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ABSTRACT 

An IBNYR event is one that occurs randomly during some fixed exposure 
interval and incurs a random delay before it is reported. Both the rate at which 
such events occur and the parameters of the delay distrxbuhon are unknown 
random quantmes. Gwen the number of  events that have been reported during 
some observahon interval, plus vamous secondary data on the dates of  the 
events, the problem ~s to estimate the true values of  the unknown parameters 
and to prcdact the number of  events that are still unreported. A full-distribu- 
tional Bayesmn model is used, and it ~s shown that the amount of  secondary 
data is crmcal A recurs~ve procedure calculates the predictive density; however, 
an cxphcfl formula for the predictive mode can be obtained. The mare compu- 
tational work ~s the evaluation of an integral involving the prior density of the 
delay parameters, but this can be samplified in the exponentml case using Gain- 
mold approxlmations. 

K E Y W O R D S  

Observations delays; lnccurred But Not Reported (IBNR) models, Bayesian 
estlmat~on and prediction 

1. I N T R O D U C T I O N  

An IBNYR (Incurred But Not Yet Reported) claim m insurance is an event 
whose occurrence in some fixed e.vposute tpTte/'va[ is not known u n t i l  some later 
datc because of  random reporting dclays. These delays may be admmistratave m 
nature, or may be due to the type of the covered contingency, as an the case of 
occupational illness. Wath these clmms whose existence is not yet known are 
usually grouped IBNFR (Incurred But Not Fully Reported) claims, whose exis- 
tence is known but whose cost development is incomplete, as in long-term ill- 
nesses or rehablhtataon following accidents. Together these clmms make up the 
1BNR po~tfoho for a gaven exposure year The correct prediction of  the total 
number of  such clmms and their ultimate total cost are of cntacal amportance to 
Insurance companies in the continuing process of setting up and modifying thear 
'" loss reserves" for each of  their pohcy coverage exposure years. Improper esu- 
marion leads to fluctuauons in financml results, massed opportunmes for loss 
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control, increased regulatory scrutiny, and other problems; thus, there are many 
pressures for making correct IBNR forecasts and updating them as new Infor- 
mation becomes available. 

This paper formulates a basic, continuous-time Bayesian model for predicting 
the total number of  IBNYR claims arising in a given exposure interval, when 
only an incomplete number  of  such claims have been reported by some point m 
time. In addmon to being uncertain about the rate at which events occur, we 
suppose that the parameters in the dlstrlbutJon that governs the random repor- 
ting delays are also uncertain, a priori. For a claim that actually has "surfaced ", 
we permit various cases of  addtttonal mformatton about occurrence and repor- 
ting dates that might be available. We shall see that the problem of predicting 
the number  of  as-yet-unreported events cannot be easily separated from the 
problem of  estimating the unknown delay parameter(s). Similar problems arise 
In other fields, such as survey sampling by mall, and estimating undetected bugs 
in computer  software (JEWELL [1985a] [I 985b]). 

The IBNR problem has been studied extenswely in the actuarial literature, 
primarily with models where the "developed  costs"  are reported periodically 
after the exposure year is over. (STRAUB [1972], KRAMREITER and 
STRAUB [1973], BUHLMANN, SCHNIEPER, and STRAUB [1980]. Many other refe- 
rences and a convenient summary  through 1980 may be found m VAN EEG- 
HEN [1981]) 1BNYR claims are often called "pure  I B N R " ;  other names for 
IBNFR are: IBN-Enough-R and Reported-But-Not-Settled. The simultaneous 
avaflablhty of  several exposure years' data (over varying development intervals) 
leads to the infamous " I B N R  triangle" of  data, from which the total ultimate, 
costs of  all exposure years to be forecast simultaneously. BUHLMANN, SCHNIEPER 

STRAUB [1980] first emphasized the additional predictive power available in 
reporting both quantlzed counts and costs for the various development years, as 
have HACHEMEISTER [1980] and NORBERG [1986] in his recent comprehenswe 
model. KAMINSKY [1987] focuses exclusively on count pre&ction problems and 
KARLSSON [1974] [1976] considers the growth in mean counts and costs with a 
known continuous reporting delay process. A recent paper by HESSELAGER ~:~ 
WITTING [1988] introduces unknown quantlzed delay parameters into a credibi- 
hty predlctxon. With these exceptions, one could characterize the field as one in 
which the solutxons are more notable for their mgenmty than for the light they 
shed on the underlying processes. 

We beheve the inherent difficulty of  estimating even just counts and delays 
s,multaneously has been underrated in these "a l l - in-one" ,  cost-oriented, dlscre- 
te-ume models. Therefore, in this paper, chosen to examine in great detail only 
the single exposure-year, continuous-time prediction of  unreported events. Later 
papers will explore the ad&t~onal complexities introduced by quantlzed time, 
multiple data-sources, and simultaneous prediction. Currently, the development 
of  a good model for cost evolution over continuous ume appears to require a 
long-term research effort, one that we believe will use the basic understanding of 
the event generauon and reportmg processes developed here, but will require 
much addmonal  empirical effort to develop an understanding of cost-generating 
mechamsms and their evolution over time. 
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For reasons that will become apparent,  we beheve that the point estimators 
developed in previous papers, either by classical MLE methods  or  by credibility 
approximat ions ,  can only reveal part o f  the difficulty in IBNYR esumahon .  
This is why we have adopted an exact, full-d~smbuuonal Bayesian approach,  at 
least until various approximat ions  become computaUonal ly  necessary. Admit te-  
dly, this approach leaves us open to the crlUcism that our  answers depend upon 
our prior and model d l sm buuona l  assumptions,  as we have remarked before 
(JEWELL [1980]), this IS not a conceptual s tumbling block in the actuarial field, 
as data and experience from related problems often support  such assumpuons .  
Anyone  who wishes to modify these assumptions  can easily implement  the 
necessary changes, thus separating modelling complexi ty and computa t ional  dif- 
ficulties, which are always open to compromise  and lradeoff. Finally, we believe 
that setting up real IBNR reserves must  also include reserves for risk, for which 
we need a prediction o f  the spread o f  final results, not JuSt a point estimator. 

We freely admi t  that this "bu i ld ing -b lock"  model is still far from reality. 
A d d m o n a l  commen t s  on this point may be found in section 13. 

2. THE MODEL 

Our  basic assumptxon is that the events o f  Interest are generated by a homoge-  
neous Polsson process with Jaw parameter 2 (events/year) over  some fixed inter- 
val(0, T] (the exposure interval). Thus, there are an unknown number,  
/J = fi (T), o f  events at unknown occurence epochs (accident dates) .vl, -~2 . . . . .  -~,,, 
given ~ = n. It follows that ~ has a Poisson d l smbut lon  with parameter  2T, and 
that these epochs (with arbitrary numbering) are, a priori, mutually independent  
rvs, uniformly distributed over  (0, T] .  

Each event j is assumed to have associated with it a positive random wattmg 
lune (reporting delay), rvj > 0, such that its observanon epoch (reporting date) is 
.~j = -~j+ ~"j 0 = 1, 2 . . . . .  n). We assume that the (fi's) are ud rvs, with c o m m o n  
density f (w] O) and c d f F ( w ]  0), where 0 is one or more unknown delay pala- 
meter(s), both f a n d  F are zero for w_< 0. 

Our  Bayesian assumpt ion is that ~. and 00 are r andom quantities that have a 
known prior joint  density, p(2, 0). In fact, in this paper we shall assume they are 
a pnon independent, with individual prior densllleS, p(2) and p(0), respectively, 
which we assume can be identified from previous studies o f c l m m  frequency and 
reporting delays. (See discussion m section 1 3) We learn about  these parameters 
through an experiment that observes all reported events m some observanon 
interval (0, t ] ,  where t > 0 is also continuous.  As shown in figure I (with t > t), 
this wflll lead to an observed number  o f  reported events, say r(t), consisting o f  
these events j = 1, 2 . . . . .  n for which jTj_< t, the remaining unreported events, 
a(t)  = f i ( T ) - r ( t )  m number,  will be those for which ~ j>  t. (Where there is no 
confusion and t xs fixed, we shall write simply a = f i - r ) .  Section 3 considers 
various possibilities for reporting secondary data, Dj, that might be associated 
with each observed event j. 
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FtGURE 1 I B N Y R  process  v, qth n =  5, r =  3, and  t >  7 

E x p o s u r e  In terva l  
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t u m e  

J O b s e r v a t m n  Interval  ~-- 
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Given  the above  assumptIons ,  the observed total data, D = { D ¿ ,  D 2 . . . .  D,}, 
and the prior  densmes  p(2) and p(O), the parameter esmnatton problem is to 
de te rmine  the poster ior  dcnsity p(2, 01 D), and thc event predtctton problem is 
to de te rmine  the prcdlct lve density p ( u l D ) ,  and hence the distr ibution for 
/~= r + ~ .  

