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ABSTRACT 

For a general class of reinsurance treaties the author g~ves an upper bound for 
the net premmm This result can be seen as the counterpart t o a p r e m m m b o u n d  
for the classical stop-loss reinsurance cover (see Bowers, 1969). For some special 
cases some prehminary work can be found in Kremer (1983). 

I. INTRODUCTION 

Over the past six years the author has investigated the problem of calculating the 
premium for general reinsurance treaues defined with the order statistic of the 
observed claims. The starting point was from papers of AMMETER (1964), 
BENKTANDER (1978), BERLINER (1972) and KUPPER (1971), treating two special 
cases under very special model assumpUons, and a more general paper of 
CIMINELLI (1976). In 1984 the author developed general formulas for the net 
premium of the generahzed reinsurance treaties under asymptotic considerations, 
in 1985 corresponding non-asymptotic formulas (see KREMER 1984, 1985) and a 
handy recurswe rating method in 1986 (see KREMER, 1986b). Special cases were 
gwen by the author in 1982 and 1986 (see KREMER, 1982, 1986a). For generalized 
claim number dlstribuuons some results can be found m KREMER (1988). Some 
years ago, in 1983, the author gave asymptotic upper bounds for the net premium 
of two special types of reinsurance covers. From these results the question arises 
as to whether it ~s possible to give upper premium bounds also for the generalized 
type of  reinsurance treaty delined w~th ordered claims. In the following these 
bounds are derived under fairly general conditions. 

2. THE GENERAL REINSURANCE TREATY 

Let the random variables Xl, X2 ... .  denote the claims of a collective of risks and 
let N describe the claim number. We order the claims in decreasing size resulting 
m the ordered claims 

X N  I ~ X N  2 ~ ... ~ X N  N. 

For  g iven constants  c~,cz . . . .  such tha t  

t=l Iml 

ASTIN BULLETIN Vol 18, No I 



70 KREMER 

holds true for all 

y l >1 y2 >1 " i> y,, ~ O, 

we define the clmm amoun t  taken by the reinsurer by 

N 

(2.1) R.v= ~_~ c,S,v , .  
/ = l  

Consequent ly  the family ( c , , / )  1) defines a re insurance treaty, which we call a 
generahzed largest c la ,ns  reinsurance cover (formerly. reinsurance treaty based 
on ordered clmms). Two well-known specm[ cases are given m the following 
examples. 

EXAMPLE 1. We take 

C l : ~ 2 = " "  = C p  : l 

c ) = 0 ,  Vj > p 

and get the classtcal largest clatms treaty with parameter  p, which covers the 
p largest clmms of a collective. 

EXAMPLE 2. Let us choose 

C I  : C 2 :  " " - ~ C p - I  = l 

cp = 1 - p and cj = 0, v j  > p, 

defining the so-called E C O M O R - t r e a t y  with parameter  p, covering the p largest 
clmms m excess of the pth  largest clmm. 

The reader is invited to give more obscure examples (see KREMER, 1984). 

3. THE GENERAL PREMIUM BOUND 

We look at the net p remmm N R P  of  our  general treaty defined by the family 

(c , ,1  >/ 1), 1.e. the expected value of RN, 

N R P  = E(R,~, ) 
and get the mare result. 

THEOREM 1. W i t h  the  a b o v e  n o t a t t o n  we a s s u m e  tha t  the  c la tm  s t zes  are  

ldenncally dtstrtbuted, mutual ly  mdependen t  and mdependent  o f  the clam7 
number  N. We get the upper bound  f o r  the net p r e m m m  

N R P  <~ E(NcN)/z + x -E(N(N  - l ) s~)  ~r (3 1) 

wtth 

/z = E(X, ) ,  0 2 = Var(X,)  

&, = c,,  s ,~ = (c, & 

and assuming the exzstence o f  the mome n t s  m (3 1). 
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PROOF With the C a u c h y - S c h w a r z  mequah ty  we get 

~, ( c ,  - &,)(XN, - -  ~) <~ ( C ,  - -  g.~ )= ( X x ,  - u )  2 
t = l  \ u - I  t - I  

