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ABSTRACT

The first method, essentially due to GoOovAERTS and DE VYLDER, uses the
connection between the probability of ruin and the maximal aggregate loss ran-
dom variable, and the fact that the latter has a compound geometric distribu-
uon. For the second method, the claim amount distribution is supposed to be a
combination of exponential or translated exponential distnbutions. Then the
probability of ruin can be calculated in a transparent fashion; the mamn problem
1s to determine the nontrivial roots of the equation that defines the adjustment
coefficient. For the third method one observes that the probability of ruin 1s
related to the stationary distribution of a certain associated process Thus 1t can
be determined by a single simulation of the latter. For the second and third
mecthods the assumption of only proper (positive) claims 1s not needed
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l. INTRODUCTION

Traditionally, practitioners have approximated the probability of ruin by the
expression e~ % where R 1s the adjustment cocfficient (by some authors called
insolvency cocfficient or Lundberg’s constant) and « the mitial surplus. From a
technical point of view, the need for such an approximation has become less
important; thanks to the arrival of cfficient computers and even personal com-
puters, the exact probability of ruin can be calculated. This has been demons-
trated by several authors, 1.a. THORIN and WIKSTAD (1976), SHIU (1988),
MEYERS and BEEKMAN (1987), PanJER (1986), and indirectly by STRO-
TER (1985).

In this paper we shall present three methods; they have the ment that they
can be explained 1n elementary terms and they can be implemented numerically
without any difficulty.

The method of upper and lower bounds (scction 2) 1s a method of numerical
analysis and 1s essentiallly due to GOOVAERTS and DE VYLDER (1984) The main
drawback of this method 1s that 1t 15 lmited to the situation where negative
claims are cxcluded.

Method 2 (section 3) 1s analytical in nature (but 1t can be understood without
extcnsive knowledge of complex analysis); it generalizes a method that has been
proposcd by BOHMAN (1971). If the claim amount distribution 1s a combination
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of cxponential or translated exponential distributions, the probability of ruin
will be of the form as shown in formula (42). The main task 1s the numerical
dctermination of the nontrivial (possibly) complex roots of the equation that
defines the adjustment coefficient.

The probability of ultimate ruin can also be obtained by simulation (sec-
tion 4), although this seems to be a paradoxical 1dea at first sight. If the claims
are reinsured by (for example) an excess of loss contract, the distrnibution of
retained claims cannot by approximated by a combination of exponential dis-
tributions, and Method 2 cannot be applied. Method 3 is generally applicable
and does not have the drawbacks of Method 1 (no negative claims) or Method 2
(no reinsurance).

2. METHOD OF UPPER AND LOWER BOUNDS

2.1. Introduction

In this section we shall present a method that leads to the bounds that are due to
GoovVAERTS and DE VYLDER (1984); our derivation will be very similar to PAN-
JER’s presentation (1986) and along the 1deas of TAYLOR (1985).

2.2. The Model

In the following we shall use the model and the notation of continuous time ruin
theory as 1t 1s explaincd 1n the text by BowgRs et al. (1986, sections 12.2, 12.5,
12.6). Thus

¢)) U(t) = u+ct—5S(@)

1s the insurer’s surplus at time ¢ > 0. Here « = 015 the in1tial surplus, ¢ the rate at
which the premiums are recetved, and S(r) the aggregate claims between 0 and /.
It 1s assumed that S(¢) 1s a compound Poisson process, given by the Poisson
parameter A (claim frequency) and the distribution function P(x) of the indivi-
dual claim amounts. In this section we assume that P(0) = 0 (no negauve
“claims ™), afterwards this assumption will be dropped.

The mean claim size is denoted by p,. Of course we assume that ¢ exceeds
Apy, the expected payment per unit time. The relative security loading @ 1s
defined by the condition that ¢ = (1 +60)Ap,.

We denote by y(u) the probability of “ruin”, i.e. that U(t) 1s negative for
some > 0. It 15 well known that w(0) = 1/(1 +6). For notational convenience we
denote this quantity by ¢.