3. O C C U R E N C E ,  R E P O R T I N G ,  A N D  DELAY 

Let us examine  in more  detail the relat ionship between occurrence and report ing 
dates, the delays, and the exposure  and observat ion  intervals. It can be seen that, 
given 0, every epoch r.v. pair (.~, Pj) is statistically independent  o f  every other  
such pair, with c o m m o n  joint  density" 

I 
(3.1) p(x, y I O) = - - f ( y - x  I 0), 

T 
(0 <x_<  T) (x < y  < oo) 

zero otherwlsc,  as shown by the s e m H n f i m t e  wedge-shaped region m figurc 2. 
Let Rj be thc r andom ou tcome  that event  j is reported by t ime t, i.e., that  (~j, ?j) 
is a pair for which .~:j < pj _< t. Then,  thc mixed density p(x,  y, Rj ] 0) would bc 
(3.1) h n m e d  to thc cross-hatched arca in figure 2. The  marginal dcnsmcs  of  
reported epochs depend upon whether  t < T or t > T, v~z" 



PREDICTING IBNYR EVENTS AND DELAYS 29 

(3.2) 

and 

(3.3) 

p(y,  R~ I o) = 

1 
-~ F(y l O) 

1 
7 [ F ( y l O ) - F ( y -  rl  O] 

( 0 < t <  T)} , 

(t > T) 

1 
p(x, Rj [ O) = --  F ( t - x [  0). 

T 
(0 < x  < m m  (t, T)). 

(0 < y <  t) 

FIGURE 2 Regions of defim!.lon of p (x, y I 0) and p (x, y, Rj [ 0) 

/ 

/ 

t 7" r 

Overall, the probablhty that a pair (2j, 9j) will be reported, wIthout regard to the 
actual dates, is JUSt the probabd~ty of the shaded area m figure 2" 

f (w]  O) dw, (3.4) p (Dj [ 0) = -~ (,- r)+ 

where u + = max (0, u). 
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Now consider again the cxperiment illustrated in figure 1. When an event j is 
reported, it is, of  course, included m the count ?(t) = r. There are four posslbm- 
htmes for observing secondary date, Dj, about this event, creating individual 
secondary data hkehhoods, p(Dj [ 0): 

Type I Data. Observe Both Occurrence and Reporting Dates (xj, yj) 

1 1 
(3.1') p(O,] O) = - -  f ( y j - x j {  O) = - -  f(wj] O) 

T T 

0.e., observing (xj, yj) is equivalent to observing only wj), 

Type 11 Data. Observe Only Reporting Date (yj) 

1 
(3.2') p(Dj[ 0) = -~ [F(y~ [ O ) - F ( ( y j -  T) + [0)];  

Type I I I  Data. Observe Only Occurrence Date (xj) 

1 
(3.Y) p(D, l O) = - -  F ( t - ~ s  ] O); 

T 

Type IV Data. Observe Event Reported But No Dates 

(3.4') p(Dj ] O) = - -  F(wl O) dw =/7/( t  I 0), say.  
T (t_T)+ 

It seem lntUlUVe that decreasing information about 0 is provided as we go from 
Type I to Type IV data; our numerical examples will show that there are strong 
differences. In practive, of  course, there could be a mixture of  different types of  
data from different events Remember  also that t is considered fixed, so that 
knowing r = r(t) means knowing one number; if we know in fact the curve r(s) 
(0 < s _< t), that is tantamount  to having Type II data for all events. Finally, note 
that information of the type " a n  event has occurred but we have not received 
thc paperwork"  would have a hkehhood I -H( t ]O) ,  but be included in the 
count r! 

4. THE DATA LIKELIHOOD 

Assume temporarily that t _> T, and suppose that g( t)  = n. Then the conditional 
likelihood for the total data D will be: 

n Er 1 (4.1) p(Dl2 ,0 ,  n ) =  I-I p(Dj]O) [ 1 - / ? ( t [ 0 ) ]  n-r. 
1! I ! . . .  I! ( n - r ) !  j=l 
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(If any of the Dj were from Type IV, then the multinommal coefficients 
(1! 1! . . .  1!) would be modified here and In (4 2); however, only the ratio 
( n ! ) / ( n - r ) !  is of  importance in the sequel). 

Now, gwen 2, the distribution of  ~(T)  is Poisson (2T), and forming the pro- 
duct to give p(D, n [ 2, 0) results in a fortuitous cancellation of n!, leaving only 
terms in n - r  = u. Marglnahzlng over all values of  u > 0, we obtain the final 
data hkehhood:  

(4.2) p(D [ 2, 0) = p(Dj[  O) r! 
J=l 

l f t  < T the above argument is till correct with regard to r(t)  and the (Dj) (there 
wd be less data with smaller t, on average), but now n represents only the events 
from (0, t] ,  which have Poisson parameter  (2t). Repeating the above analysis, 
we find that T in (4.2) is smaply replaced everywhere by t when t <  T. For 
convenience in the sequel we define: 

(4.3) r = mln (t, T) ,  

and note that, if we replace T by r everywhere in (4.2), it will then be correct for 
any observatmn Interval. 

5. MAXIMUM LIKELIHOOD ESTIMATES 

It is worthwhile to examine the max imum likelihood point estimators for ~., 0, 
and fi, so that they may be later compared with our Bayesian results. 

Assume first that 0 and hence the delay distribution are perfectly known From 
(4.2), we obtain the MLE for 2: 

(5.1) ,~ _ r(t)  
r / / ( t  [ 0) ' 

so that a point estimate for .~(T) would be: 

(5.2) ~(T)  = H ( t l O )  

If  t >_ T so that r = T, (5.2) says simply that a point estimate of  the number  of  
events inflates the observed counts by the known factor H(t  [ 0), i f  t < T, then 
one must additionally inflate by T/t to take care of  the smaller observation 
interval. Clearly, such estimates will be unreahable when t is small because of  
these inflation factors; on the other hand, the estimate will be good when t is 
large primarily because nearly all events will be reported! 

Conversely, suppose that 2 is known exactly, but that we wish to estimate a 
scalar parameter  0 m the delay distribution. Let ...~'(0 [ D j) = In p(Dj]O) be the 
appropriate log-llkellhood of  secondary data for each reported event. From (4.2), 
the necessary condmon for the MLE of  2 is: 
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r(t) 0,-~(0 I Oj) OIl(tl O) 
(5.3) ~ - ( 2 r ) -  (at 0 = 0). 

j = t 00 00 

The actual solution depends in a complicated way upon the form of the delay 
d,s,trlbmlon and the &fferen,t posslbdmes for secondary data. If no dates are 
given with each reporttmg (Type IV), we find .the trlvml estimate 

(5.4) H ( t l o )  = r(t)  
2r 

Other secondary data wdl generally provide a more interesting estimate; for 

example, for Type I, 0 ~ ( 0 )  becomes 0 Inf(wj[  0)/00, thus introducing the 
O0 

samples (wj). 
When both ). and 0 are assumed to be unknown parameters, both (5.1) and 

(5.3) are necessary condmons Io determine the joint MLE (2, 0), i.e., we require 
the slmul,taneous solution of: 

r( t )  . 1 0 ~ ( 0 I D j )  o=0 0 1 n l l ( t [ 0 )  o=o 
(5.5) •r - H ( t l  0------) r(t----) ~ O0 - O0 

Now, xf we assume that no dales are reported, we find this second equation is 
redundant! In other words, with all Type IV data, 2 and 0 cannot be determined 
separately, and there ~s no es,t~mator h! Other secondary data will give usable 
separable estimates, but these are dependable only for large r. For example, with 
Type I data, if ~ = (X~t)/r) is sufficient for 0, one can show that the RHS of the 
second equation in (5.5) is neglble when i is very large, and one obtains the 
usual full-sample MLE from H f ( w j l O ) ,  even though not all events have been 
observed. We have also tried using .the " m a x i m u m  hkehhood predictor"  of  
KAMINSKY [1987] without success. 