We take the cond~nonal  expec tanon ,  leading w~th Jensen ' s  mequah ty  to 

)[± (,"_, N)] E (c, - d,v)(X.v,  - ~)1 N ~ ( c , -  dx)ZE ~.~ (X, - ~)2 I 
I t = l  I 

The le f t -hand side ns equal to 

(x,,, ,- .)I 

and the r ight -hand side equal  to 

(c, - ( v ) 2 N  e. 
\ 1 =  I 

Now taking the uncondi t iona l  expecta t ion ,  app ly ing  once again Jensen ' s  
mequah ty  and rear ranging  leads to the s ta tement .  [ ] 

REMARK l For  n o n r a n d o m  N =  n the s ta tement  o f  Theorem I co r re sponds  
with a result in DAVID (1980), p. 78--79. 

REMARK 2 Obvnously the above  result can be generahzed to t reanes  where m 
(2. I) XN, is replaced by h(Xx ,) with a measurab le  funct ion h on the claims X v  ,. 
In the Theorem 1 one only has to replace X, by h(X,) m the formulas  for p. 
and o z. 

REMARK 3 Nonce  that  the above  p r e m m m  bound  depends  only on the first 
and second monlent  ol tile claim size dlSlrlbuHon and Oil  the d~sIllbtHion ol the 

c l a l m n u m b e r  N For  t h e p r a c t ~ c a l a p p I i c a t i o n  first one has to es t imate  the mean 
# and the var iance o 2 by Ihe classical mean and var iance  e suma lo r s  based on the 
past claims experience.  Since 

E(NO,,,,) = ~ P r o b ( N =  n) c, , 
n - O  I ~ l 

one also needs es t imators  for P r o b ( N = n )  with n />  1. This can be done  by 
using the empir ical  d l smbut~on funcnon  o f  the known past clmm numbers  or 
a l t e rnanve ly  by app ly ing  wel l -known paramet r i c  s taust ica l  e s t lmauon  methods  
based for example  on the a s sumpt ion  o f  Po i sson-d l s t r ibu ted  clmm numbers  (see 
LEHMANN, 1983). 

As an i l lus t ra t ion we cnte the fol lowing examples  
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EXAMPLE 3. We take the condi t ions  o f  the Example  1, this means that we 
invest igate the classwal largest clarets cover. Then one has 

(p ,  Jf N > p 
N ~ ,  

( N ,  if N <~ p 

and 

(3.2) 

E X ~ \ I P I  ll- 4 

get 

N ( N - l ) s ~ , =  (_ p ( N -  p ) '  If N > p 
(0 , If N ~< p. 

Consequen t ly  we have 

N R P  ~ pl x P r o b ( N  > p )  + E ( N [  N ~< P)It P r o b ( N  ~ p )  

+ ( (E (N]  N >  p ) - p ) p  P r o b ( N  > p))~/2 a, 

and if P r o b ( N  ~< p )  = 0 we have the a p p r o x i m a t i o n  

NRP ~ plx + , i E ( N )  - p)p  o. 

We take the ECOMOR-[reao, of  Example  2 of  Sectmn 2 We 

l0  , l l" [V >/ p 
NON= N, )f N < p  

and 

N ( N -  I)s,~= {~ V p ( p -  I)' 

This nnphes the inequal i ty  

NRP ~< E(N[ N < p ) P r o b ( N  < p )#  

l f N > ~ p  
l f N < p .  

+ ((E(N I N i> p ) P r o b ( N  ~> p ) p ( p -  l))~/2a, 

and m the case that  

P r o b ( N  < p )  ~ 0, 

we get the a p p r o m m a t e  bound  

NRP ~ , E ( N ) p ( p -  1)o. 

