. The Poisson part gives cqual variance and mean value. The second con-
chtion means that the distribution has a larger third central sample moment than
a NB-distribution with the same first two moments.

Method 2

Becausc the use of the third moment 1n estimation may give unduc weight on the
tail we consider here a vanant of the method of moments. The 1dea 1s to fit x,
s? and po, the relahive frequency of the zero class. Then we have to solve the
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system of equations

%) afB+y +a/f?=s?
) e

(8) G=@x-9) P =%, B=(F-9s?-¥),

with ¥ being the solution of the equation

This leads to the solution

v — 2 -
(9) v= - In Po + ( p) 71 In \2 Y
§T =2 ST~y

The solution given 1n (8) and (9) is feastble 1f ¥ lies in the open mnterval (0, X) and
s > X. We consider next the necessary and sufficient conditions for the existence
of a umque solution of (9) in this interval For this purpose, denote

o 2 2_ o
Sy)=v+1In p0+(A—2l?‘* ln(l +S——l>

s°=x X—¥

The solution of (9) 1s then equivalent to the solution of the equation f(y)=0
Now we have
SO =1n po+ (£2[(s* = £)In(s?/3)
and
f(.\_) =x+In Po

We also have

- 2 - 2 o\ -
[ (y)=1 L2AE-y) ln(l + 2 X> n (1 + 3 ") .
sT—x Y-y X—y
If we denote y = (s — X)/(X — v), A(y) = /' (v), then
h(y)=QRy+ 31+ y)-2In(l+ y)

From thisit s easy to see that #(0) = 0and 4’ (y) > 0, when y > 0 But this means
that, 1f s2 > ¥, then f"(y) > 0 for 0 < 7 < X. Because the condition s? > %15 also
necessary for & > 0, we have that the conditions

5% >, -x<1In po < (- x*(s* - %)In(s?[x)

are necessary and sufficient for the existence of a umque feasible solution. These
mean that the zero class probability must lie between those of a Poisson distri-
bution and a negative binomial distribution with due first moments.

Method 3

{_et us assume that we have the data ng, n, ..., nxy, where n,1s the number of risks
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having had ; claims in unit time. The maximum likelthood method gives us the

esiimator (&, 3, 7) which maxinmizes the hkelihood function

A
L(e,3,v)=1In HO (p, ()™
JE’..

A
=2 min p()

P
:i:”{“m1fﬁ"7+m<§r¥;?)mj—x;+ﬁﬂ]
—n mlfﬂ_m
+2;””“@1é%rﬁaf)mj—nuul+aw»

where n=ny+  + ny 1s the total number of observed risks. To facihtate the
maximization we denote 7= y(l + 8), and substitute (y — y)/y for 8 1n L. Then
the new hkelithood function 1s

- A, ' '+ «) )
e _ n—y_ - + 1 UL AL . S, B
L(c,n,v)=naln . ny + nx In(y) I:Z[,' n, In <lé) 0G = DT (e’

If we put the derivative with respect to y equal to zero we get the equation
(10) —naf(n—v)—n+nify=0,
or equivalently

X=++ a/ﬁ.

In order to handle the partial derivatives with respect to « and n we denote

, L Te+a) |
e ) = 2 e

for which
ST +m-1
9 o1 J“F(l+0')/%1 ,E/(a )
b (- 22 T Ny —nNiy' ’
and
_a_ '/1 I-‘(I+CY) (_’)

an ST -0t
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With the help of these we have

n

A
—ny+nx In(y) + 2, 1, In(w,(a, 9)),
J=0

L{a,n,v)=na ln

and

A
Ky nal(n=-v)""'=-nH+2n 9 w,(ee, 1) (W, (e, 7))~
a J=0 aﬂ
(an ‘ 5
L=nin(m="y)n)+ 2 n Y w,{oe, 1) (wilee, 1)) 7

1=0

Because of (10) our three-dimensional maximization problem has been reduced
to a two-dimensional one. This problem may be solved using an optimization
method, which makes use of the gradient given in (11).