In short, the MLE approach is not very uscful for out model when the obser- 
vation m,terva] .s short, when only a few events have been recorded, or when no 
dates have been observed. 

6. BAYESIAN FORMULATION 

In a Bayesian formulation, we must specify our prior reformation about ~ and ,9, 
here assumed to be mdependen,t, a pt torl  One can, of  course, use numerical 
methods with any empirical prJors, but we shall assume analytical priors m 
at tempt to show the general behaviour of  our model under reasonable assump- 
tions. A G a m m a  (a, b) density l for 2 is a convenient model for ummodal  infor- 

ba xa-  I L,-b~ 

F(a) 
I ~ Is Gamma (a, b) means p(xl  a, b) - (x> O) 
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matlon, and, in view of  the form of (4.2), would be a natural conjugate prior 
with 0 fixed. One can select a and b, for example, from the first two moments,  
~-{~.} = a/b and ~{2} = a/b 2. 

Now, given 2, fi(T) is Poisson (2T) and independent of  0, so that, prior to the 
experiment, our opinion is that the number  of  events generated has a Pascal 
(a, T)/(b+ T)) density 2. In other words, prior to data, the predictive moments  
are : 

(6.1, g ~ ( T ) , = ( - ~ ) "  7 / { ~ ( T ) I = ( - ~ )  I, + ( ~ ) ~  1 . 

If  the prior mean count is held fixed, then a is a shape parameter that can be 
used to adjust the prior variance, which is naturally always larger than that of  a 
Polsson distribution because of  the uncertainly about 2. 

The choice ofp(0)  is more difficult, as 0 may en t c r f (w  I 0) and the p(Dj [ O) in 
a variety of  dIfferent ways; m fact, 0 may stand for a vector of delay parameters 
that must be esnmated ) For the moment ,  we will l e a v e f ( w l 0 )  and p(O) arbi- 
trary, and later specmhze to pamcular  forms to show typical results. 

As the postertor parameter density, p(2, 01D),  is not very revealing for any 
choice of  priors, we pass to the central problem of concern, the ptedtctton of the 
unreported event count, ~(t) = h(T)-r(t). Under the assumptions of  our model, 
if the parameters are given, the reporting delays simply filter the original Pols- 
son process with fixed probabihnes;  thus, ~(t) will also be Polsson with reduced 
parameters, using the usual decomposmon independence arguments. If  t >_ T, 
then the parametcr  will be 2 T [ I - H ( t ] 0 ) ] .  On the other hand, if t <  T, the 
unrecorded events in (0, t] have the parameter  2t [ 1 - H ( t [ O ) ] ,  to which must be 
added the unobservable events m (t, T] with parameter  2 ( T - l ) ,  giving a total 
Po~sson parameter  for all unreported events generated in (0, T] of  
2[T-tII(li  0)]. Combining these two different forms for p(ul), D) with appro- 
priate versions of  (4.2), we obtain: 

(6.2) p(u l D) oc h~(u l D) ho(u l D) , 

with 

(6.3) hx(ulD) = - -  2r+Ue-'lTp(2) d2, 
U ) 

and 

(6.4) ho(u[D)=f  IJ=~ p(D~[O) 1 I I - (~)Fl ( t [o ) lUp(O)dO,  

F(a+x) 
2 .~ IS Pascal (a,n) meansp(x[a, Trl - - -  ( l -- n)'~ zta (x = 0, 1,2,. ) 

F(a)x' 
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where oc, "' proportional to" ,  indicates that only terms that vary with u need be 
retained. Note, that there has been a fortuitous cancellation in the term 

exp(-2rH(t]O)) from the likelihood, so that the predictive density can be 
represented as the product of  two factors: 

--  one which depends upon r = r(t) and the prior p(2); 
-- one which depends upon r, the secondary data types and the dates reported, 

and he prior p(O). 
This decomposition occurs in other models where one predicts unreported Pois- 
son events (JEWELL [1985a] [1985b]). 

With the choice of  the G a m m a  (a, b) prior for 2, we obtain : 

(6.5) h~(ulD)= F(a+r+u)'lb@T)"'u! 

that is, of  the form of a Pascal (a+r, T/(b+ T)) distribution. Of course, there is 
further " s h a p i n g "  ofp(u[D) to come from ho(u[D). 

For later convenience, we note that, with (6.5), the predictive density can be 
written in recurslve form: 

(6.6) p(u+llD) (a+r+u~( T )~ho(u+llD) 1 

7. PREDICTION WITH KNOWN DELAY PARAMETERS 

As preparation for more complicated cases, we first examine the prediction 
problem when 0 is assumed to be known exactly. Only the term involving 
H(tlO) is then slgmficant in ho(uID), and we have: 

(7.1) p(uJD)- F(a+r+u) IT-zH(t'O)l" 
u! b+ T 

which is a Pascal predictive density, with first two moments :  

(a+r)T Il-(r/T)H(t'O) 1" 
(7.2) ~(~ [ D} - l+(r/b) ll(t[~ 

(7.3) ~ { ~ ' D } =  g { a l D } [  b+T 1 
b + r H ( t l 0 )  " 

With no data (t = 0), the moments  are ~dentlcal with (6.1). 
If  thc observation interval is small, (r/T), r(t), and fl(t I 0) will also be small, 

so that : 

(7.4) ~ . ~ I D  = ( a + ' ) T  l I l - t  n(t lO) , ( t~O) 
b 
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showing that out Initial estimate of  u is at first increased by the initial reports r, 
before bcmg diminished by the second-order effects due 'to increasing t and 
/7 (t I 0). 

If  the observation interval is large, t > T and II wdl be near umty, so that" 

Vlo+r, T 1 (7.5) g]~ID}~ I _ ~ ) . . . I  [ l - U ( t l O ) ] .  ( t ~ o o )  

The first term is T times the usual credlb;hty updating: 

(7.6) ~{:. I r} = (l - z )  ( a / b ) + z O / T ) ;  z = (T /b+  7"); 

of a P o l s s o n  p r o c e s s  p a r a m e t e r  wi th  a G a m m a  prior ,  g iven  a number  r of  o r d i -  

na ry  undelayed samples from (0, T] This estimate is then diminished by the 
probabdity l - H  of unreported events ouside (0, t]. The first term stabdizes 
towards the correct value of  ~T with increasing samples, but ~t ~s the second 
term that makes the predictive mean of 0 decrease with increasing t. Note also 
that the second term in (7.3) approaches unity with increasing t, so that, in the 
hmlt, & is asymptotically (small-mean) Polsson T 

8. EXPONENTIAL DELAY LIKELIHOOD FACTORS 

We now consider the additional variation due to uncertainty m the delay para- 
meters(s), and the different "learning'"  effects that occur with various secondary 
data. For slmphcity we use the over-familiar exponential density, 
f(w[O) = 0 exp (-Ow). However, we expect the phenomena described below to 
be representative of results obtained with more general delay dlstrlbutmns; only 
the computational details will differ. A somewhal d~fferent approach for 
Type IV secondary data only is described in Appendix C. 

From (3.1), the likelihood for a Type I datum, D: = {a),y:l, is. 

