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ABSTRACT

This article studies random variables whose stop-loss rank falls between a certain
risk (assumed to be integer-valued and non-negative, but not necessarily of life-
insurance type) and the compound Poisson approximation to this risk. They con-
sist of a compound Poisson part to which some independent Bernoulli-type
variables are added.

Replacing each term in an individual model with such a random variable leads
to an approximating model for the total claims on a portfolio of contracts that
is computationally almost as attractive as the compound Poisson approximation
used in the standard collective model. The resulting stop-loss premiums are much
closer to the real values.

1. INTRODUCTION

Suppose we are interested in the distribution function of the total claims S on a
certain insurance portfolio. If X; is the random claim of contract /, assumed to
be non-negative and integer-valued, S can be written as

n
(1) 5=2, X

i=1
Unless n is small it is not advisable to use convolution to compute the distribution
of S directly. Even if the contracts are of life-insurance type and one uses, like
DE PRrIL (1986), the additional structure present in the problem (integer contract
sizes in a small range, only few different claim probabilities), already for
moderately large » the computing time involved is prohibitive.

Recently much progress has been made in constructing algorithms.to approxi-
mate the distribution of the total claims with a controllable error bound. We
mention KORNYA (1983), Hipp (1986), and DE PRIL (1988); see also KUON,
REICH and REIMERS (1987) and REIMERS (1988).
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In this paper we try to improve the standard collective model approximation
in a transparent way, and at the cost of only a small increase in computing time.
We give an extension of the method introduced in KaAS, VAN HEERWAARDEN
and GOOVAERTS (1988) for the case of a life portfolio.

One obtains good approximations by replacing the individual model (1) with
a collective model S” having a compound Poisson distribution. See BOWERS et al.
(1987, Chapter 13), or KAAS (1987, Chapter 1). One way to obtain S” is to replace
each summand X of Sin (1) by a compound Poisson sum (with parameter 1) of
iid random variables with the same distribution as the original term, as follows:

n N,
@) S =73 2 XV

i=1 j=1
Being a sum of compound Poisson random variables, the random variable S$” is
also a compound Poisson distribution with as claims distribution the arithmetic
average of the distributions of the individual contracts, and with Poisson
parameter n,

A more standard way to derive a good fitting collective model is the following.
One assumes the contracts to have claim probability ¢g; and approximates the
aggregate claims with a compound Poisson distribution with Poisson parameter
A and as claims distribution a weighted average of the conditional claims distri-
butions, given that a claim occurs. Using A = Zq;, and weights g/, we obtain
the same distribution as S”.

KAAS et al. (1988) assume the term X; to be of Bernoulli type: either X;=0,
or X; equals some known amount M;, as is common in life-insurance applic-
ations. They replace most terms of (1) by compound Poisson sums, but leave
risks with high risk premiums unchanged. If V is the set of indices of risks with
high risk premium, the following random variable S’ results:

N,
3) S'=2 2 XD+ X
gV j=1 ieV
The distribution of the first term of (3) can be computed using Panjer’s recursion
or an algorithm based on the Fast Fourier Transform. The large risks in the set
V are added using straightforward convolution. If the size of V is small, this
second step costs only little extra time,

The stop-loss premiums with S’ are larger than those of S, but not as large as
those of S”; since both §' and S” are integer-valued and non-negative, the dif-
ference for S’ and S” of the total error of the stop-loss premiums, summed over
all integer retentions, equals ;(Var[S"] — Var[S’)]. This property is proven in
KAAS ef al. (1988).

In this paper we assume the terms X; of S to be more general risks. Of course
one might still exclude the large risks when applying the Poisson approximation,
as was proposed in KAAS ef a/. (1988). The convolution process then costs time
proportional to the total number of mass points of the large risks, many of which
are not large at all. We will replace each term of S by a random variable with
stop-loss premiums between those of the terms of S and §”, and with a form
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similar to (3). It will be obtained by replacing most mass points by a compound
Poisson part, and only a few very large mass points by Bernoulli-type random
variables. This way the same accuracy is achieved using less computational effort.
Compared to the approximate methods mentioned above our method is much
more intuitive and easier to understand. A further point we wish to make is the
following. One should not spend too much energy on the exact calculation of this
distribution, because there are other sources of error with much greater influence.
For instance if the probabilities of a mortality table are multiplied by a factor
1 + ¢, the relative change in the stop-loss premiums is of the same order of
magnitude €.