The maximal aggregate loss,

(2) L= max {S(t)—ct},
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1s a random variable of great interest, since
3) l—w(u) = Pr(L <u), uz=0,

.. the probability of survival 1s the distribution function of L, see BOWERS et
al. [1986, formula (12.6.2)]. We can write L as a random sum,

4) L=L+L,+.. +Ly,

see BOWERS et al [1986, formula (12.6.5)]. Here N 1s the number of record highs
of the process S(¢)—ct and has a geometric distribution:

(%) Pr(N=n)=(1-q)q", n=0,1,2,....
The common distribution function of the L's 1s

l X
(6) Hx)=—\ [1-P(p]dy.

PhrJo
Furthermore, the random vanables N, L,, L,, ... are indcpendent
Thus L has a compound geometric distribution,

(7 PrL<su)y= D> (1—q)g"H*"(u).
n=0

Together with (3) this yields the convolution formula for the probability of ruin,
which 1s often attributed to BEEKMAN (1974, section 13.4), but can also be found
in DUBOURDIEU (1952, p. 246).

2.3. Derivation of the bounds

Since H(x) 1s a continuous distrtbution function, the expression of the right
hand side of (7) cannot be cvaluated directly. According to PANJER (1986), the
1dea 1s to replace f1 (x) by one or sevcral discrete distributions. Here we prefer to
go one step back and use (4) as a starting point

For the ease of presentation and notation we assume that the interval of dis-
cretisation is the umt interval (in fact this means that the monetary umt 1s
identical to the length of the interval of discretisation). Then we mtroduce two
new random varables that are closely related to L-

® L'= [L]]+[Ly]+ ... +[Lal,
and
9) L' = [Li+ 1]+ [Ly+ 1]+ ... +[Ly+1].

Thus the 1dca is to round the summands 1n (4) to the next lower integer, which
gives (8), or to the next higher integer, which gives (9). Clearly

(10) L'sL=L",

which implies that
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(11) Pr(L'> u) < Pr(L>u)<Pr(L">u)

for all u Since w(u) = Pr(L > u) 1s a continuous function for & > 0, 1t follows
that

(12) PriL! 2u)<w(u)<Pr(L*>u), u>0.

Since the distributions of L' and L“ can be calculated recursively, these bounds
are of a practical interest.

2.4. Numerical evaluation of the bounds

Let /% denote the probability that a given summand 1n (8) is cqual to k, 1 ¢, that
a given summand 1n (4) 1s between k and k41 Thus

(13) he=H(k+1)=H(k), k=012,
Let #Y% denote the corresponding probability for the summands 1n (9). Thus
(14) Y= Hk)—H(k-1), k=123, ...
Herc H(x) 1s given by formula (6). We want to calculate
(15) fl=pPrl!=1), 1=012..
and
(16) f¥=Pr(LY =1), 1=0,1,2,....
Then
(17) 1—3; j}’S(//(u)Sl—ﬁo M u=0,1,...,
= =

according to (12).
The probabilities (15) and (16) can be calculated recursively by the formu-
las

l—gq
(18) f=—,
1—qghy
(19) fle =3 S nsl,. =12,
1 —ghly =
and
(20) -/E)uz l_q’
21 fl=a > Rifie, =12
k=1

These formulas can be derived as follows. By the law of total probabihty
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(22) Pr(l'=1)=Pr(L'=1IN=0) Pr(N =0)

+ > Pr(l!=1IN21, [L]=k)-Pr(N21, [L,] = k)

!
k=0
for1=0,1,2,.... Thus for : = 0

(23) fo=1-q+qff h,
which gives (18), and for 1= 1,2, ...

i
(24) fl=a 3 fliht,
h=0

which yields (19) For the derivation of (20) and (21) we simply replace the

TSR L]

superscript “/” by “u” and obsecrve that 4} = 0.

