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ABSTRACT 

For the infinite time ruin probability in the classical risk process, efficient esti- 
mators are proposed in cases in which the claim amount distribution is un- 
known. Confidence intervals are computed which are based on normal approxi- 
mations or on the bootstrap method. The procedures are checked in a Monte- 
Carlo study. 
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i .  I N T R O D U C T I O N  AND SUMMARY 

1.1. Ruin probabil i t ies  as a measure of  risk 

We consider the classical risk process 

R(I) = x + c t - S ( t ) ,  t 2 0  

with nonnegative initial surplus x, positive premium rate c, and a claims process 
S(t), t >_ O, which is a compound Polsson process with positive intensity 2 and 
claim amount distribution Q. When all parameters x. c, 2, and Q of  the risk 
process are given, then we can determine the infinite time ruin probability 

~ g ( x ) = I P [ R ( t ) < 0  for some t > 0 }  

In the author's opinion, the ruin probability ~(x) is a measure for the " r i sk"  
contained in the process R(t) ,  t>_ O. It should be used to evaluate decisions 
concerning the risk business. To give an example we assume that we can buy an 
XL-relnsurance cover with priority M >  0 and reinsurance premium rate 
0 < cn < c. Let ~n(X) be the rum probability of the risk process with reinsur- 
ance. The parameters of the new risk process are x, c - c n ,  2, and Qn given 
by 

QR (A) = Q (A ("1 (0, M)) + i A (M) Q ((M, oo)). 

If  ~un(x)< ~(x) then the reinsurance cover reduces the " r i sk"  contained in the 
risk process. So it is reasonable to pay the premium rate CR for the reinsurance 
cover described above. If, on the other hand, ~,(x) < ~un(x), then we do better 
without the above reinsurance cover. 
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1.2. Estimation of ruin probabilities 

In practical applications the parameters 2 and Q will not be given but have to be 
estimated with available data. Consider, e.g., the situation that 2 ms known but Q 
Is not. Suppose we are g~ven observations x j , . . . ,  xn which are realizations of  
random variables X~ . . . .  , Xn, these being independent with dls tnbuuon Q. Our 
nonparametnc  estimator will be based on the empirical distribution Q~ of  the 
observations x = (xl . . . . .  xn). The dis tnbuuon Q~ is discrete and has point 
probabilities 

Q~I Yl 1 = - # { l  < l < n . x , =  y}, y ~ I R  
rl 

(The symbol # A denotes the number  of  elements in the set A). Our nonpara- 
metric estimator ~n(x) is the ruin probability of  the risk process with parame- 
ters x, c, 2, and Qff. The estimator ~,,(x) is asymptotically normal and efficient, 
its asymptotic variance is given below. The finite sample behavlour of  ~' ,(x) is 
investigated in a Monte Carlo study for sample sizes n = 20 and n = 100. Simi- 
lar nonparametrlc estimators are proposed for cases in which other or less para- 
meters are known. In order to define these estimators we assume that only 
positive claims are possible, 

(l) Q(0, c ~ ) =  1 

that Q is non-degenerate, and the risk process R(t), t > O, has a positive safety 
loading, i.e. Q has a finite mean/1 = fyQ(dy),  and the premium rate c is larger 
than the average claim amount  per unit time, 

(2) c > 2/z. 

If  (2) does not hold, then ~(x)  = 1 for all x. If (2) is true, then ~'(0) = 21~/c < 1 
and ~'(x) can be computed according to 

~,(x) = ~ (I -~,(0)) ~u(0)* IH*~(x, ~).  
k=¿ 

Here, *k is the k-fold convolution, and IH is the distribution of the first ascen- 
ding ladder height with density 

(3) y ~ ~- t  Q(y,  oo) I<0, oo)(y) 

(see BOHLMANN (1970), 6.2.6, or TAYLOR (1985), p 75, (3. I. l), or FELLER (1966), 

p. 379, (2.6)). We shall consider the following four cases: 

1) 2 known, Q unknown; this is the case described above ~ )  is the ruin 
probability of  the risk process with parameter  x, c, 2, and Q~. 