4. TESTING THE MODEL

After having fitted the model using the maximum likelihood method we can
naturally test the goodness of fit of the model using a x2-test.

If we have a good fit, there lies the question whether v differs from zero
significantly. The case v = 0 corresponds to the pure negative binomial distribu-
tion, 1.e , the Poisson background is absent We need to test the null hypothesis
Ho vy =0 against the alternative H, : y > 0. Under the null hypothesis the number
of claims has the negative binomal distribution. This distribution 1s fitted to the
data using the maximum hkelihood method. Description of this method for
negative binomial distribution can be found for example 1n JOHNSON and Kotz
(1969) This gives us the estimator (&, B). If we denote by p, and p, the class ¢
probabulities given by the cstimators &, B, v)and (&, 3), respectively, then we can
form the test variable

A
(12) Y=-2 2 n In @/p).
1=0

For the conditions under which a hikelihood ratio has the x2(1)-distribution as 1ts
asymptotic distribution we refer to RAO (1973). In our case the value y =0 lies
on the boundary of the parameter space. Hence, the asymptotic distribution is
not x2(1) but a 50: 50 mixture of x2(1) and a distribution degenerate at origin,
as has been shown by SELF and LIANG (1987). This means that if we choose the
sigmficance level €, the critical value will be the (1 — 2¢)-fractile of the x*(1)
distribution. The other conditions given by Rao are met by our distribution but
the positive-definiteness of the information matnx. The verification of this fact
seems to be a hopeless task in general. We have only shown that the determinant
of the information matrix becomes zero when o and 8 tend to infimity with therr
1atio constant. This means that the results of our tests become unrehable as « or
B3 becomes large. We have also verified numerically that the information matrix
1s positive defimite when o« =1 and 3 1s finite The apphcability of our test 1s not
rigorously verihed, and the tests to be performed later are only of guiding nature
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5. CREDIBILITY

We now look at what some credibility theory formulae look hke for our
model. We denote
plln(sl ty= P(Nws— N, =[| N;=n),

the conditional probability of / claims 1n ume s after having had n claims 1n time
t. Now we have

" !
pl!n(S ) () = </+ ﬂ) (L> <i> pl+n([ + S)/[Jn(f),

n {+5 I +S

(see SEAL, 1969 p. 27). For example the probability of no claims after having
had no claims 1n time 7 1s

pools| 1) = (ﬁ) T

B+t+s

The conditional expectation of the intensity A after # claims in time 7 1s

E(A|n,{):”+l Pusilt)

f ,Dll([)
”2 Mk +a)(v(B + 1))"”'"/((N+ 1 - k)kY)
_n+1 420
B+t " '

2 Tl a)(y(B+0)" " (n = )Lk

Further the conditional density of A after » claims in time ¢ can after some
manipulation be written as

(B+ 0" =9)"""e=*E 0 ()" pytr)
I'(c) nt palr)

for N> v. The first factor here 1s the density function of the distribution
I'(a,B +1¢,v) Especially after claim-free time ¢ we have

(A|Ni=0)~T(a,+1,7)

dUA | n, 1) = dX,

so that
E(Niss— NN =0)=(a/(B+ )+ 7v)s
Var(Ny = N | N=0) = as /(B + )2 + (e/(B+ 1) + v)s.
Further, if we let 7 tend to infinity, then
E(Nivy— NN =0)— s
Var(Nis, = NN, =0)— s
Equivalently we can write that
EA|IN=0=a/(B+1)+y—~
Var(A| N, =0)=af(B+1)* 0,
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as oo This means that (A| N, =0) — v n probability, so that a claimless risk
will approach a risk with pure Poisson claim process. This means also that the
credibility premium would converge to y and not to zero. Similar to the preceding
results, various results concerning the bonus class systems can be presented in a
computable form 1n our case.