FIGURE | Combination of exponential densities

pa) = 12073 — 12~
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TABLE 1
UPPER AND LOWER BOUNDS FOR THE FROBABILITY OF RUIN

u lower bounds upper bounds

l P
.0 .583333 .583333 .583333 .583333 .583333 .583333
.5 .373585 .374626 .375144 .376177 .376692 .377718
1.0 .226752 .228198 .228921 .230367 .231089 .232535
1.5 .136653 .138040 .138736 .140132 .140831 .142234
2.0 .082274 .083424 .084002 .085165 .085750 .086926
2.5 .049528 .050410 .050855 .051753 .052206 .053119
3.0 .029814 .030461 .030788 .031449 .031783 .032459
3.5 .017947 .018406 .018639 .019110 .019350 .019835
4.0 .010804 .011122 .011284 .011613 .011780 .012120
4.5 .006504 .006720 .006831 .007057 .007172 .007406
5.0 .003915 .004061 .004135 .004288 .004366 .004526
5.5 .002357 .002454 .002504 .002606 .002658 .002766
6.0 .001419 .001483 .001516 .001583 .001618 .001690
6.5 .000854 .000896 .000918 .000962 .000985 .001033
7.0 .000514 .000541 .000555 .000585 .000600 .000631
7.5 .000309 .000327 .000336 .000355 .000365 .000386
8.0 .000186 .000198 .000204 .000216 .000222 .000236
8.5 .000112 .000119 .000123 .000131 .000135 .000144
9.0 .000068 .000072 .000075 .000080 .000082 .000088
9.5 .000041 .00004a4 .000045 .000048 .000050 .000054
10.0 .000024 .000026 .000027 .000029 .000031 .000033

L—— .005 ——J
.01
.02

length of interval of discretisation

REMARK: In order to keep the paper self-contained, we gave an elementary
proof of the recursive formules (19) and (21). They could also have been obtai-
ned from the observation that the compound geometric distribution 1s a special
case of the family of the compound distributions considered by PANJER (1981)
For the reader who 1s famihiar with renewal theory formulas (19) and (21) are
easy to understand The solution of such a renewal equation is a compound
geometric distribution. Thus 1n this particular context we use this relationship
backwards, 1.e, that a discrete compound geometric distribution can be inter-
preted as the solution of a renewal equation.

2.5. Illustration

For a numerical 1illustration we assume a claim amount distribution with a pro-
bability density function

(25) plx) =12(e 3 —e %), x>0,
which 1s shown 1n figure 1. Wnitten as

(26) p(x)=4@e3N=3@e "), x>0,
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1t can be interpreted as a combination of exponential densities, where the coef-
ficients are 4 and — 3. The mean claim size 1s

1 1 7
3 4 12

We assume further that 1 = ¢ =1, thus ¢ = 5/7.

From (26) we get
(28) P(x)=1-4e73%*13e7%  x>0.

Using (6) we obtain

16 9
(29) Hx)=1- 76‘3" + 7e“"‘, x> 0.

The method of upper and lower bounds has been used for discretisation inter-
vals with length .02, .01 and .005. The resulting bounds are displayed 1n table 1
(The first line, ¥ = 0, shows the known cxact value, ¢ = 1/(1+6) = 7/12).

3. COMBINATIONS OF EXPONENTIAL DISTRIBUTIONS
AND THEIR TRANSLATIONS

3.1. Improper claims

In section 2 negative claims were excluded, P (0) = 0. If the claims can be nega-
tive, 0 < P(0) < I, the method of section 2 cannot be applied (The basic formu-
las (3) and (4) suill hold, but the parameter ¢ of the geometric distribution of N 1s
unknown, as well as the common distribution of the L,’s). We shall present two
methods for this more general situation The first 1s for a particular family of
claim amount distributions, the second will be dicussed 1n section 4.

3.2. A special family of claim amount distributions

We assumc that the claim amount distribution s either a combination of expo-
nentials, with probability density function of the form

(30) plx)= 2 Apet* x>0,
=1

or else a distribution that is obtained if a combination of exponentials is trans-
lated by > 0 to the left, then the probability density function 1s

n

31 px) =2 Ape P x> 1,

1=1

The s arc positive parameters; for simplicity we assume 0 < 8, < fr < ... < f3,.
Some of the A4,’s may be negative, but of course
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(32) A+ Ag+ o +A, = 1.

If all the A,’s are positive, (30) 1s a muwxture of exponential densities, and (31) 1s a
translation of a muxture of exponential densities.

