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ABSTRACT

For a general class of reinsurance treaties the author gives an upper bound for
the net premium This result can be seen as the counterpart to a premium bound
for the classical stop-loss reinsurance cover (see Bowers, 1969). For some special
cases some preliminary work can be found in Kremer (1983).

l. INTRODUCTION

Over the past six years the author has investigated the problem of calculating the
premium for general remnsurance treaties defined with the order statistic of the
observed claims. The starting point was from papers of AMMETER (1964),
BENKTANDER (1978), BERLINER (1972) and KUPPER (1971), treating two special
cases under very special model assumptions, and a more general paper of
CIMINELL! (1976). In 1984 the author developed general formulas for the net
premium of the generalized reinsurance treaties under asymptotic considerations,
in 1985 corresponding non-asymptotic formulas (see KREMER 1984, 1985) and a
handy recursive rating method in 1986 (see KREMER, 1986b). Special cases were
given by the author in 1982 and 1986 (see KREMER, 1982, 1986a). For generalized
claim number distributions some results can be found in KREMER (1988). Some
years ago, in 1983, the author gave asymptotic upper bounds for the net premium
of two special types of reinsurance covers. From these results the question arises
as to whether it 1s possible to give upper premium bounds also for the generalized
type of remnsurance treaty defined with ordered claims. In the following these
bounds are derived under fairly general conditions.

2. THE GENERAL REINSURANCE TREATY

Let the random variables X, X3, ... denote the claims of a collective of risks and
let N describe the claim number. We order the claims in decreasing size resulting
in the ordered claims

Xvi12Xnv22 .02 Xvw

For given constants ¢y, ¢z, ... such that

n

Z cy € [O, ZI y,]
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holds true for all
)HZ,VZZ' 2)’::20-

we define the claim amount taken by the reinsurer by

N

2.1 Ryv= 2, ¢ Xn

1=1

Consequently the famuly (¢, 7 2 1) defines a reinsurance treaty, which we call a
generalized largest claims reinsurance cover (formerly. reinsurance treaty based
on ordered ciaims). Two weli-known special cases are given in the following
examples.

EXAMPLE 1. We take
C|=(2:...:Cp=l
=0, vw>p

and get the classical largest claims treaty with parameter p, which covers the
p largest claims of a collective.

EXAMPLE 2. Let us choose
C|=C2="=(-'p—l=l
¢p=1—p and ¢ =0, vy> p,

defining the so-called ECOMOR-treaty with parameler p, covering the p largest
claims 1n excess of the pth largest claim.

The reader 15 1nvited to give more obscure examples (see KREMER, 1984).

3. THE GENERAL PREMIUM BOUND

We look at the net premium NRP of our general treaty defined by the famuly
(¢, t 2 1), 1.e. the expected value of Ry,

NRP = E(Ry)
and get the main result.

THEOREM |. With the above notation we assume that the clam sizes are
identically distributed, mutually independent and independent of the claim
number N. We get the upper bound for the net prenuum

3N NRP < E(Néy)u + E(N(N - s¥) o
with
p=E(X)), 02 = Var(X,)
_ 1 & 2 ! Y, .
Cn= <—/;/> '; ¢, SV = (V—T) 2_,' (¢, — €)%,

and assunung the existence of the moments in (3 1).
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PrROOF With the Cauchy—-Schwarz inequality we get

iR

N N 172
(¢ = Ccv)(Xv,—u) € (Z (=&t 2 (X,\u—u)2> .

=1 -1 11

We take the conditional expectation, leading with Jensen’s inequahity to

\ N N 172
E(z (¢, = en)(Xn = )] N) < [Z <c,—c‘-~>ZE(Z (x.—leN)} :
1= 1

=1 =1

The left-hand side 1s equal to

E<Z CI(X/\ I_P")‘ N)y

=1

and the night-hand side equal to

N _ 172
<L (c',—c,v)ZN) 0.
=1

Now taking the unconditional expectation, applying once again Jensen’s
mnequality and rearranging leads to the statement. [ |

REMARK | For nonrandom N =n the statement of Theorem 1 corresponds
with a result in DAvID (1980), p. 78—79.

REMARK 2 Obviously the above result can be generalized to treaties where 1n
(2.1) X, is replaced by /1( X~ ;) with a measurable function /1 on the claims Xv ..
In the Theorem 1 one only has to replace X, by h({X,) in the formulas for u
and o?.