2. ON STOP-LOSS ORDER

If risk X (with E[ X] < «) has stop-loss premiums lower than risk Y for all
retentions uniformly, we say that X precedes Y in stop-loss order and write
X < Y. Stop-loss order is transitive: X < Yand Y < Z implies X < Z. It is not
a complete order: for many random variables X and Y we have neither X < Y,
nor Y < X.

We quote a theorem from GOOVAERTS, HAEZENDONCK and DE VYLDER
(1984, Chapter 4) on the invariance properties of stop-loss order.

THEOREM L. If N\, X\, X5,... and N,, Y, Ya, ... are independent random
variables with counting variables N, and N, satisfying N\ < N,, and with
X, <Y; for all i, we have

N,

N,
@ 2 X< Y
Jj=1 Jj=1

If E[ X] =E[Y], a sufficient condition for X < Y is the following: there exists
an « € R with the property that Fx(x) € Fy(x) for x < o, Fx(x) 2 Fy(x) for
x = a. We say then that risk Y is more dangerous than X.

Some special cases of Theorem 1: first, taking N, = N; =2, we see
X+Y< X+ Zif Yand Z are independent of X and Y < Z. Second, if N, =1,
N; is Poisson(l) and X, X3, ... are iid random variables distributed as X, we
have N, = N, since N, is more dangerous. It follows that X precedes its com-
pound Poisson approximation:

&) X<, X

j=1
Taking N, = n and using (5), we may conclude that the individual model (1)
precedes the collective model (2).

3. LESS CONSERVATIVE APPROXIMATIONS

Consider one of the terms X of (1), omitting the index / for notational con-
venience. Suppose it either has range {0, x;, X2, ..., X} Or { X1, X2, ..., Xu} Wwith
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0< x) € x2 €+ <€ Xy, Introducing indicator variables I;, j=1,2,...,m, de-
fined as ;=1 if X = x;, and 0 otherwise, we may write

m

(6) X=2, I x|
j=1
The marginal distribution of the random variables /; is ‘Bernoulli( p;), with
pi= P[ X = x;]. They are dependent: we have XI;=0 if X =0, 1 otherwise.
In the collective model (2), X is replaced by a random variable Z having a com-
pound Poisson(l) distribution with terms distributed as X. See also (5). By
Theorem 11.2 of BOWERS ef a/. (1987) Z may be written as -

m

W) Z=2, Nj-x.
J=1

where the N; are independent Poisson(p;) random variables, counting the
number of occurrences of claim size x;. Now define the following random
variable:

0

(8) Y= Z‘l B;- x;.
=

where the random variables B; have the same marginal distribution as /;, but are
independent. Then we may prove

THEOREM 2. For X, Y and Z as defined in (6), (8) and (7), we have
X<Y<Z

PrROOF. We will show that X < Y by induction on the number of terms in (6).
If m=1, X has the same distribution as Y, so certainly X < Y. Now suppose the
statement proven if the number of non-zero mass points is m — 1 or less. Let X™
be defined as X ~ 1+ Xm, 50 X" is zero when X = x,,, and equal to X otherwise.
We will compare X' = [,* Xm+ X" to T=B,,- xm+ X™. T is more dangerous
than X, since E[T] =E[X], and Fx(x) > Fr(x) for x> x, trivally since
Fx(xm)=1; for x < x,, we have

%) Fr(x)= P[Bu " xm+ X" £ x] =P[B,,=0] - P[X"' < x]
== pw) {pm+ Fx(x)] = Fx(X)+ pmll — pm— Fx(x)] = Fx(x).