The family of combinations of exponentials 1s much richer (and therefore
more useful) than the family of mixtures; notc that for the /atter the mode 1s
necessarily at 0. In the following we shall treat (30) as a special case (7 = 0) of
(31). Wc¢ shall show how the probability of ruin can be calculated. 1if the claim
amount distribution has such a density.

3.3. A functional equation

By distinguishing according to time {say ¢) and amount (say x) of the first claim
we see that the probability of ruin satisfies the following functional equation:

(33) w(u) = Sm Ae“’gum w(u+ct—x) dP(x) dt
0

+S Ao~ M [t -~ P(u+ct)] dt
0

In a sense, this equation has a unique solution

LEMMA . The functional equation

[+ u+ct
(34) g(u)=S Ae—"S ' gu+ct—x)dP(x) di
0

-7

+S Ade=  [1=P(u+ci)]dt
0

has exactly one solution g(u), u =0, with the property that g(oo) = Q.

PROOF: Since y(u) 1s a solution, such a solution exists. To show the uniqueness,
we assume that there are two different solutions g (#) and g,(u) with
2, (00) = gy(c0) = 0. Then their difference d(u) = g, (u)—g;(u) satisfies the
equation

(35) ou) = YO Ae“’Sum d(u+ct—x)dP(x)dt.
0

-1
Now let m = max |d(u)| and let v be a pomnt at which the maximum s
u20

attamed: m = | §(v)|. From (35) 1t follows that
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(36) m= 16| < mSm Ae-*’gml dP(x) dt
0

-1

mS e Pv+c)di<m,
0

which 1s impossible. Thus 1t 1s not possible that there are two diflerent solutions
that vanish at co. Q.E.D.

The lemma provides us with a simple tool to determine the probability of
rutn. If we can construct a function g(u) that satisfies (34) and vanishes at oo, we
know that 1t 1s the function w(u).

3.4. Construction of a solution

We try to solve (34) by an cxpression of the form
(37) gu)=S Cie™™', uz0.
A=1

We substitute this and (31) into (34). After some calculations we obtamn the
condition that

< c Alplcl\l

(38) S CGeni=> >
k=1

1=1 k=1 (ﬂ[‘_'k) (A-H‘;\C)

e—r,((u+r)

i
-
ll
=
|
=
N’
=
+
=
o

A
+ >
=1 A+f¢

—Te

e~ Bt

Companson of the coefficients of Cye yields the condition that

z A, B2
(39) 1= ——-'ﬂ'—e"*’.
=1 (B,—r) (A+ri0)
But this means that r, r;,.. , t, must be roots of the cquation

n

40 A = e,
( ) e ’gl Ul_r)

which is the equation that defines the adjustment coefficient

Now we compare the coefficients of e~Ple+7) 4y (38). This gives

A+pic
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n

S B,

k=1 ﬁ, =T

Our preliminary result is the following: 1f r | r,, ..., r, are solutions of (40), and
if C, Cy,...,C, sausfy (41) for ¢t = 1, 2, ..., n, expression (37) 1s a solution of
(34). But how can we be sure that g(oo) = 0?

41 Co=1.

3.5, The probability of ruin

The funcuion (37) vanishes at oo, if all the r’s are positive or (if some are
complex) have a positive real part. Thus the question anises, if equation (40) has
n such solutions. Two cases have to be distinguished

1) If all the A,;’s are positive (1.¢. the claim amount distribution 1s a mixture or a
translated mixture of exponentials) the answer is easy to obtain. The geome-
tric argument of BOWERS et al (1986, figure 12 7) can also be applied if 7 > 0.
Thus 1n this case equation (40) has n positive solutions ry, ry,. ., r, with
O<ri=R<fi<r<f<..<r,<pB,.

2) If some of the A;s are negative, the situation 1s more complicated, since
some of the solutions of (40) may be complex. But even here one can show
that equation (40) has exactly » solutions that are positive or have a positive
real part; the interested reader is refered to DUFRESNE and GERBER (1988,
Appendix). It 1s possible that some of the r.’s coincide, in the following we
exclude this unlikely situation from our discussion

Thus we have found the following result: The probability of ruin 1s

n
(42) w) = > Cee™";

k:l
here r, r,, ..., r, are the n roots of equation (40) that are positive or have a
positive real part, and the coefficients C,, C;, ..., C, are the solutions of the

system of linear equations
é B,
k=1 ﬂl_rk

(Such a system has a unique solution, which we shall determine in the following
paragraph).