6 TITTING THE MODEL TO REAL DATA

In this section we consider the fitting of our model to some data that can be found
in the actuarial hiterature. We calculate the maximum hkelihood estimates for «
and 8 n the case when v = 0, and for «, 8 and ~ 1n the general case. To get started
we solve y from (9) using y = X/2 as the first guess. Then we use this y together
with « and 8 obtained from (8) as the initial guess for the calculation of the
maximum hkelthood estimation These estimates were computed using the
Davidon—Fletcher—Powell method, see RAao (1978). Also (12) we compute 1n
order to perform the likelihood ratio test.

Qur first fit 1s to the TROBLIGER (1961) data Trobliger fitted to his data a
model in which the risks were classified into two classes “the good’ and “the
bad”. The fit was good with x(1)=0.44 These data give %= 0.14421976,
52 =0.1638699 and po = 0.872949 If the negative binonal distribution 1s fitted,
then & = 1.117895, B = 7.751332, and 1f our model 1s fitted, then & = 0.2766328,
5 =13.7597937 and ¥ = 0.07064318. The frequencies of different classes for our
model and the negative binomial distribution together with the observed frequen-
cles are given 1n Table 1.

It the three {ast classes and the class “ =7 are joined together, the x2(1)-value
for goodness of fit test of our model 1s 0.0042. This extremely low value 1s due
to the fact that three parameters were fitted. The likelihood ratio test has now
the x2(1)-value 3.93 which exceeds the critical value 2.706 at the 0, 95-level.
Hence, the hypothesis Hy 'y = 015 rejected. We now have the estimate 0 071 for
the background itensity. This may be compared with the mean intensity
x=0.144 and the “good” tensity 0.109 in Trobliger’s model. The estimated
background intensity 1s 49% of the estimated mean intensity and 66% of the
estimated “good” value.

WILLMOT (1988) has fitted an extended negative binomial distribution to this
data The x? value was 0.0282 which indicates a very good fit.

TABLE |
No of claims Observed Our model NB
0 20592 20591 87 20596 76
1 2651 2651 45 2631 03
2 297 296 42 318 37
3 41 41 12 37 81
4 7 6 70 443
S 0 118 052
6 1 021 006
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We look also at another example a little closer. THYRION (1960) fitted also a
three-parameter model of weighted Poisson type. This model has a reasonable fit.
The estimation was not maximum likelihood, and so no x2-test 1s available. The
estimated parameters are ¥ =0 2143537, s2=0.2889314 and po =0 82866505.
The estimated negative binomial parameters are &=0.7015122 and 8=
3.2726858 The estimated parameters of our model are & =0.2006137, 8=
1.6665135 and v =0.09397439. The calculated and observed frequencies are
collected 1in Table 2.

If the three last classes and the class “>8" are joined together, the goodness
ot fit test for our model has the x?(2) value 4.12. This is below the 90%-value
4 605 so that our model cannot be rejected. The hikelihood ratio test has the test-
value 9 53, which exceeds even the 0.995-level The hypothesis Hy:y =015 then
1ejected. The estimator for the background intensity v = 0.094 1s about 44% of
the estimated mean intensity x.

We have considered several other data from traffic insurance. We shall review
them herc only briefly to save space. LEMAIRE (1979) gives data to which already
the negative binomial distribution fits well. Hence the hypothesis Hy: v = 0 is not
1ejected. In spite of this the maximum likelihood estimator for the background
intensity s 40% of the estimated mean intensity x. DELAPORTE (1962) gives
data, which has the tail shorter than the fitted negative binomial distribution has.
Hence, our model leads to a negative value for the background intensity, and can-
not be fitted to this data. PESONEN (1962) has data to which alrcady the negative
binomal model fits well, and the hypothesis of zero background intensity 1s not
rejected Again, however, the estimated background intensity 1s a large percent-
age, 60%, of the estimated mean intensity x. MUl + (1972) gives two sets of data,
A and B. The data A lead to a similar situation as that of Delaporte, and the
data B similar to those of Pesonen and Lemaire. Finally BUHLMANN (1970) gives
data for which the null hypothesis of zero background intensity 1s rejected with
a high x2-valuc. On the other hand ¥ 1s as low as 0.37 ¥. GOSSIEUX and LEMAIRE
(1981) have also considered the same data and they have found that the best fit
among four distributions was given by a mixturc of two Poisson distributions.

