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ABSTRACT

It 1s shown how the upper bounds for stop-loss premiums (and approximations
to tail probabilities) obtained by replacing the individual model for a portfolio
of nisks by the collective model can be improved upon at the cost of only shghtly
more computer time. The method used 1s simply to keep a restricted number of
large risks as they are instead of approxtmating them by a compound Poisson
distribution In a real-life example, the relative error in the stop-loss premium is
shown to be reduced drastically by keeping only 10 out of 743 risks unchanged.
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1. INTRODUCTION

Consider the individual model for the total claims 1n one year on a certain port-
folio containing & contracts:

(l) S:X X:.

With this random variable S we can construct a random variable S” having
stop-loss premmums at least as large as S (see, ¢ g. KAAS, 1987, Th. 1 1.3), by
replacing the random variable X, tn (1) by a sum Y, of N, independent random
variables X’ with the same distribution as X,.

N A
2) V=3 X9, s=3 Y,

=1 =1
where the random vanables N, have Poisson (1) distributions and are indepen-
dent of XM, The proof of this statement goes as follows. Consider Theorem
4.3.8 of GOOVAERTS er al (1984), which states that one compound distribution
precedes another in stop-loss order if both the number of claims and the in-
dividual terms are correspondingly ordered First one applies this theorem to a
counting distribution degenerate on {1} to obtain X, < Y, for all 1, where the
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symbol < denotes stop-loss order. Next, applying the same theorem with both
Ny and N, degeneratc on {k}, we see that indeed S < S”.

We assume that the random variables X, are either equal to some amount M,
(with probability ¢,), or zero, which is realistic in life-insurance applications.
Without much loss of generality we assume the amounts at risk M, to be integer-
valued.

The probability distribution of § can be computed using convolution If ¢
denotes the highest aigument of interest, this process takes a number of oper-
ations proportional to k-, since the random variables X, can have only two
values. The probability distribution of S” 15 a compound Poisson distribution
with  parameter A=22gq, and cltaim-amount distnbution P[Z=z] =
%y, u g/ To compute this distribution, one might either use Panjer’s
recursive algorithm or the fast Fourier transform technique The number of
operations nvolved is proportional to /- max M, for Panjer’s recursion and to
b-log b for the FFT techniquc, where b 2 715 a number so large that P[S = D]
1s less than the required precision (see BERTRAM, 1981, o1 KAAs, 1987). Since
both 7 and b will be equal to E£[S] plus some multiples of  Var[S], they have
the same order of magmtude for large portfolios.

In Kaas (1987) 1t 1s shown by a numerical example that the stop-loss
premiums of S and S” are really quite close together. See also GERBER (1984)
There remains, however, room for improvement.

2. A BETTER-FITTING, STILL TRACTABLE MODEL

Our aim 1s to find a random variable §' having stop-loss premiums higher than
S, but not as high as §”. Moreover we want the stop-loss premiums of S’ to be
computable 1n a ume longer by only a constant factor than the time needed to
compute those of §”, whatever the size of the portfolio.

This 1s achieved by mixing the techniques mentioned in Section | (Panjer and
convolution). Define S’ as

3) =2 X+ Y,
eV gV
where Vs some subset of {1,2, ., k}. The policies in set ¥ remain unchanged,

the others arc replaced by a compound Poisson distribution. From the additivity
property of stop-loss order (see GOOVAERTS ef al., 1984), we see that the
stop-loss premiums of S’ are between those of S and S”.

The distribution of § can be determined by first computing the probability
vector of the second sum of (3), either by Panjer’s recursion or by FFT, and
subsequently adding the terms of the first sum using convolution By taking the
number of elements | ¥| in V small enough, the { V|+7 extia operations this
requires do not add substantially to the number of operations used in the first
step. If we use Panjer’s recursion, we may take | V| to be of order max M,. With
FFT we may (asymptotically) leave about log 6 policies unchanged. For large &,
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the standard deviation of S becomes neghgible compared to £{S], so we may
replace log b above by log k.

Having decided upon how many elements to include in V¥, the question remains
which policies we should leave unchanged We consider two criteria

Denote by mz() the stop-loss premium with retention ¢ of an arbitrary random
variable Z. From GERBER (1984, Th. 3, and property (1)) it follows that the so-
called stop-loss distance (the maximum over all retentions of the absolute dif-
ference in stop-loss premium) between S and S’ satisfies

4) max |ms (1) — m ()| <3 20 @M,

€ €}
Note that ns'(1) = ws(f) for all . To mimimize this upper bound the policies
with maximal ¢g2M, should be included in V.