1 
(8.1) p(Dj]O) = L:(OIDj) = - -  0e-°"~ (~5 = YJ-a)), 

T 

where the new notation Lj(O] D:) emphasizes that It IS variation m 0 that shapes 
he(u] D) (so that, for example, the term T - I  here and below can be delected as 
uninformative). It can easily be seen that this hkehhood is unlmodal, wIth mode 
t) = %-i.  Data from r such delays would lead to a Gamma-shaped  likelihood, 
peaked at 0 = (Xwj/r)-1, with very small " s p r e a d "  if a is large. Thus, very large 
amounts  of  Type I data would force he role a form giving the Pascal predictive 
density (7.1), with 0 replaced by 0. In this sence, Type I data has a very strong 
effect on learning about (0 and m reducing the pred~cuve uncertainty of  ~. 
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For a Type II datum, D 

(8.2) L~(01D)  = 

= 'IYj't, and (3.2) has two cases: 

1 
- - [ 1 - e  -°v,] (y)_< T) 
T 

I[e-°t~-r)-e-°Vq (.v~> T) 
T 

A small J') gives a monotone likelihood, leading to a weak shift in 0 towards 
higher values. However, a y j >  T gives again a unlmodal Lj wxth mode at 
0 T =  - I n  [l-(T/yj)]. If yj~> T, one can show that 0 ~  [yj-(T/2)] -t, so the 
effect is similar to that of  Type I data, using a guess of xj = (T/2); however, 
(assuming comparable 0) one can show that the peak of  the likelihood is broader 
(less " informat ion")  for Type II data. Thus, for large amounts of Type II data, 
and many samples greater than T, the secondary data term in h 0 will also be 
tighty concentrated around the mode, but less so than if Type I reformation 
were available On the other hand, ff most or all of  the reporting dates are less 
than T, then the likehhood wall have a very broad peak or no peak at all. In thIs 
sense, then, Type II data ~s not as informative about 0, and hence about H, as 
Type I data. 

For a Type Ill datum, Dj = [~ / ,  (3.3) gives: 

I 
(8.3) Lj(0 ] D j) = -~ [i - e  -ol,-.,,)]. 

Note that this likehhood ~s monotone, and depends upon the length of the 
observation period Because this datum is equivalent to {~)_< t - x l t  it provides 
rather weak information about 0, especmlly as t increases, with many such sam- 
ples, we shall see that the main effect is to spread out the prior density. 

Every Type IV event gives the same hkelihood: 

which is also monotome increasing in O, approaching the asymptote (r /T) more 
slowly than any exponential. With many samples, this hkehood is very umfor- 
matlve, and ~ts mare effect is to broaden the prior density. 

9. COMPUTATIONAL STRATEGIES FOR DELAY INTEGRAL 

We now consider various strategies for computing the delay integral (6.4), 
whxch, for simphclty, we rewrite as" 

(9.1) ho(ulD) = f L(OI D) [K(O)]"p(O)dO, 
J 



PREDICTING IBNYR EVENTS AND DELAYS 37 

assuming that the appropriate forms (7.1)-(74) are used to calculate 
L(O] D)= l-lLs(OI Di), and the kernel K(O) = [ l - (r /T)  lI(t l O)]. The first re- 
mark Is that (9.1) is a rather easy numerical integration for arbitrary p(O), even 
when there are several 0 and many values of u are required However, this does 
not give any analytic insight into the shaping of p(uiD)  from various data 
types. 

Continuing our exponential delay example, we now assume that our prior on 
the unknown parameter (~ is Gamma (Co, do), that is, our prior opinion is that 

L~ O} = (co~do)and ~ '0}  = (g{ 0})2/c0, and that the density is unlmodal, with 
the mode at 00 = (Co- l)/d0. This is not only a reasonable prior for ummodal 
information, but is also conjugate to L(OI D) for Type I observations. 

Our strategy is then to approximate the first two factors m (9.1) by a Gain- 
motd function. 

(9.2) g(O) = (AO) r e-S°, 

m the regjon of  the current mode of the lntegrand (which will initially be 00, but 

perhaps modified as we add terms from L(OiD)). This strategy will convert 
(9.1) into a Gamma integral with a convenient analytic dependence on u. The 
resulting shape will, of  course, be a better approximation to ho(u] .q~), the more 
precise is our prior knowledge about 0; however, the results are surprisingly 
good with Co = 3 or 4 and Type I or II data, for reasons that will become clearer 
as we proceed. Full details on the Gammold method will appear in a forthcom- 
ing paper. 

We now outline this method sequentially, proceeding as if all four data types 
are present, with the total r being broken down into rl, r2, r3, and r4 events. It 
turns out that the Gammold coefficients F and A are exactly or approximately 
hnear m r, so that we shall set F = r7 and z / =  r6 for each data type, and 
concentrate on the calculauon of the umt coc~ficwnts, y and J. Only basic results 
are given below; addmonal formulae and computational details may be found in 
Appendices A and B. 

9.1. Type I Secondary Data 

Type I data Is the easiest to deal with, as L(OI D) from (8.2) is exactly Gamma. 
We recommend that the prior coefficients be updated as follows: 

(9.3) Co~Co+ri; do~do+ri ~, 

where ¢F is the average of the (%) for all Type I data; the current mode is then 
redefined in terms of the  new coefficients as 0o = (Co- I)/d0. (If there is no other 
secondary data, continue with section 9 5). 

9.2. Type II Secondary Data 

Data of  Type II must be subdivided into two groups: Type lla consists of the  r2a 
events with { y j l y j < T l ,  and Type Ilb consists of  the r2b events with 
(y j  I yj > T 1. 
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Consider ing the l ib data first, we can show that the likelihood (8.2) for this 
data is u m m o d a l  and well-titled by a G a m m a  w~th unit parameters  given by 
(A.4). To  a first approxamahon ,  one can take 

(9.4) Y2b ~ 1 ; J2b -~ ) 7b -- -- -~- (00 T ) ,  

where j;b as the average of  the r2b Type  l ib data values (yj). Therefore,  our  
strategy with this data is to once again update the coefficients 

(9.5) C O ~ CO+r2bY2b; do ~ doq-r2b~2b, 

using either the exact approx imat ing  coefficients, or (9 4). As before, the c u r r e n t  

mode,  00, should be redefined from these new coefficients. F rom this point on, 
the G a m m o l d  approxamat lon  coefficients usually depend upon 00, an a weak 
way. Therefore ,  until sectaon 9.6, we r e c o m m e n d  keeping 00 fixed. 

The  hkehhood  factor for Type  IIa data ~s mono tone  increasing, with no mode  
However ,  we have found that a G a m m m d  approx imat ion  is still locally reaso- 
nable. To  a good a p p r o x i m a t i o n '  

l m 2 0 o ,  (9.6) Y2a = 1; 62~ ~" 2 I - y  6 T 

where 37 a and m2 are the first and second m o m e n t s  of  the P2a data points (yj), 
both small by definit ion o f  Type  IIa 

9.3. Type III Secondary Data 

Type  III data  is very uninformat ive ,  especially for large values of  t, with a Iike- 
hhood is Smlllar to that  o f  Type  IIa data, but wath all te rms m yj replaced by 
t - .~ ) .  (9.6) sull gwes  an inltlal approx imat ion  

I 1 
(9.7) ya ~ I;  J3 ~ - - ( t - ~  - m 2 0  o , 

2 6 T  

where m 2 is now the second m o m e n t  o f ( t - x j ) .  Both coefficients become  smaller  
as t increases, reflecting the umnfo rma t lve  nature of  the data {.~j = xj < .Pj < t} ,  
and it ~s then necessary to use the exact formulae.  

9.4. Type  IV Secondary Data 

With this min imal  informat ion  {.~j~ t}, (8.4) is mono tone  increasing, and 
depends  only on r and t. To  a rough approxamat lon :  
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(9.8) y4 ~ 1-, ,~4 ~ -~- t (0 _< t ~ T )  . 

.t3-~r-tj3 (t>_T) 
t2_(T_t) 2 

We have found usually it is necessary to calculate the exact unxt coefficients at 
the current mode. In fact, for large l, 84 can become negative, m which case we 
r ecommend  setting ~4 = 0, and approximat ing locally by a polynomml.  

9.5. The Kernel K(O) 

As d~scussed in Appendix  B, the kernel is mono tone  decreasing, much like a 
negative exponential.  Therefore, a reasonable approximat ing  procedure is to set 
7h-= 0, and find ~/~ from (B.9) at the current mode.  For a quick approxima-  
Uon • 

(9.9) 8~ -~ 

t3 / 
2 T 2 (I < T) 

T 
t - - -  ( t  ~ T )  

2 

3 K gives the impor tant  dependence o f  h o upon u, since d o wdl be updated by 
zig = 3~u,  and Co wdl not change with u. 