2) 2/z known, Q unknown, ~ 2 ) i s  given by 

(4) ~u~2)(x) = ~ (1 -v / (0))  ~u(0) ~ H*k(X, oo) 
k=l  



ESTIMATORS AND BOOTSTRAP CONFIDENCE INTERVALS 59 

where H .  is the measure  with density 

1 
7¢ V (5) Y '-' -~- Qn ( . ,  co) 1(0 ' oo)(y) 

Xn 

and £n = - -  x, IS the a r i t hmenc  mean o f  all observanons .  
B / l = l  

3) 

(6) 

where G.  has density 

(7) 

2,/1 known, Q unknown;  9,~ 3) is given by 

~,~3)(x) = ~ (l -~(o)) ~,(o) ~ G~*~(x, co) 
k=l  

1 
y-- ,--P~(y,  co), y > 0  

/z 

a n d  Pfi~ ~s the &screte  p robablh ty  measure  with point  probabil i t ies  

(8) Pff{ x, } = 1 (1 -- (x , -  .~n) (-~,,--,u)/s2) 

where 

s 2 = ! ~ (xj_ fn)2 
Hj=I 

Is the sample  variance. The  factor l/n has to be replaced by # {j:xj = xt}/n if 
there are mult iphcl t les  m the x's.  The  numbers  in (8) add to 1, and they are 
nonnegat ive  with high probablhty .  

4) 2 unknown,  Q unknown,  for this case we assume that we have observa t ions  
from a risk process in a t ime Interval (0, T) .  Let N(T) be the n u m b e r  o f  obser-  
ved claims and Xl . . . .  , XNtT) the corresponding claim amounts .  The  es t imator  
~4 )  is the rum probabi l i ty  of  the risk process with paramete rs  x, c, ,~ = N(T)/T, 
and {~ = empir ical  dis t r ibut ion of  X 1 . . . . .  XN(r). 

O course case 4) is the s tandard situation in practical apphcat lon.  However ,  
knowledge o f  2 and/or/ .~ can reduce the statistical error substantially,  and for 
these paramete rs  extra data are frequently avai lable (from other  compan ies  with 
s~mllar portfolios or from one of  the insurance organizations).  

All es t imators  are asymptot ica l ly  normal ,  and their  a sympto t ic  variances t7 °), 
a (2), a (3), a (4) sansfy the re lanon 

(9) (7 (3) :~ c~ (2) ~ ~y(~) _< a (4 )  . 

This  indicates that es t imat ion  of  ~ ( x )  seems to be s impler  in case 2) than in 
case l). 
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1.3. Measuring risk with estimated ruin probabilities 

The evaluauon of  possible declsmns in a risk business can be based on esuma- 
ted ruin probablhties. However, l f~n(x  ) Is the estimator for the ruin probabd~ty 
~u(x) without reinsurance and lfqt~R)(x) is the estimator for the ruin probability 
~'R(X) with reinsurance, then the relatmn 

(10) ~,~R)(x) < ~u, (x) 

does not ymld the conclusion V/R(X) < V/(X); both sides of  relatmn (10) contain a 
statlstlcal error which, m the worst case, leads to (10) even if the relauon 
q/(x) > ~UR(X) holds. A possible solution to this problem is the concept of  confi- 
dence intervals. For prescribed a near zero one can construct a confidence inter- 
val C.  for ~(X)--~R(X) with 

hm I P { ~ ( x ) - ~ u R ( x ) e  C,} = l - a .  
?1 

If  C.  lies in the posltlve half axis, then we conclude that q/(x) > ~//R (Y). If  C.  lies 
m the negative half axis, then our conclusmn wdl be ~(x)  < ~R(X). If, finally, 
0 e Cn, then no conclusmn wdl be possible. With this procedure, for large n the 
error probability will not exceed a, i.e. 