These  formulas  are correct  for each finite collective,  whereas the formulas  m 
KREMkR (1982, 1983, 1984) are der ived for growing col lectwes with asympto t i c  

cons idera t ions  

4. AN ASYMPTOTIC PREMIUM RATE BOUND 

We assume that  we have a sequence o f  g rowing  collectwes such that the claim 
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number  Nk o f  the kth collective sansfies 

"" lira [E (Nk) ]  = + oo 

(4.1) 

~ llrrlo ° (,,V ar( N~ )~ 
- 7 =0 

and that  the claims X,, t ~ 1 m each collective are mutua l ly  independent ,  
independent  of  N,  and mdenucal ly  dis t r ibuted with expected value/z and variance 
o 2. The general ized largest clatms t rea ty  is defined m the collective no k by the 
sequence o f  cons tants  

(Ct (k), I ~ 1) 

dependent  on k and the claim a m o u n t  (2 1) with c, tk) instead o f  c,. For  
n = 1 ,2 ,3 ,  .. and a sequence (c,t*), ; t> 1) we define a s tep- func t ion  Ck,, on (0, 1] 
by: 

n. 

We assume that the family of  funcuons  (cA,,,k >/ I, n >t 1) is un i fo rmly  bounded  
and that there emsts a bounded  funct ion c on (0, I] such that for each sequence 
(nk,k>1 1)wi th  n ~ [ I , 2 ,  . . I  and 

" hm (nA) = 
k-.~o 

(4.2) 

h m (  nA ~ = 1  
~ - .  \ E  ( Nk )1 

one has (with the Lebesque-mtegra l )  the convergence 

(f ) (4 3) hm (C~,,k(U)-- C(U)) 2 du = O. 

We denote  with U~ the upper  p remium bound  

for the kth co[lecnve m Theorem I. The mean total clatm amoun t  m the kth 
collective is defined by 

v~ = E ( N ,  )t~. 

With  these no ta t ions  we get the fol lowing elegant  result:  

THEOREM 2. Under the above condtt tons we have the convergence 
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wtth 
I 

~,(c) : .I 
O 

s(c)  = 1" 
0 

PROOF. One has the equahty 

KREMER 

G ( u ) d u  

(G(u)  - u(c))2 du. 

\ E ~ )  \#/~ \ E(N,) z " 

Without  loss of  generahty we have because of  (4. I) 

(4.5) 
(2 '2  (N,): + = / 
] / N, '~ + 
/ h m / - - .  = 1 
k.k~=kE(N~ )] 

a e .  

a e  

and because of  this and (4.2), (4.3) 

f 
hm (,~.~,,) =/x(c)  a.e. 

(4.6) ~' -~  
hm (s~,,) = s(c) a.e , 

. ~ c ~  

unplylng wnh a vers,on ot the theorem of  domina ted  convergence (see LOEVE, 
1963, p. 162) the result o f  the theorem above.  ] 

RE_MARk 4. Notice that (4 I) and (4.2), (4.3) are nothing else but more  
fllustranve sufflcmnt c o n d m o n s  for (4.5) and (4 6) 

REMARK 5 Similar a rguments  and a symptonc  p r e m m m  formulas  are given m 
a very general paper  of  the author  (see KREMER, 1984), generahzmg some results 
m KREMER (1982) 

As an fllustraUon we c,te the following case 

EXAMPLE 5 We take the classtcal largest claims cover of  the Example  I ',vnh 
paramete r  p ,  m the kth collective, assume (4.1) and that with a given s ~ (0,1) the 
followu]g holds. 

(4 7) I , m (  p/, ' ] = s  
A .~ \E(N~ )/ 

Th,s lmphes (4.3) under the c o n d m o n  (4.2) w,th 

I I ,  for u ~< s 
c ( u ) =  0, for u > s '  
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~(c) =s  

s(c) =s( l  - s )  

and consequent ly  the Theorem 2 yields 

or alternatively 

,,m (U*) = ,im [(  .,< 
,-0o ~ k-:oL\E(N<) / 

(l_ 
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This means that the premtum rate 

( NRP'  
P = \E(N)p.] 

of the largest claims treaty covering the p largest claims in a collective with 
expected claml number  E ( N ) ,  expected value/z and varmnce o z of the claim size 
can asymptotical ly be bounded  by the expression 

4.1 A numertcal Example 

We assume Pareto-chstl~buted claHn sizes, ~ e. 