9.6. Completing the Computations 

With all o f  the above approxlmat~ons completed,  the final coefficients o f  the 
G a m m o i d  form 0 c-~ e -°d representing all factors in (6.4) will be:  

c = c o + F ;  d = d o + z l + O x U ;  

(9.10) F = r I + rza 72a + r2b 92b + t'3 93 + r4 Y4, 

,4 = r t w + r 2 a ~ 2 a + r a b ~ 2 b + r 3 ~ 3 + r 4 ~  4 . 

If  desired, one can now make a second pass through all o f  the approximat ing 
formulae using the " f i n a l "  data-only mode, 0o = [ ( c -  l) /(d0+A) ], to see ff there 
~s a slgmficant change in the umt coefficients, and hence in (9 10). In our  hmtted 
experience, the coefficients wdl be little modified if the mode  o f  the prior den- 
sity or o f  the Type I or  Type l ib data likelihood is reasonably concentra ted;  m 
other  cases, several iterations may be reqmred. The integral o f  (9.1) is now 
F ( c ) / d  c, but only d ms reformative for u, so we may just as well take:  

(9.11) ho(u I D)  = d -c = (do+ A + ~ K u )  -~co+O. 
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For a quick approximation,  one could use the initial terms of all the approxi- 
mations to compute ,4, ~k, and r. If  all the data is of  Type IV and t > T, a 
different approach to calculating ho is possible using a Beta prior, details are in 
Appendix C. 

10. CALCULATING THE PREDICTIVE DISTRIBUTION 

From (6.6) and (9.11), we obtain finally a recursive relationship for the predic- 
tive density : 

p(ul  D) k, u+ I ~ do+A+6K+(SKU ' 

whose values are calculated by setting p(0 [ D) = 1, "boo t s t rapp ing"  up through 
"sufficaent" values of  u, and then renormahzlng. Moments and the tall distri- 
bution are then obtained numerically. As this recursive method is very efficient, 
~t is easy to explore the full-distributional ~mplicatlons for different parameter  
and data values. 

If  one still insists on a pomt estimator for the number  of  unreported events, 
the predtcttve mode can be obtained analytically. Let u* be the (usually non- 
integral) solution to: 

(10.2) u * + l  = ~++T J T . . . . .  ; 
L do + "4 + 6x+ (SK U * 

this solution always exists, and can be obtained iterauvely from (10.2), starting 
with an arbitrary guess on the RHS; convergence is rapid. The predictive mode, 
fi(D), is then the mteger greater than or equal to u*. 

This type of  point estimation is related to an old and well-known formula in 
population biology, assocmted with LAPLACE, PETERSEN, and others 
(JEWELL [1985a]). In section 12, we shall see that (10.2) also has an mtersting 
interpretation in terms of  credibility predictors 

Of  course, the great advantage of  (10.1) is that it provides the complete pre- 
dictive dlstributton for ~. As we shall see in the following numerical example, 
the varmnce of  this distribution remains quite substantml with even a large 
amount  of  data. This knowledge is crucial in making a proper risk assessment of  
IBNR reserves. 

I 1. NUMERICAL EXAMPLE 

To illustrate the above theory, we analyzed a numerical example which assumes 
that our prior knowledge is correct in the means, but is not especially precise. 
Based on these results, the reader can easily extrapolate to cases where initial 
knowledge is different from reality, or, conversely, is very accurate. 
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Specifically, we assumed that ~. has a G a m m a  (2, 0.02) prior density, which 

makes  g~{2} -- 100, 7 / ]~  I = 5000; for convemence ,  we take T =  1 year, which 
makes  the mean total rate of  I B N Y R  events  100 per year. This  leads to a Pascal 
(2, 1.02-~), densi ty for fi, with g~{fi} = 100, ~'{fi} = 5100, and ~ = 49, the 5%, 
25%, 75%, and 95% fractdes are:  n05 = 16.5, n25 = 47.0, n75 = 134.5, and 
n 95 = 238.1, respectively,  which is qmte  a broad range, a prtoJt We assume that 
0 has a G a m m a  (4,6) prior  density, so the prior  mean delay is g'{O - I  } = 2.0 
years, and .~'{ 0 - I  } = 2.0 years 2. 

For the purpose  of  s~mulanon, we further " s t acked  the d e c k "  by assuming 
that the true value of  the delay pa rame te r  was 0 = 0.5 per year, and, whatever  
the true value o f  2 was, that exactly n = 100 I B N Y R  events  were generated 
during the exposure year. Table  1 shows a few of  the s imulated values, arranged 
in order  of  increasing (yj), and hence approx imate ly  increasing m (wj). In the 100 
samples,  the mean delay is 2.35 years, with sample  var iance 5.35 years, so the 
coefficient o f  v a n a u o n  is about  right, but the delays are a little long, on average 
Figure 3 shows the curves o f H ( t  I 0) and K(O) = [1 - ( r / T )  H(t ] 0)] versus t, for 
the true value 0 = 0.5. The  ragged curve is the s imulated count  history for 
reported events,  r(t).  

TABLE 1 

EXTRACT OF 20 OF THE SIMULATED VALUES FOR NUMERICAL EXAMPLE (0 = 0 5) 

x y w 

043 206 .163 
.022 .234 213 
095 267 172 
330 527 .198 
112 629 517 

570 i412 841 
390 1.430 1040 
600 1 483 883 
902 1 493 590 
118 l 558 1.440 

269 2820 2551 
728 2 823 2 095 
282 2 872 2 590 
055 2 985 2.929 
882 3 055 2.173 

036 9 12s  692 
933 9 408 8 475 
311 9 616 9 305 
349 11 194 10 845 
563 12 967 12 403 
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PROBABILITY FACTORS & ACTUAL COUNTS 
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FIGURE 3 Observatton Probability, Kernel and simulated count history versus t(T = 1, 0 = 0 5). 

11.1. Type I Data Analysis  

In the first analysis, we assumed that all data was o f  Type I, and we examined 
observat ion intervals o f  t = 0(0.5)10.0 years ( remember  T = 1 year, and the 
mean delay is 2.0 years. The results are summarized in figure 4, which shows 
r(t), ~{nl  D 1 = r ( t )+  $-{g(t) [ D}, h(D) = ~(D)+r( t ) ,  plus the four fractiles of 
( k i D )  mentioned previously, all versus t. (Continuous curves are shown for 
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convcruence) .  O f  course,  these ca lcula t ions  were carr ied out  by first f inding the 
complc t e  pred~ctnve densi t ies ,  p(u] D), (over  the range [0,1000]) using the 
app r op rmte  sifted da ta  for the current  value  o f  t, and  then f inding the s u m m a r y  
s tat is t ics ,  this took about  10 seconds  on a P C - A T  for each value o f / !  All  results 
were t ransla ted from predic t ing  ~ to prednctmg tiff for ease tn making  compar t -  
s o n s .  
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FIGURE 4 P r e d l c u v e  m e a n ,  m o d e ,  a n d  f r a e t d e s  v e r s u s  t for  T y p e  I d a t a  ( T =  1) 
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From the figure, it can be seen that the point estimators, the mean and the 
mode, both wander around the true (and ultimate) value of 100, although, for 
reasons we do not completely understand, the mode seems to be less " t r i cked"  
by intermediate fluctuations in r(t), once the mode has risen from its lmtlal low 
value of  49 until after, say, t > T It is extremely satisfying to see how the 
" B a y e s i a n  c o n f i d e n c e  i n t e r v a l s "  ( p r e d i c t i v e  q u a n t l l e s )  c o n v e r g e  w i t h  i n c r e a s i n g  

t, although it must be remembered that much of this is due to the decrease in 
l -H( t  ] 0), and not just the learning due to D! 
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FIGURE 5 P red lc twe  dens i ty  for  T y p e  I d a t a  (I = 4 T)  
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PREDICTIVE DENSITY t = 8 T 
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FIGURE 6 Predlctwe density for Type I data (t = 8 T) 