hm sup IP { wrong conclusion } < a .  
?/ 

The exlstence of  reasonable confidence intervals for ~u(x)-~Un(X) (not contax- 
nlng zero) is not self evident. The quantitms ~(x)  and ~UR (X) are very small and 
might have the same order of  magmtude as the statistical error. In order to 
investigate this problem we shall restrict cons~derauon to a confidence interval 
for v/(x). A possible confidence interval for v/(x) is the one which is based on 
the asymptotic normality of  our estimators (see 2.2). In a Monte-Carlo study we 
observe that for sample size n = 20 and n = 100 the normal approximation for 
the distribution of  our estimators is rather bad, especially when the claim 
amount  d ls tnbuuon Q has a large coefficient of  vanauon  

Z = - -  ( y _ f l ) 2  Q ( d y )  
# 

1/2 

The variance of  the approximating normal distribution is too large, and conse- 
quently the confidence intervals based on the normal approxtmanon are too 
large. Furthermore, the distribution of  ~ , (x )  is usually not symmetric about 
~,(x) but skew to the left. Hence we cannot expect that confidence intervals 
which are symmetric  about v/,(x) will perform well. 
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1.4. Bootstrap confidence intervals 

In order to get smaller confidence intervals we used the bootstrap method. The 
construction of these confidence intervals wdl be described in case 1) for the 
sample size n = 20. Let X 1 . . . . .  X20 be the observations, and let Q~0 be the 
empirical distribution of  these observations Generate 100 samples 
X 0), . . . ,  X tl°°) of  size 20, i.e. 2000 independent random numbers with dlstNbu- 
tlon Q~0, grouped m 100 samples of  size 20 each. For l = l . . . . .  100 compute 
the estimator ~,,(x) for the set of  observations X c'). We obtain 100 values 
~n.,(x), and we write U(x_) for the empirical distribution of  these values. Our 
confidence interval is the shortest interval I satisfying U(X) (I) >_ l - a .  

The bootstrap confidence intervals are small, and they are not symmetric 
around ~(x)  in general. In a small Monte-Carlo study with sample size 20, 100 
bootstrap resamphngs per trml, and 100 Monte-Carlo trials, ~t turned out, howe- 
ver, that the level of  the bootstrap confidence intervals is considerably smaller 
than l - a .  The same bad bchaviour occured with 200 instead of 100 bootstrap 
resamphngs per trxal. On the other hand, the small number  of  100 Monte-Carlo 
trials does not given us precise mformat~on on the actual level of  our confidence 
sets. A larger scale Monte-Carlo study with 1000 or more trials is a computer  
time consuming task: for 1000 trmls we need 2 x 106 random numbers and l05 
computlons of  ~ (x). 

For sample size 100 the performance of  the bootstrap confidence intervals was 
much better: the level 90% confidence intervals had an actual covering proba- 
bdlty between 87% and 94%. The average size of  the intervals ranges from 
0.0002 (m case with ~(x)  -- 0.0025) to 0.03 (with ~(X) : 0.032). This indicates 
that our bootstrap confidence intervals can be used for the evaluation of  possi- 
ble decisions, provided the sample size is not 1oo small 

1.5. A simple bootstrap selection rule 

Combining the bootstrap with the above decision rule for " 9 ' ( x ) <  q/R(X) or 
no t "  we obtain the following simple method:  Resample M times, say, and 
compute the estimators ~,%(x) and ¢,',~R)(x) for each bootstrap sample If 
tin(x) < ~,~R)(x) for at least (1 -a)M bootstrap samples, then we conclude that 
¢ (x)  < 9'R(X). I f  ~gn(X) > ~,~R)(x) for at least (1 -a)M bootstrap samples, then 
our conclusion is ~(x)  > ~R(X). If, finally, both conditions are not satisfied, then 
no conclusion is possible. This method can easily be generalized to more than 
two alternatives. 