P(X, <~ x) = 1 - x-" ,  for x /> 1, 

with a paralneter  ~ > 2, implying 

(a/Ix) = (c~ (c~ - 2))- 1/2 

We get for the numerical  values of the p remmm rate bound (4.8) (m per cent) 
the following iesuhs 

(a) for ~ = 2.5 

E(N)  = 100 
200 
400 
800 

1600 

p = l  2 3 4 5 6 7 

9 90 14.52 18.26 21.53 24.49 27.24 29.82 
6 81 9.90 12 37 14 52 16.46 18.26 19.94 
4.72 6.81 8.47 9.90 11.19 12 37 13.48 
3 28 4.72 5 84 6.81 7.67 8 47 9 20 
2.30 3.28 4.05 4.72 5.30 5 84 6.34 
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(b) for ~ = 3.0 

E(N) = 100 
200 
400 
800 

1600 

p = l  2 3 4 5 6 7 

6.74 10.08 12.84 15.31 17.58 19.71 21.73 
4.57 6.74 8.52 10.08 11.51 12.84 14.11 
3.13 4.57 5.73 6.74 7.66 8.52 9.32 
2.16 3 13 3.90 4.57 5.17 5.73 6.25 
1.51 2 16 2.68 3.13 3.53 3.90 4 24 

(c) for c~=3 5 

E(N) = 100 
200 
4OO 
80O 

1600 

p - - I  2 3 4 5 6 7 

5.34 8.11 10.44 12.55 14.51 16.36 18.13 
3.58 5 94 6.80 8.11 9.31 10.44 11.52 
2 43 3.58 4.51 5.34 6.10 6.80 7.47 
1.66 2 42 3.04 3.58 4.06 4.51 4.94 
1.15 1.67 2.08 2.43 2.75 3.04 3.32 

Some years ago the au thor  publ ished a very spemal bound  for the net p r e m m m  
rate o f  the largest claims cover  (see KREMER, 1983), i.e. 

(4.9) P + (6217 2)/2 2j-I)1/2 
./=1 

The co r re spond ing  numerica l  values are t abu la ted  in table I o f  the former  pubh-  
ca t ion.  One notices that the bound  (4.8) is bet ter  than the bound  (4.9) for larger 
p values,  whereas It becomes worse for smal ler  p values.  Consequen t ly  it is 
p referab le  to use the min imum of  the formulas  (4.8) and (4.9) as an upper  bound  

for the net p remium of  the largest claims re insurance cover.  
O b v ' a u s l y  Theorem 2 is fairly general .  Nevertheless there are examples  where 

some of  the condi t ions  are not satisfied. We look at the fol lowing.  

EXAMPLE 6. We investigate the ECOMOR-cover of  Example  2 with parameter  
pa in the kth collective.  Unfo r tuna t e ly  our  condi t ions  o f  Theorem 2 are not 
s ta table ,  we have to prove (4.6) direct ly Again  let N~. be the claim number  m the 
col lectwe no. k. Instead o f  (4.7) we assume that 

l I m (  p'~ ' ~ = t  
k-~, \ E ( N e ) /  

for a number  t~ (0, oo) Since we have by the ca lcu lauons  in Example  4 

where/{ I denotes  the indica tor  funct ion o f  the set [ • ] As a consequence  we get 
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as in the proof  of  Theorem 2 under the conditions (4.1) (or (4.5)) 

l i m ( U " /  = t ( a ) = h m  ] P ~ - ' ) ( ~ )  

In other words the premium rate ,o(see above) of  the ECOMOR-treaty,  covering 
the p largest claims m excess of  the p largest clmm, can asymptoucally be 
bounded by the expression' 

(4.10) N\ E(N) ]~)  
with the expected claims number E(N), the expected value p. and the standard 
devmnon o of  the claim sizes. Clearly we can assume as m the numerical part of  
Example 5, that the claim sizes are Pareto-dlstnbuted and can give numerical 
results These can be compared with those derived with formula (4.1) m KREMER 
(1983). Th~s evaluaUon is left to the interested reader. It turns out that the bound 
(4.10) Is uniformly higher than the asymptotic bound m KREMER (1983). 
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