Another option 1s to minimize the total error made n the stop-loss premium
over all integer retentions instead of only its maximum. This can be done as
follows First, 1t can be shown that the means of S, S’ and S” are equal. For any
non-negative random variable Z we have

(5) S: Sw (2= 1) dFz(z) di = S: SO (2= 1) di dFz(z)

!
= S V22 dF,(z) = E[ Z?]
[§]

From E[S] = E[S’] and (5) we deduce directly for the intergral over all re-
tentions of the difference in stop-loss premums for §' and S:

(6) go (ws (1) — ws(2)) dr=3{Var[S'] — Var[S]].

Also, for an arbitrary random variable Z with values only 1in {0, I, ...] we have
by the piecewise hnearity of wz(¢) for non-integral values of 1,

n O o0

@) | T di= 3 4w + w4 D) = 1m20) + X w2().
0 =0 1=1

As 7,(0) = F[ Z] for non-negative random variables Z, for the left-hand side of

(6) we have

(8) IESGEENGIR A REORENOIE
4] =0

Combiming (8) and (6) we see that the total (absolute) error in the stop-loss

premiums 15 mimmized making the variance of S’ as small as possible. The

variance of S equals

A

9) Var{S] = 2, q.(1 - g, )M?.

1=
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For the vaniance of S” we have
A

A
(10) Var[§"] = D, gM? =Var[S] + 2, g*M?,

=1 =1

and then of course the variance of §' can be written as

(D Var[S'] =2, a.(1 -g)M!+ ; q,M? = Var[S"] - 3, ¢’ M?.
1€ gV 1€V

To mumimize the variance of S’, the policies to be included 1n V are those with
the highest contributions to the variance of $”. This means that g2 M? should be
maximal, or equivalently ¢, M, should be maximal. So, according to this second
criterion, only the policies with the lowest risk premiums should be replaced by a
compound Poisson distribution

Intuitively it 1s more appealing to distinguish the policies on their risk premium
than on their value of ¢2M.. Also, since (4) gives only an upper bound to the
maximum of the error, we can expect the error 1n the tails to be less using the
second criterion.

3. NUMERICAL RESULTS

We tested the procedure outlined above on a real-life portfolio of widow/orphan
pensions with a stop-loss coverage for each year’s losses. The data consist of the
capital lost mn casc of death and the mortahty rate of the msured To make exact
computation of the probability funcuon feasible we rounded the capitals to
integers, after having appled a scahing factor The resulting portfolio (after
removal of capnals cqual to zero) had the following characteristics

number of policies, & 743
range of the rish capitals {1, ,50)
expected number of deaths,

S, 17
mean claim 318
expected value of § 5 44
variance of § 45 4]

Table | gives the error 1n stop-loss premium made by applying the collective
model. Two sizes | V| were investigated: | V| =10 and | V| =20 Inclusion of
policies 1n these sets V was done according to both criteria.

The exact values of the stop-loss premium, again expressed as percentages of
E[S], are given in Table 2, together with the relative errors of the approximating
models. Again we see that the collective model $” 1s a good approximation to the
individual model, but, especially in the tails, the extra effort caused by using S’
1s certainly worthwhile. As expected, the errors for small retentions
(<E[S] +  Var[S], say), were smaller using the first criterion, but for bigger
retentions errors resulted almost as large as those for §”.
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TABLE |

ERROR BOUNDS AND ACTUALLY OBSERVED MANIMAL ERROR (OVER Att RETLNTIONS) IN S10P 105
PREMIUMS FOR S” AND S, As A PERCENTAGL 01 E[S]

S” S Vi=10 S',|VIi=20 S, \v|i=10 S p-20
First ¢criternion Second criterion
Total error 1 06 078 062 068 0 54
Error bound 018 0135 014 016 014
Maximal errot 0 046 0037 0031 0041 0035
TABLE 2

STOP 105 PREMIUNS 1OR THE INDIVIDULAL MODEL S AS A PLRCENTAGE OF E[{S], Ritaniv. ERRORS
(#100%) tor 1HE Cot1 ECTIVE MODEL §” AND THE MINED MODEIS §' wiTH | V| =10 anp | V]| =20