Specific deta i l s  for t = 4 years (H = 0.824) are as fol lows:  the da ta  gave 
r =  74 repor ted  revents,  plus secondary  mformatzon leading to pa rame te r s  
F = 74, ~ = 94.509, so that c = 78, d = 100.509, and the new (and final) mode  
was 00 = 0.7661, from which JK = 3.4368. The  result ing Ip(u] D) is shown m 
figure 5, w~th g - I ~ ] D }  = 20.28, ~."{~l D / = 143.6, and h (D)  = 14 (there are, 
m fact, 22 events  outs tanding) .  If  we increase the obse rva t ion  to four tame con- 
s tants  at t = 8 years (H = 0.976), there are now r =  98 repor ted  events ,  the 
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parameters  are F = 95, A = 184.436,  so c = 97, d = 190.436,  and the new m o d e  
is 00 = 0 .515 ,  from which  6K = 7 .4573.  p(u[ D)  ts s h o w n  m figure 6, and 
U l g l D  1 = 3.55,  ~ ' t f i l D }  = 6.6, and ~ i ( D ) =  2, wh ich  is exact ly  the n u m b e r  

o f  unreported  c la ims .  W e  first found ~i(D) direct ly  and then through (10.2),  
starting with init ial  esttrnates o f  u* = 100,  m all cases,  the i teratlve approach 
c o n v e r g e d  correctly after 5-15 iterations.  
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F I G U R E  7 Prcdtctlve mean,  mode ,  and fractlles versus t for Type  II data ( T  = I )  
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11.2. Type  II  Da ta  Ana lys i s  

In the second analysis ,  we as sumed  that  all da ta  was o f  Type  lI,  but o therwise  
used the same values as above.  Figure 7 summar i z e s  the results,  which should  
be c o m p a r e d  wnh figure 4 for Type  ! data.  Roughly  speaking,  the results  are 
s imi la r  for t < T a n d  t > 4 T ( tw lce  the mean delay), but are much more  var iable  
in the ln te rmedmtc  region;  note par t icu lar ly  how small  f luctuat ions near  t = 0.5 
and t = 4.5 " j o l t "  the pred ic tors  more  in Type  I! than m Type  I. This  poorer  
bchav lou r  is, o f  course,  due to the miss ing (.x)) m Type  II, which makes  the 
e s t ima t ion  o f  0 qune  unstable  in th~s regmn For  t < T, there ~s little learning 
anyway,  and  for t > 4 T, the a p p r o x i m a t i o n  % = ) 5 - 0 . 5  T is good enough.  

The  main  change in c o m p u t a t m n  wnh Type  II da ta  is that  it is des i rable  to 
i terate a few t imes  to find the correct  mode,  00. For  t = 4 years, four ne ra tmns  
s tab lhzed  at 00 = 0.7998, giving c = 74.639, d = 92.054, and OK = 3.4340, from 
which g { f i l D }  = 19.69, .~{f i [D} = 183.4, and 5 ( D ) =  12. For  t =  8 years, 
two i tera t ions  are enough to g~ve 00 = 0 5240, c = 97.055, d = 183.298, and 
6 K =  7.4565, from which ~ { f i l D }  = 3.29, 7/{5[D} = 6.06, and  5 ( D ) = 2 .  
The forms o f  the predic t ive  densmes  are s imi la r  to those shown for Type  I da ta  
Again,  u* a lways  converged rapid ly  to the true answer  

11.3. Types III and IV Data Analysis 

The c o m p u t a t i o n s  with Type  III and IV data  are much more  difficult ,  and  give 
comple te ly  different  behav lou r  than that  descr ibed  above  Cons ider ing  first that  
wc have  only Type  IV data  (counts only), we obta in  the s u m m a r y  results  shown 
In table 2. At  first, with t small ,  we get the modes t  ~mprovements  in the Pascal 
marginal  dens i ty  that were observed  above.  However ,  as soon as I becomes  
larger than 7, there ts a s teady and d r a m a t i c  increase m all the pred ic tors  as r 
increases, and  our  point  e s t ima tors  grow wtthout bound! (In fact the need for 
eva lua t ion  over  an increasingly wide range o f  u-values  soon exceeds c o m p u t e r  
capaci ty ,  which accounts  for the `) beside the larger number s  m the table) 

Why  does  this happen  `) As before,  there  ~s at first some ms t abd l ty  xn f inding 
the current  mode ,  which may  require  5 or  10 " a s s i s t e d "  i terat ions.  Thcn,  begin- 

T A B L E  2 

RESULTS FOR TYPE IV DATA VERSUS l (T= 1) 

t /T  r(t) 0 o $$1~1D1 u(D) r/{~ I D} 
0 0 0 000 100 0 49 5100 

0 5 3 0 938 102 2 72 2975 
1 0 17 1 990 132 6 96 4144 
1 1 22 2.178 259 0 209 12290 "~ 
1 2 26 2.246 450 5 400 23280 "~ 
1 5 35 2 177 1038 987 53760 v 
2 0 46 1.905 1766 1715 89490 ~ 
4 0 74 1 237 3370 ? 3320 ? 172300 7 
8 0 95 0 777 4561 ? 4511 9 232900 v 
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nlng about  t = 2 T, J4 becomes  negative,  and we must  change to ),-only mode l -  
hng, as descr ibed  in A p p e n d i x  B And,  admi t t ed ly ,  the G a m m o i d  a p p r o x l m a -  
tons for u smal l  are also not  as good as in prev ious  cases. But these are second-  
o rder  effects. 

The  real reason for the behav lou r  shown in table 2 is that them ts less and less 
information m Type IV samphng as t mcreases! As r increases with t, the hke- 
h h o o d  [l-l(tlO)] r " d e s t a b l h z e s "  the pr ior  p(O) by diffusing the mode  in ho, 
while at the same t ime ha is increasing. This  loss o f  i n fo rmauon  about  0 and 
increase m the es t imate  o f  ~. can be seen most  clearly m (10.2); there is no 
technical  diff icul ty in converging to the correct  mode,  but it is clear  from the 
magni tude  o f  the pa ramete r s  that  the mode  must  move  to larger and larger 

values as r increases. (But r e m e m b e r  we are assuming  only that r is known for 

each t, knowing the his tory o f  r(t) would bring us back to Type  II). 
Besides the lack o f  in format ion  in the hkel ihood,  the behav iou r  is greatly 

influenced by our  pr ior  cer ta in ty  about  the value o f  0 To see this, let us keep 
t = 4 T fixed, and  increase both Co and d o so that  the pr ior  mode  o f  0 (which is 
the pr ior  mean o f  (~- ' )  is kept fixed at its true value of  0.5. As shown in table 3, 

T A B L E  3 

RESULTS FOR TYPE IV DATA AND I = 4 T, SHOWING EFFECT OF INCREASED PRECISION IN GAMMA PRIOR 

DENSITY 

c o d o 0 o ~{~ID} u(D) ~ I D }  
4 6 1 237 3370 9 3320 9 172300 ~ 
8 14 1 036 3008 q 2988 ? 154300 ? 
16 30 0 875 2407 q 2356 ? 124100 ? 
32 62 0 747 1373 1323 73050 
40 78 0 714 890 839 49370 ? 
50 98 0 683 270 0 212 19760 ? 
64 126 0.653 32 9 28 248 
128 258 0.588 18.3 17 38 
Inf Inf 0.500 16 0 15 19 

as the pr ior  precis ion increases,  the mode  o f  the integrand shr inks  slowly 
towards  0 = 0.5 (of  courser),  and the var ious  predic tors  are pul led in towards  
more  reasonable  numer ica l  values.  But not ice also that  values o f  say, Co > 60 are 
needed to make  the values compa rab l e  to those ob ta ined  with Type  I or  II da ta ,  
this is an ex t rao rd ina ry  a m o u n t  o f  precision,  co r respond ing  to a pr ior  s t andard  
dev ia t ion  for 0 -1 o f  less than 0.25 years, when the mean is 2.0 years w 

Final ly ,  we can also see what  is happen ing  ma themat i ca l ly  by examin ing  the 
deta i l s  invo lved  in compu t ing  the rat io  h(u+l[  D) /h(u lD) in  (6.6) (10.1). For  
t = 4 years and  the original  parameters ,  we find 00 = 1.237 after ten i terat ions,  
giving values o f  F - -  4.4257, ,d -- 0 (we use po lynomia l -on ly  approx imat ion) ,  
and 6K = 3.3994. I f  we c o m p a r e  these with values found previously,  we see that 
it is much  easier  for the rat io  to approach  umty  more  quickly than before.  In 

o ther  words,  because the Pascal n = (T/(b+ T)) = 1.02 - l  is a l ready very close 
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to one, there ~s little chance to shape the density downward while it is growing 
due to increased r. So, whxle p(u[D) ~s increasing, the ratio is qmckly becoming 
umty, so that the tails of  the predictive density must look much like a Pascal 
(a+r(t), ~) density. In fact, the means of that Pascal density are 3800 and 4850 
for t = 4 T  and t = 8 T, respectively, which are comparable to those in ta- 
ble 2. 