REMARK 3 Notice that the above premium bound depends only on the first
and sccond moment of the claim size distribution and on the cistnibution ot the
claim number N For the practical application first one has to estimate the mean
x and the variance o by the classical mean and variance estimators based on the
past claims experience. Since

E(Ncén) = i <Prob(N=n) i: c,),

n=A0 =1

E(N(N=l)sk) = i "(PfOb(N=ﬂ) 2 (6‘:—5‘:‘)z>,

n=0 =1

one also necds estimators for Prob(N =n) with n > 1. This can be done by
using the empirical distribution function of the known past clatm numbers or
alternatively by applying well-known parametric statistical estimation methods
based for example on the assumption of Poisson-distributed claim numbers (see
LEHMANN, 1983).

As an illustration we cite the following examples
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EXAMPLE 3. We take the conditions of the Example |, this means that we
investigate the classical largest claims cover. Then one has

- P, if N> p
N ;=
e {N, f N<p

and

0 s if N<p.

Consequently we have
NRP < pu Prob(N > p)+ E(N| N < p)u Prob(N < p)

+((E(N| N> p)= p)p Prob(N > p))'* o,
and 1f Prob(N < p) = 0 we have the approximation

(3.2) NRP < pu+ (E(N)-p)p o.

ExavipiF 4 We take the ECOMOR-treaty of Example 2 of Scction 2 We

get
Néw = 10, N2 p
N, if N<p
and
Np(p-1), 1 N=2p
N(N - 1)si =
¢ sy [O , if N<p.

This implies the inequality

NRP < E(N| N < p)Prob(N < p)u
+((E(N| N = p)Prob(N = p)p(p — 1)}"?0,

and in the case that
Prob(N < p) = 0,
we get the approximate bound

NRP = E(N)p(p-1o.

These formulas are correct for each finite collective, whereas the formulas in
KREMER (1982, 1983, 1984) are derived for growing collectives with asymptotic
considerations

4. AN ASYMPTOTIC PREMIUM RATE BOUND

We assume that we have a sequence of growing collectives such that the claim
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number Ng of the Ath collective satisfies

lim [E(Nk)] = + oo
A—co

lm (:V‘"(—NA)) -0
I\ E(Ni)

and that the claims X,, 1> | in each collective are mutually independent,
independent of N; and indentically distributed with expected value p and variance
o?. The generalized largest claims treaty 1s defined 1n the collective no k by the
sequence of constants

(4.1)

(c®,121)
dependent on k& and the claim amount (2 1) with ¢!*? instead of ¢,. For
n=1,2,3,..and a sequence (c{*’,1 > 1) we define a step-function ¢, on 0, 1}
by:

(=11
can(u) =, for we (—, —] and 1=1,2,3, ..., n.
n 'n

We assume that the fanuly of functions (cin, & 2 1, 7 > 1) 1s uniformly bounded
and that there exists a bounded function ¢ on (0,1] such that for each sequence
(n, k= 1) with np €{1,2, ..} and

hm(ni) = oo
k=tc0
4.2)
i _
P—T:(E(Nk)) =

one has (with the Lebesque-integral) the convergence
1
(4 3) hm <S (Com () — c(1))? du) - 0.
L 0
We denote with Uy the upper premium bound
Uk = E(N/‘E,\'_ )/,L + VEJVAWA - i;S}ifk) g

for the Ath collective in Theorem 1. The mean total claim amount 1n the kth
collective is defined by

vi = E(Np.

With these notations we get the following elegant result:

THEOREM 2. Under the above conditions we have the convergence

(4.4) im <ﬂ> =pu(c) + C—i) S(0)
A—oo \ Vi
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with

1
u(c)= g G(u)du
L)

|
s(c) = S ) (G) — p(c)) du.
{

PROOF. One has the equahty

Uy Ne - o \/ <NA(NA 1 )

—}=E|l=—=¢n )+ (-] [E|—=——— sX.).

(u) (E(NA) C‘> (u) E(NO? Y
Without loss of generality we have because of (4.1)

hm (M) = + © ae.

A —oo
(4.5)

Ny

Im = +1 ac
kaw(E(NA ))

and because of this and (4.2), (4.3)

hm (cv,) = ulc) a.e.
(4.6) Ao

hm (S'z“) =5(¢) a.e ,

A —

implying with a version of the theorem of dominated convergence (sce LOEVE,
1963, p. 162) the result of the thcorem above. |

REMARK 4. Notice that (4 1) and (4.2), (4.3) are nothing else but more
illustrative sufficient conditions for (4.5) and (4 6)

REMARK 5 Similar arguments and asymptotic premium formulas are given in
a very general paper of the author (sce KREMER, 1984), generalizing some results
in KREMER (1982)

As an illustration we cite the following case

EXAMPLE 5 We take the classical largest claims cover of the Example | with
parameter g4 n the kth collective, assume (4.1) and that with a given s€ (0,1) the
following holds.