Retennon S S S Vi=10 §,{V|=20 S Vi=10 S',|¥|=20
First criterion Second criterion
0 100 000 0 00 0 00 000 000 000
3 61 476 005 0 04 004 005 0 04
6 38 345 012 010 008 oll 009
9 24 846 018 014 011 015 012
12 16 775 023 016 013 017 013
15 11 744 027 018 015 018 014
18 8414 030 020 017 019 014
21 6 062 034 022 019 019 014
24 4 427 039 024 021 020 015
27 3 246 045 027 023 021 015
30 2379 053 030 025 022 016
13 1727 0 64 036 029 024 017
36 1 245 076 044 0 34 026 019
19 0 887 091 0 56 041 029 0 20
42 0612 I 11 073 050 032 022
45 0420 t 37 096 063 0137 025
48 0 280 175 131 082 045 028
Sl 0173 241 [92 118 058 034
54 0 108 329 277 1 66 076 043
57 0 068 4 4] 388 226 096 0351
60 0 044 577 524 297 116 0 57
63 0029 7 38 6 84 375 133 06!
66 0019 9 21 8 64 459 1 45 059
69 0013 11 46 10 89 567 152 058
72 0 009 14 20 13 53 698 147 0 57
78 0 006 17 42 16 77 8 86 142 020
78 0 004 21 11 20 31 1128 1 40 0 61
81 0 003 24 78 23 92 14 64 139 0 64
84 0 002 28 64 27 81 19 20 1 46 0 67
87 0 001 34 37 32 84 24 66 1 61 076

90 0001 4279 41 48 3317 182 091
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4 SOME I URTHER COMMENTS

As pointed out by B. SunDT at the XX ASTIN-Colloquium, Scheveningen
(1987) the idea of separating large and small risks in the computations need not
be testricted to the casc of 1andom variables Xx of purely life-msurance type. In
the next more complicated case, for instance, of including both death risk M,
with probabihty ¢« and disability risk O« with probability 1, on pohcy &, we
may appronmate § by the compound Poisson distiibution §” with parametcr
A—2 g+ X i and clam amount disttibution PlZ=3] — (Xt v o ¢a +
ik oo zri)[N Note, however, that the considerations of how many policics (o
leave unchanged depend on the tact that convolution with a two-valued 1isk tahes
only O(t) steps

Another question raised at this colloquium by W, S, MEUER 15 how these
computational techniques relate to the techniques of stochastic simulation widely
used m practice. A rule of thumb 1s to use simulation only as a last resort and
avoud 1t whenever the model considered admits more exact procedures. Indeed,
suppose we estimate the stop-loss premmum at a certain retention / by »n pscudo-
random draws from the distribution of S, or rather of Z=(S~1¢). To achieve
the same relative accuracy of 1% as in Table 1, we have to take # so large that
(12) L Varlz] g0,

n E[Z]
For r=12 = E[S] + Var[S] and the above portfolio we obtained a value of
n = 185,000, and for =18 = E[S] + 2 Var[S] we even have to generate some
400,000 replications of the portfolio, which amounts to about 300 million
tandom drawings.

A procedure for obtamning quick first estimates we can recommend 1s to use the
famihar Gamma approximation to the distribution of S (see, e.g. BOWERS et al.,
1987). The Gamma distribution admits an analytical expression for the associated
stop-loss premiums. We found that the relative error in the stop-loss premium did
not exceed 7 2% lor 1ctentions in the rtange (0, £[S] + 3 Var[S]) The NP-
approximation might be used too

Instead of using convolution to obtain the exact distribution of the individual
model one might use the recursive algonthm described in DL PriI (1986). As
was pointed out by KUON er al. (1987), his algorithm 1s very time-consuming.
Woith mentioning too 1s the algorithm of KORNYA (1983) to approximate the
distribution of S with a controllable error bound

It should be noted that our method works best for portfolios of small to
mtermediate size, when the risk capitals are of the same order of magnitude as
the retention For really large portfolios, the error reducuion 1s less spectacular,
though still significant

We think one of the main advantages of our approach 1s that 1t can be
cxplained easily not only to clients and managers, but also to those members of
actuanal departments who have not sufficiently kept up with the latest
developments n risk theory.
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