In contrast, from the analytic form of the shaping ratio, we see that if 
(Co-l) /d0 is fixed at 00, then, as the parameters increase to larger and larger 
values (with moderate values of  u), the ratio approaches exp (-Oo~x), thus 
accounting for the convergence shown at the end of table 3. Convergence is also 
improved with strong prior knowledge about the parameter 0, as this makes the 
first ratio, H = (T/(b+T)) smaller for the same .if{0 I. 

Turmng now to Type III data, we see that similar convergence problems will 
be encountered because of  the shape of  the likelihood. Results are analogous to 
those in table 2. Although the growth is postponed somewhat, the increase m t 
with t inewtably leads to large increases in the esnmators,  unless we have very 
strong prior assumptions. 

In summary,  we see that not having at least the date of reporttng of the 
IBNYR events leads to Bayesian predictions that, while mathemaucal ly  correct, 
are operationally useless. This is not a result of  using Bayesmn analysis, but due 
to a more fundamental problem, namely, that Type III and Type IV data are 
unmformattve (some might say, anti-reformative) when the priors on ~. and 0 are 
not sufficiently precise. In a certain sense, this behav~our is the analogue of the 
non-existence of MLE's for Type 1V data discussed m section 5. 

12. INTERPRETATION OF THE PREDICTIVE MODE 

There is an interesting interpretation of  the predictive mode (10.2) m terms of 
posterior parameter  means that holds even for arbitrary p(O) and data types. 
First note that the predlchve mean of u is: 

(12.1) g { ~ l D } =  ~{~.T[I ---Tr fl(tlO) 1 ID}, 

and that, because of the factorlzanon (6.2), we might expect the dependence on 
and 0 to be somehow separable. Recall also that, with a G a m m a  (a, b) prior on 
~, a measurement  of  r Polsson events in (O, T] gave in (7.6) a posterior para- 
meter mean, g{21 r} = (a+r)/(b+T), in credJblhty form. 

Now, rewrite (10.2) for general p(O) as. 

= (a+r+u*~ 
(122) f i (O) - - -u*+ l  k ~-~/~ J T ×  

(S[ ] } 1 [l(tlO) [K(O)]U*L(OID)p(O)dO 
T 

X 

~ [K(O)]"" L(OI D) p(O) dO 
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We see that the first term in brackets is, m fact, g-{ 21 r+  u* }, the posterior mean 
for 2 under the observatton of r+u* samples! Similarly, the measure 
[K(0)]"" L(O [ D)p(O) is essentially p(OI D, u*), the density of 0 posterior to the 
usual data D plus the "look-ahead "' observatton of u* events after the obserl'atton 
interval ts over! Thus, the second term on the RHS may be thought of as 

u*}. 
We admit that a direct argument that fi(D) should be approximately like a 

separated version of  (12.1) using anticipatory data (D, u*) is very shppery 
indeed. But this type of  result for the predictive mode seems to occur over and 
over in filtered Polsson predictions (JEWELL [1985a] [1985b]). 

(12.2) and (6.6) also reveal why simple approximations to ho are hkely to work 
well in calculating p(u I D). Because only the rattos of  the integrals are used m 
the calculations, there is an automatic improvement in the effective accuracy of 
the approximation. This fact has already been made exphcit in more general 
approaches to Bayesian prediction, see e.g., TIERNEY and KADANE [1986] 

13. SUMMARY AND DISCUSSION 

The main points of  this paper are: 

(i) The natural formulation of the IBNYR problem is In continuous time be- 
cause of the underlying Polsson generation of claims and the continuous 
nature of  reporting delays. 

(2) In addition to observing the number of events, r, that are reported dunng the 
observation period, it is important to record secondary data consisting of  the 
dates associated with each event in order to improve estimation of the un- 
known delay parameter 0; the greatest benefit occurs when the exact delays 
are recorded, and the next best ts when reporting dates are observed. 

(3) The data likelihood reveals that r is used primarily to estimate the unknown 
Polsson parameter, ~, and the secondary data is used primarily to estimate 0; 
however there is an important coupling term between 2 and H(tl 0), the 
probability that an event is reported during (0, t]. The maximum likelihood 
estimates of the parameters and of u, the number of events still unreported 
by time t, are either trivial or non-existent. 

(4) Therefore, a Bayesian formulation, with prior densities on 2 and 0, here 
assumed a prtori independent: (1) is a more natural formulation, since 
prior information about claim rates and reporting delays is always available 
m pracuce; and (n) gives more useful results, since it provides a complete 
predictive density, p(ulD),  for any observed data. In fact, emphasizing 
p(u [ D), rather than p(2, 01D),  results in a computational slmphfication, as 
it eliminates the coupling term in the likehhood and gives p(ulD)  as the 
product of  two factors that depend upon p(2) and p(O), respectively. 

(5) The predxcuve density can easily be calculated for arbitrary priors. With a 
Gamma (a, b) prior on ~., the essential work is the calculation of the ratio of 
two integrals depending upon p(O). This ratio can be easily and accurately 
approximated for all types of  secondary data, as shown by an example with 
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an exponential delay law and a G a m m a  prior on 0. The numerical compu- 
tation o f p ( u  ] D) then proceeds rapidly using a simple recurslon, from which 
the mean, variance, tail d~stributon, etc., of  ~ can be found. If  a quick point 
estimator is needed, the pre&ctlve mode ~(D) can also be found from a 
simple iteratwe formula that always converges rapidly. 

(6) A numerical example reveals that there is substantial residual variance in 
p(uID), even with a large volume of  data and consonant prior. This is 
because, with r large, 0 is estimated as well as it will ever be, especially with 
good secondary data; ~ is then approximately Pascal distributed, with mean 
and variance decreasing as 1 -l l(t  [ 0) with increasing time. Thls effect is due 
to the underlying assumption of Poisson events, is common to all stochastic 
IBNR models, and shows the inadequacy of point estimation procedures. On 
the positive side, availability of  the complete density p(ul D) enables the 
direct calculation of  risk factors and their incorporation into IBNYR re- 
serves on a sound actuarial basis. 

(7) The numerical example also reveals how uninformative and useless are 
Types III and IV secondary data. Sahsfactory stability m estimating the 
parameters and predicting the unreported events reqmres the observation of 
at least the reporting dates, i.e., the time history of  r(t). 

As mentioned earlier, the model developed here is only a first step on the road 
to more realistic and formulations. For example, as pointed out by a referee, the 
assumption of  homogeneous process over (0, T) is unnecessarily restrictive, and 
one could use a rate 2v(t), where v(t) ts known " v o l u m e "  of  business, and then 
use operational time Actually, in the sequel to this paper, we shall develop the 
modifications necessary when IBNYR reporting occurs only per lodleal ly--a  
quantlzed form of Type II data It is in that context that it seems more natural 
to introduce different volumes or even different random rates for different expo- 
sure years. The avaxlabihty of  collateral data from other exposure years leads, in 
the quantized reporting case, to the possiblhty of  simultaneous learning about all 
rates and the (common) delay parameter(s). This " I B N R  triangle" model will 
be analyzed in a third report, where we will also at tempt to say something about 
calendar time effects on the delay processes. 