So, we have established X < 7. By the induction hypothesis, X" precedes the
sum of the first m ~ 1 terms in (8) in stop-loss order. Using Theorem 1 we im-
mediately see that T < Y, and so, by the transitivity of stop-loss order, we have
X<Y.
The second part of the theorem is easy: since B; < N; for each j, by twice
applying Theorem 1 we have Y < Z. =
[n fact, we have X < Y Z' € Z with Z’ defined as

m-u m

Z'=3 Nyxi+ 2, Bjx, )
J=1

J=m—t+1
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for some r=1,2,.... So we have found random variables Z’, that are the con-
volution of a compound Poisson part and ¢ Bernoulli parts, and such that Z' is
between X and Z in stop-loss order.

Replacing each term X; of Sin (1) by a random variable Z/ as in (10) we obtain
S’, which is a sum of a compound Poisson distribution (the convolution of the
first parts of (10)) and all the Bernoulli-type random variables that constitute the
second parts of (10).

As remarked in the Introduction, the total increase in the error of the resulting
stop-loss premiums equals half the difference in variances between the different
models (see KAAS er al, 1988). Term X contributes Var[ X] to the variance of
the total claims, Z as in (7) contributes Var[Z] = E[X?] and Z' as in (10)
contributes

an Var[(2'] =E[X*) - 2, p}-x}.

J=m—t+1
If, as in KAAS ef al. (1988), we assume that the number of terms to be convoluted
is fixed in advance, the mass points with the highest contributions to E[S] should
be treated separately.

REMARK. There are many other random variables with stop-loss premiums
between those of a certain random variable X and its compound Poisson approxi-
mation Y as in (8). Let / be any indicator variable, not necessarily a function of
X. The random variable 7/ might indicate whether X came from a special source
(e.g. material damage versus personal injury) or whether X is a large claim or
not, and so on. Introduce independent random variables Xy and X; with X
distributed as X | I =,. Then X has the same distribution as I+ X, + (1 - 1)+ Xo.
If B, and B, are independent random variables distributed as 7 and 1 — I respect-
ively, we have X <€ B;- X1+ Bo- Xo.

PROOF. Let p= P[I=1] and g =1 — p. For any retention d > 0, we have by
taking conditional expectations depending on the values of /, B, and By:
E[(X-d):]=p E[(Xi-d)+]1+q  E[(Xo- d).]

=(p*+ pq) - E[(Xi— d)+]1 +(g*+ pg) - E[(Xo— d)+]
<P E[(Xi—d)s] +q% - E[(Xo— d)+]
+pg - E[{(X)+ Xo—d)+]
=E[(B1* X1+ Bo* Xo—d)+]. |

The choice of I =1 if X = x,, gives another proof that X < T holdsin Theorem 2.

4. AN EXAMPLE

Consider a portfolio consisting of many small risks, such that the total claims S
can be taken to be compound Poisson distributed with parameter 1 and claims
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TABLE |
STOP-LOSS PREMIUMS AT RETENTIONS
d=0,4,8,...,32.

d= S+G” S+G' S+G

0 3.01000 3.01000 3.01000

4 1.07603 1.06498 1.06418

8 0.44933 0.42025 0.41927
12 0.12743 0.08722 0.08672
16 0.03721 0.00829 0.00822
20 0.01143 0.00049 0.00048
24 0.00262 0.00002 0.00002
28 0.00076 0.00000 0.00000
32 0.00017 0.00000 0.00000

distribution with equal probability of claim 1, 2 and 3. If N, N, and N; are in-
dependent Poisson(1/3) random variables, S has the same distribution as
Ny +2+ N2+ 3+ Nj. To this portfolio we add a large risk G, with probability 0.1
of a claim of 10, 0.01 of a claim of 1 and 0.89 of no claim. Define G' to be
10- By + Ns, and G” as 10 Ns + Ns, where By is Bernoulli(0.1), N, Poisson(0.1)
and Ns Poisson(0.01) distributed, all independent. We will compare the stop-loss
premiums of S+ G, S+ G’ and S+ G” at retentions d=0,4,8,...,32. The
results are in Table 1. Notice that the stop-loss premiums for S+ G’ and S+ G
are practically the same. The fact that in S + G” more than one claim of size 10
may occur leads to considerably higher stop-loss premiums.
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