Section 2 contains the theoretical results The findings of  our Monte-Carlo 
simulations are summarized in section 3 

1.6. Reference to earlier papers 

In the framework of  ruin theory, statistical estimators were first used by GRAN- 
DELL (1979). He constructed estimators for the adjustment coefficient R of  the 
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risk process in the case 2, Q unknown. The adjustment coefficmnt yields the 
CRAM~R upper bound for v/(x), 

~,(x) < exp ( - R x )  

and the asymptotic behavior of  ~u(x) for x large, 

~(x )  ~ C e x p ( - R x ) ,  C >  O. 

Apparently, GRANDELL'S results can not be used for the constructmn of twos~ded 
confidence intervals for ~u(x). 

Different nonparametrlc estimators for ~'(x) have been proposed by 
FREES (1986). HIS estimators are based on the sample reuse concept: From the 
g~ven data set a new risk process is constructed, and the rum probability of  the 
new risk process is computed with Monte-Carlo methods. The performance of 
these estimators is rather bad: the root mean squared error in a Monte-Carlo 
study has the same order of  magnitude as q/(x) for sample sizes n = 25, 50, 100, 
150, 200 (see FREES (1986), p.S. 87, table 1) This ~s perhaps due to the fact that 
FREES" estimators do not only contain a stat~stlcal error but also a s~mulatmn 
error. 

2. THE RESULTS 

2.1. Consistency 

We shall first state some large sample properties of  the proposed estimators. 

LEMMA. FIX X, C, J. > 0 and a claim amount  distribution Q for whtch (2) and (3) 
hold. Then for t = l, 2, 3 

hm ~utfl)(x) = ~u(x) I P - a l m o s t  everywhere 
B 

and 

hm ~,~4) = ~u(x) I P - a l m o s t  everywhere,  
T 

respectively. 

2.2. Asymptotic normality 

I f  Q has a fimte second moment ,  then the estimators ~ ' ) ,  t = 1, 2,3 and ~//~4) are 
asymptohcally normal. For the defimtlon of  their variances we need some nota- 
trans. Write 

R = ~ (I - ~ ( 0 ) )  ~(0)/~ H *k 
k=O 
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M = ~ ( 1 - ~ ( 0 ) )  2 v(O) k ( k +  I ) H  *~ 
k=O 

Then for x>_ O, ~ ( x )  = R(x, oo), and M is the twofold convo lu t ion  o f  R, 

~4 = R .2 

For  v > 0 define 

g(v) = S (v - (x -u)+)+ M(du) 

and write td for the l d e n m y  on I R : M ( v )  = v, v > O. 

63 

THEOREM : Let x, c, 2 > 0 be fixed, and  Q a nondegenera te  c la im a m o u n t  distra- 
but lon with finite second momen t ,  such that  (3) holds.  Then for l = 1, 2 there 
exist  p o s m v e  number s  a (0 such that  the d i s t n b u u o n  o f  

n 1:2 ( ~ 0  ( x ) - , e  (x)) 

converges  weakly  to N(O, a(°). We have 

o.(l) = K 2 VarQ(g-~u(x)ld) 

cr (2) = K 2 VarQ(g-Q[g]~ -t td) 

where 

Q[g] = ~ g(v) Q(dv) 

In case 4), the d t s t n b u t i o n  o f  

(~T)"2 (w~.~ (x)- ~,(x)) 
converges  weakly to N(0,  o (4)) when T ~  oo, with 

0 .(4} = K z Q ( g -  ~ (x )  td) z 

In case 3) let 

o .(3) = K 2 V a r Q ( g - a  × td) 

wherc a = COVQ(g, ld)/VarQ(td). If  o .(3) > 0 then the dls t rxbuuon o f  

n '~2 (~u,~ 31 ( x ) -  ~ (x)) 

converges  weakly to N(0,  o.O)). The  cons tan t  K equals  

K = ~(0)l(p (I - ~(0))) 

The proofs for (2.1) and (2.2) are indicated in [6] The Sltuation o.(3) = 0 occurs, 
e.g., i f  Q(x, oo) = O. 