Pi
47 hm =5
@7 , -w(E(NA ))
This implies (4.3) under the condition (4.2) with
o forugs
)= {O, for u>s’
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which means
nlc)=s
s(cy=s(1-15)

and consequently the Theorem 2 yields

Im <gi) =5+\/s(l -5) <9>
k — o \ VA H
or alternatively

%)= m{(ee) ~ o) ( - (o)) )
1 — ] =1 + 1 - | =—/— =),
Rf?o(w) k'fTo[<E<M> E(Ny) E(NoJ) i
This means that the prenuwum rate

_ < NRP)
PT\ENm
of the largest claims treaty covering the p largest claims in a collective with

expected claim number E(N), expected value p and variance o2 of the claim size
can asymptotically be bounded by the expression

“.8) (£55) + \/<L—(N)_< (&) )

4.1 A numerical Example
We assume Pareto-cistributed claim sizes, 1 c.
P(X, <x)=1-x"", for x> 1,
with a parameter o > 2, implying
(o) = (el —2))” 72,

We get for the numerical values of the premium rate bound (4.8) (in per cent)
the following tesults

(a) for a=2.5
p=I 2 3 4 5 6 7
E(N)=100 990 14.52 18.26 21.53 24.49 27.24 29.82
200 6 81 9.90 12 37 14 52 16.46 18.26 19.94
400 4.72 6.81 8.47 9.90 11.19 12 37 13.48
800 328 4.72 5 84 6.81 7.67 8 47 920

1600 2.30 3.28 4.05 4.72 5.30 5 84 6.34
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(b) for «a=3.0

E(N)=100 6.74 10.08 12.84 15.31 17.58 19.71 21.73
200 4.57 6.74 8.52 10.08 11.51 12.84 14.11
400 3.13 4.57 5.73 6.74 7.66 8.52 9.32
800 2.16 313 3.90 4.57 5.17 5.73 6.25

1600 1.51 216 2.68 3.13 3.53 3.90 424
() fora=35
p=1 2 3 4 5 6 7
E(N)=100 5.34 8.11 10.44 12.55 14.51 16.36 18.13
200 3.58 594 6.80 8.11 9.31 10.44 11.52
400 243 3.58 4.51 5.34 6.10 6.80 7.47
800 1.66 242 3.04 3.58 4.06 4.51 4.94
1600 1.15 1.67 2.08 2.43 2.75 3.04 3.32

Some years ago the author published a very special bound for the net premium
rate of the largest claims cover (see KREMER, 1983), 1.e.

14 2)=2y (9 2= 1y1/2
“9 <E(N)>+<E(N)> f(u 2= <)

The corresponding numerical values are tabulated in table | of the former publi-
cation. One notices that the bound (4.8) 1s better than the bound (4.9) for larger
p values, whereas 1t becomes worse for smaller p values. Consequently 1t 1s
preferable to use the mimimum of the formulas (4.8) and (4.9) as an upper bound
for the net premium of the largest claims reinsurance cover.

Obv-ously Theorem 2 1s fairly general. Nevertheless there are examples where
some of the conditions are not sausfied. We look at the following.

EXAMPLE 6. We investigate the ECOMOR-cover of Example 2 with parameter
pi n the Ath collective. Unfortunately our conditions of Theorem 2 are not
suitable, we have to prove (4.6) directly Again let Ny be the claim number in the
collective no. k. Instead of (4.7) we assume that

2
l|m< Pk >=I
k= \E(Ni)

for a number 7€ (0, ) Since we have by the calculations in Example 4

U Ny Ni pilpi— 1) g)
<m>*5<<£(NA)) ”‘>“')+\E<E<NA)>( E(N:) >/""<“’ (n ’

where /; | denotes the indicator function of the set { -} As a consequence we get
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as in the proof of Theorem 2 under the conditions (4.1) (or (4.5))

U\ _ [0\ pE;;Tig
A]Lnl(lfk)_‘t<u> lLToIE(Nk) )

In other words the premium rate p(see above) of the ECOMOR-treaty, covering
the p largest claims in excess of the p largest claim, can asymptotically be
bounded by the expression®

with the expected claims number E(N), the expected value p and the standard
deviation ¢ of the claim sizes. Clearly we can assume as 1n the numerical part of
Example §, that the claim sizes are Pareto-distributed and can give numerical
results These can be compared with those derived with formula (4.1) in KREMER
(1983). This evaluation 1s left to the interested reader. It turns out that the bound
(4.10) 1s uniformly higher than the asymptotic bound in KREMER (1983).
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