The assumption of prior independence of~. and 0 IS, we realize, a strong one. 
However, it seems to the author that those who believe they are dependent must 
have in mind some phenomenon which needs additional modell ing--  for exam- 
ple, queuing bottlenecks in claims processing. Of  course, insurance claims with 
long delays are usually qualitatively different from rapid fihngs, but this leads us 
into cost modelling, which ~s very difficult. 

The author would hke to thank two anonymous referees and VALENTtN 
WUTHRICH for  their comments  and criticisms on this paper, many of which 
have been incorporated. Other suggestions on making th~s model more reahstlc 
and useful are always welcome. 
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APPENDIX A 

GAMMOID APPROXIMATIONS 

As discussed in section 9, the strategy in evaluatmg (9 1) wtth p(O) and possibly 
a port ion o f  L(OI D) in G a m m a  form is to approxtmate  the remamder  o f  the 
mtegrand by a Gammotdfimctton: 

(A. 1) g(O) = (Ao)r e -~°, 

in the region o f  the mode  00 of  the G a m m a  part o f  the mtegrand; the locauon of  
the mode  can be recalculated, ff necessary. The final integral can then be calcu- 
lated analytically. 

The constant  A is usually not o f  interest tn our  models. Beginning with the 
obv ious :  

d In g(O) F d 2 In g(O) F 
(A.2) - -  - d;  - 

dO 0 dO 2 0 2 ' 

we see that a function L(O) can be approximated by (A I) near 00 by using 
coefficients : 

(A.3) F=-02d21nL(O)do 2 Oo A-FO dlnL(O)do 
0o" 

If  only a negauve exponential  app rox tmauon  ts desired, we set F = 0 and find A 
from thc first derivat ive,  similarly, for a p o l y n o m i a l - - o n l y  approxtmat ton,  we 
set A = 0 in the second formula m (A 3) 

The success o f  the method  depends on several factors. First o f  all, it ts desi- 
rable to have a concentrated mode  to begin wtth, we have found that even 
Co = 3 or 4 m the prior density ts adequate. Secondly, tf a porUon of  L(O) ts 
already ummoda l  m the range o f  interest, we have found tt desirable to update 
the coefficients Co and do tmmedtate ly  and to redefine the shifted mode  00 for 
use with the rest o f  L(O), whtch ts locally mono tone  Usually, these latter coef- 
ficients will be slowly varying in the region o f  mterest (we can make thts more  
prectse for our  factors) and so the mode  does not need c o n t m u m g  redefinition. If  
desired, after all the G a m m o t d  coeffictents have been determmed,  one can cal- 
culate a " f i n a l "  mode  for the integrand, and make one or two more passes to 
correct the coefficients found from (A.3). In our  experience, such iterations lead 
to minor  corrcct lons and usually need to be repeated only a few times,  this IS 
essentially because we are only interested m the rattos of  such integrals, as in 
(10.2). 

More details on G a m m o t d  approxtmat lons  will appear  m a for thcomtng 
paper. Readers mterested m the full detatls o f  the approximat ions  for the nume-  
rical example in see/ton I1 may obtain a copy of  the ongmal  report from the 
author  
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APPENDIX B 

GAMMOID APPROXIMATIONS OF TERMS INVOLVING I1 

Analysis  o f  Type  IV data L(O) and the kernel K(O) m (9.1) with exponential  
delays is simplified if we define the functmn:  

I - e  - x  x x 2 x 3 X 2 
( B . l )  ~ ' ( x ) - - - -  1 - - - +  + - - - -  + . . . .  

x 2 6 24 120 

and ns d e n v a u v e s :  

(B.2) ~ ' ( x )  = - x2 , ¢ ' ( x )  = 

which are wel l -behaved for x > 0; for example ,  
exp ( - x / 2 )  < u/(x) < (1 + x / 2 )  -~ m this region. 

With Type  IV data, L(O) = [H(tl 0)] r, 
and for t < T ,  H(t]O) = (t/T)(1-~,(Ot)]. Then :  

a I n / - / ( t  I 0) -re(or) 
(B.3)  - ; 

I 2 - ( 2 + 2 x + x  ) e-X 1 

_1' 

(B.5) K(0)= 

(B.4) 
0 In H(tl O) 

O0 
_ F( t -T)  tu(OT)ETV(OT)I . 

t_ eO(t- r)_ ~, (OT) J ' 

0 2 1 n H ( t l o ) -  I - 0 0 2  lnH(t[O)1200 

The g a m m o l d  coefficients, 74 and d4, are then found using (A.3) at the current  
mode  00. For  large t, 64 can become negaUve; m thin case, we r e c o m m e n d  using 
just  a polynomial  approx~matlon,  with 64 = 0 and Y4 de te rmined  from the first 
d e n v a t w e  m (B.4). 

The  kernel K(O) in (9.1): 

T2g/'(OT)+(t-T)T~"(OT)_I _ IO 
eO(t- r)_ ~, ( OT) 

When t> T, Fl(t[O) = l-e-°( ' -r)~(OT),  and (B.3) becomes :  

1 - [ 1 - ~ ( O t ) ]  

e-O(t-  r) ~g(OT) 

(t < T) 

(t > T) 

00 1 - ~,(Ot) 

021nl-l(tlO) _ -tz~"(Ot) [Olnfl(t'O).12 
002 1 - ~(Ot) O0 " 
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IS monotonic decreasing in 0, with first logarithmic derlvauve:  

(B.6) 
d in  K(O) 

dO 

(t3/T 2) v/ (Ot) (t < T) ] 
K(O) 

I T~/ (OT) 
- ( t -  T)  + (t < T)  

~(OT) 

As both these forms are negative and slowly varying over a wide range of  values, 
in contrast to (B.3) (B.4), it makes httle sense to use a full G a m m o i d  approxi- 
mation, especially since negative values for yr may result v Thus, w e  j u s t  

approximate by a negauve exponential: 

(B.10) YK = 0; gK -- din  K(O) [ 
dO [ o~ 

This approximation updates the G a m m a  coefficient do by 6KU, but does not 
change c o . 

The G a m m o l d  approxlmatons presented above can be further refined by the 
use o f a d d m v e  terms to model the non-zero asymptotes in Types IIa, III, and IV 
data, or to give a better fit to the long tails of  all the factors. However, our 
hm~ted experience is that the refinements are of  second-order effect in modi- 
fying the shape of h0, especmlly when the prior parameter density is reasonably 
reformative. 

APPENDIX C 

TYPE I V  DATA ONLY WITH BETA PRIOR 

If  we have only Type IV reformation and t > T, then: 

(C.l) ho(ulD)=~ [H(tlo)]'[l-H(t[O)l"p(O)dO, 

which suggests a reparametrlzation on the r.v. g = H(t ]0), which, with a Beta 
prior, p(Tt), would give an analytical integral. The only inconvenience is that, if 
one truly beheves in a G a m m a  prior on 0, then the transformed density has a 
rather complex form on (0, 1]. Nevertheless, for a highly peaked Gamma,  one 
could use the G a m m o l d  approximation ideas to approximate p(g) by a highly 
peaked Beta density wnh equivalent parameters (a0, fl0), we o m n  the details. 

We would then find h,(u]D) = F(]3o+u)/F(ao+[3o+r+u), changing the sha- 
ping factor m (10.2) as follows: 

] 
(C.2) L d o + ~ . + ~ T  Jx u_l Lao+/~o~;~+ u " 
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There is no set of  parameters which will make these two shapes entirely equi- 
valent, but one might attempt to fit the shapes for u = 0 and u very large, say, 
for fixed t and r. In any case, the shaping for intermediate values of u will be 
different for ho and h, .  

Although somewhat simpler, it ts not clear that this approach ts "be t te r" ,  the 
parametric approach through an assumed from for f(w [ 0) seems more " r ea l "  
to us, as tt is difficult to imagine how one could develop a consistent prior p(n) 
for many different values of t. And finally, we must remind the reader of the 
very poor results obtained in section 11 with Type IV data; we do not expect 
that this approach will give any improvement for equivalent values of prior 
p r e c i s i o n .  
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