64 CHRISTIAN HIPP 

2.3. Comparison of variances 

We shall give the proof for 
a) a 121>0 and 
b) 0.(2~ < 0.~) 

whxch are not contained m [6]. 

a) With h (y)  -- g(y)-yQ[g]/u we have 

h ' ( y )  = M ( x - y ,  co)-Q[g]l/~ 
= M ( x - y ,  c o ) - M , H ( x ,  co) 

which ~s increasing. This yields convexity of  h Since h' changes sign and 
h ( y ) - "  co, y - , c o ,  and h ( 0 ) =  0, h must have exactly two distinct zeroes. 
Hence 

0"(2) = S h2(y) Q(dy) 

cannot be zero. We see that h changes sign exactly once. 

b) Using the relation 

Var ( X ) -  Var (Y) = Var ( X -  Y) + 2 Coy ( X -  Y, Y) 

we see that 1t suffices to show that 

CovQ(k -h ,  h)>_ 0 

with k(y) = g (y ) -~ (x ) ,  y > O. This relation is eqmvalent to 

COVQ (td, h) ( Q [ g ] / p - ~ ( x ) )  > o . 

From 

Q[g]/l~-~'(x) = M* H(x, co)-R(x,  co) 
= R*R*H(x,  co)-R(x,  co) > 0 

we see that our assertion will hold provided 

CovQ 0d, h) > 0 

If to > 0 is the point at which h changes sign, then 

COVQ(td, h) = I yh(y) Q(dY) = S ( y - to )h (Y)Q(dy)~O.  

This proves b). 
The relation 0"0)< 0.(2) follows from efficiency of ~u~31(x) (see [6]). 
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3. MONTE-CARLO SIMULATIONS 

The small sample behaviour of our estimators ~ l ) ( x ) a n d  ~ 2 ) ( x ) a n d  the level 
of  the bootstrap confidence intervals were investigated using the Monte-Carlo 
method. We dealt with claim amount distributions which were Lognormal, 
Pareto, and Gamma &stributlons. We shall present the results for three special 
examples which are representative for all cases that had been investigated. 

Example I. The claim amount dtstnbut~on Q is an exponentml &stribution 
with parameter 1.25, the intensity 2 of the claims process equals 0.125, the pre- 
mium rate c equals 1, and the mitml surplus x equals 1. The mean of  Q is 0.8, 
the coefficient of variatIon r is I, the exact ruin probabihty without inmal sur- 
plus tU(0) equals 0.1, and the exact ruin probability ~(x) equals 0.0325. 

Example II Q is a lognormal distribution with mean and variance of  the cor- 
responding normal distribution equal to -0 .569  and 0.694, respectively, 
2 = 0.0125, c = 1, and x = I. The mean of Q Js 0.80092, r = 1, ~(0) = 0.01, 
and ~(x) = 0.00254. 

Example III Q is a Pareto distribution with shape parameter 2.054 and loca- 
tion parameter 0.924, ~t has density 

x--, 2.054 (0.924)2 °S4x-J °s4, x >  0.924 

The intensity is 2 = 0.055; c = I and x = 1. The mean of Q ~s 1.8, r = 3, 
vff(0) = 0.1, and ~u(x) = 0.0489. 

In these examples the loading ~s much larger than in practical s~tuat~ons. 
However, for smaller loadmgs the computation time for a Monte-Carlo study 
will increase drastrlcally. 