As a conclusion we must admit that the model presented here 1s not a general
solution to the problem of determining the claim number distribution. If the data
have a long tail then this model is worth considering 1f the tail 1s short then the

TABIE 2
No of claims Observed Our model NB
0 7840 7837 40 7847 0l
1 1317 1326 16 1288 36
2 239 222 76 256 53
3 42 52 68 54 07
4 14 15 08 1171
5 4 466 2 58
6 4 1 50 057

~J

1 050 013
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bad fit of the negative binomial distribution cannot be corrected using this model
with positive v However, the knowledge we have of hitting this modecl indicates
that in most of the cases the background mtensity 1s somewhetre around the half
of the mean, approsimately between 0.4x and 0 6 Additionally this modcl can
be used to build up a bonus—malus system with some defimte lower boundary for
the premium

7 ADDITIONAL TOPICS

Several Yeaws’ Duata

Let the same portfolio be observed during a pcriod of several ycars. Let us
assume that our model 1s the truc one. Let the o, 8, and v, be the parameters
«, B and v, 1f £1s selected to be the time umit. Equantng the first three moments
for the number of claims 1in time ¢ calculated using time umts | and ¢, repectively,
we obtain

@ = ay, Bi=Bult, Y= Iy

This means that if our model 1s the true one, then the observed values of «, 18,
and /¢ should be fairly constant during the observation period.

Two Portfolios

Let us join two portfohios which have the distribution (3) for the number of
claims with parameters o, 3, and ~,,1= 1,2, respectively. Let the sizes of the
portfolios be 1 ratio p/(1 — p). Let, further,

_ 1, 1f the nsk 1s from the portfolio |
X=0, if the risk is from the portfolio 2.

Then for a randomly chosen risk we have

Ni= Nux+ N (1 = x) = (Niux + N2 (1 = x))
+ (Niaix + Naz (1 = X)) = Nyi + Nao.

where N, 1s the number of claims 1n ume ¢ in portfolio ¢ due to the component
7as in (4). Then N, 1s divided 1nto two components the first of which 1s a mixture
ot two Poisson distributions and the second a mixture of two negative binormal
distributions Hence, the combined portfolio no longer has the claim number
distribution (3). In spite of this we tried this model for two composite data. We
pooled Buhlmann’s data with Trobliger’s data, 1, and then with Lemaire’s data,
1. The fit was excellent 1n both cases, and the null hypothesis of zero background
intensity was rejected with great significance. The interesting feature 1s that the
parameters obtained are close to those of Buhlmann’s, and are not near the hnear
combinations of the original parameters. This can be seen 1n Table 3. For
example the linear combination of the y-parameters 1n the Buhlmann-Lemaire
case would give 0.04887 against the obtained 0.05708.
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Tasit 3
Data { §? & 3 3 3R
Buhlmann 15514 17932 40015 4 068 05679 037
Tiobhiger 14422 16387 27663 3 760 07064 049
mizture | 15334 17679 37838 4 018 05918 039
[ emaire 10108 10745 58881 9 641 04001 040

minture 1l 12965 14615 31966 4 408 05708 044

As a last example we joined together the data of Lemaire, Thytion, Pesoncen,
Tiobliger and Buhlmann and considered how our model fits with these
heterogencous data The fitted MB-disttibution had a y? (3)-value 61 14, which
means poor fit. When our model was fitted, the x? (2)-value was 5.18, which
mcans a moderate fit. The tkelihood ratio test value was 47,55 which is a highly

significant value. The esumated background intensity was vy =0 0654328, which
15 49% of the estimated mean.

A mote detatled exposition of methods and results of this paper 1s found in a
technical report RUOHONEN (1983).
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