The distribution functions g/~)(x) and ~u~2)(x) are simulated for sample size 
n = 20 and with a number of  1000 simulations per case. The broken line is the 
&stribution function of  the approximating normal distribution. 
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FIGURE 1. Dtstnbutton funcUon and normal approximation (broken hne) for ~2)(x) when n = 20 m 
the case of example I (Exponenual dlstnbuuon) 
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FIGURE 2 Distribution function and normal approx~matton (broken hne) for ~ l ) ( x )  when n = 20 m 
the case of  example II (Lognormal distribution) 
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FIGURE 3 Distribution function and normal approximation (broken hne) for ~,~')(x) when n = 20 m 
the case of  example III (Pareto d~strlbut~on) 
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In all three cases, the distribution of  ~' ,(x) is quite well concentrated around 
the true value ~,(x), but the normal approximation ~s not at all satisfactory. The 
above graphs of  the &stribut~on function and the normal approximation have 
been reproduced from [2]. 

The small sample behaviour of  our bootstrap confidence intervals was the 
following: For sample sizes n = 20 and n = 100 we simulated 100 data sets, 
computed the corresponding confidence interval C,, of  level 90% (Le.a = 0.1) 
and counted the number  of  cases m which ~u(x), the true value, was covered by 
Cn. Here are our results. 

Example 

Example 1 
~,~'~(x) 

Example 11 
~,,"~(x) 

Example II 

Example III 
~,~(x) 

Example III 

Sample 

1 20 
100 

20 
100 

20 
100 

20 
100 

20 
I00 

20 
100 

sxze Covers in % 

85 
94 

76 
88 

77 
93 

71 
89 

78 
89 

71 
89 

Changing from sample size n = 20 to n = 100 did drastically increase cove- 
ring probability in all cases concerned m our lnvestigat,on, especially in cases 
where the covering probability for sample size 20 was small. 

4. ACKNOWLEDGEMENT 

The Monte-Carlo simulations for the investigation of ~ ) ( x ) ,  ~u~2)(x) and the 
corresponding confidence intervals based on the normal approximation were 
done by S. ENGEL,kNDER, a student of  mine, in connection with his work on the 
esttmatton of ruin probabilittes in his dtploma thesis at the university of  Colo- 
gne. He proposed the estimator ~2) (x )  and computed its asymptotic variance 
cr (2). Mr. ENGELANDER'S simulations ran on the CDC 70/76 under Scope 2.1 at 
the Umversl ty of  Cologne. The simulations for the performance of  bootstrap 
confidence intervals were programmed by Mr. J. STEIN. 1 tank the Vereln zur 
F6rderung der Versicherungswissenschaflen in Hamburg  e.V. who financed the 
cooperation with Mr. STEIN. The bootstrap simulations were done on the SIE- 
MENS 7881 under BS 3000 at the University of  Hamburg. The revision of  the 
first version of  this manuscript was based on remarks of  two referees which are 
gratefully acknowledged. 



70 CHRISTIAN HIPP 

REFERENCES 

BOHLMANN, H (1980) Mathemaucal methods m risk theoo, Spnnger, New York 
ENGELANDER, S (1987) Konfidenzmtervalle tier emptrtsche Rumwahrschemhekeiten asymptottsches 

Verhalten und Monte-Carlo-Stmulatlon Diploma Thesis, University of Cologne 
FELLER, W (1970) An Inooductton to Probabthty Theory and Its Apphcattons, 2, Wdey, New York 
FREES, E W (1986) Nonparametnc estimation of the probabdlty of rum ASTIN Bulletin 16, 81- 

90 
GRANDELL, J (1979) Empmcal bounds for rum probabdmes Stoch Process and Thetr Apphcattons 8, 

243-255 
HIPP, C (1988) Efficient estimators for rum probabdmes Proc 4th Prague Syrup Asvmpt Stattst 
TAYLOR, G C (1985) A heuristic review of some rum theory results ASTIN Bulletin 15, 73--88 

CHRISTIAN HIPP 

Umverslta't Hamburg, Instmtt fiir mathemattsche Stochasttk, Bundesstrasse 55, 
D-2000 Hamburg 13 