43) Ck=l, 1=1,2,...,n.

REMARK : CRAMER (1955, section 5.14) derived (42) for the case 1) above; howe-
ver he did not give any exphcit formulas for the C;’s.
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3.6. The coefficients

To determine the coefficients we consider the rational function

S w,—roﬂ(“"ﬂ')
=1 ﬁ) k=1 ﬂj ﬁ«

1

[T =)
k=|

(44) Q) =

We note that Q(8) = 1/f,, y = 1,2, ..., n. By the principle of partial fractions
there are uniquc coefficients Dy, D,, ..., D, such that

n

(45) Z

=1 X—=1I

= Q).

They can be determined by the condition that the expression on the two sides
must be equal for n different values of x, for example for x=p,

U=12,...,n.
¢ D,

(46) =Q0@) =—
I\Zl ﬁj_rk ’ ﬂj

But this system 1s equivalent to (43), and we find as a first result that

(47) Ci=D,, k=12 ,n.

Finally we dctermine thesc coefficients as follows First we multiply (45) by
(x—r,) to get

n 1 n n .,'—ﬂl

o el 2

(48) Z /\_’hDI\ /= ﬂj = ﬂj B
k=1 X—T1y

For x = r, this gtves

n l n n ,— :
Z —-kl_[ (ﬂj_rk)l—[( e )
=1 =1 = —
(49) D=4 m B=h
[T ¢a=r
ey
k#h

In view of (47) this 1s the desired result.
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REMARK : The case where ¢ = 0 1s of some unexpected nterest: Then y(u) can
be interpreted as the probability of ruin 1n a discrete time model in which the
annual premium is T and the probabtlity density function of the annual aggregate
claims 1s given by (30).

3.7. Thecase 1 =0

In the special case where the claim amount distribution 15 a combination of
exponentials (without translation), there is an alternative and somewhat simpler
expression for the coefficients

First of all, there 1s an alternative way to get the r,’s. We replace

r
A by |4+ —
Bl_r ﬂl_"

1n (40), substract A on both sides, and divide the resulting equation by r to get
the condition that

Then r,, ry, ..., r, are the roots of this equation.
Now consider the rational function

(31) O(x) = ,

where p, = z A,/B,. Simce OJ(x) has the same poles as Q(x) and since

=1

~ 1
Q(ﬂj)=_=Q(ﬂj)3 J = 1,2,...,71,
B,

we conclude that (J(x) 1s 1n fact 1dentical to the function
Q(x). Thus we gather from (45) that

"D N
(52) S =),

k=1 X—1ry

Muluplication by x—r, gives
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LoXx—=rp 1 =1 B—x
Dy =—

o1 X— x " '
k=1 X—rg (,l 2 A, B c)/(x—r,,)
=1 ﬂ,—,\’

Now we let x — r,. The the denominator of the expression on the nght will tend
to the derivative of the function
AI
-c
—X

A
‘gl )81

at x = ry. Thus in the limit we obtain from (53) the formula

(33)

(34 Dp=— ———o,

which (if 7 = 0) can be used instead of (49).

REMARK: A formula that 1s essentially identical to (54) has been given by BoH-
MAN (1971) for the case of mixtures of exponentials A result similar to (54) can
be found 1n CRAMER (1955, section 5.14), see also SHIU (1984). The importance
of combinations of exponentials has been recognized by THORIN and WIKS-
TAD (1977) and GERBER, GOOVAERTS and Kaas (1987).

3.8. Illustration
We consider two examples:

a For the first example we use the combination of exponential densities of
section 2.5, where 7 = 0 and

(595) n=2 B =3 p=4 A, =4 A,=-3,
and assume, as before, A = ¢ = 1. The solutions of (50) are
rl = 1, "2 = 5

Then we get from (54) and (47)
C, = 5/8, C,= —1/24.
Thus the probability of ruin 1s given by the expression
5

1
pu)=—e™" ——e”
8 24

Su
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TABLE 2

THE PROBABILITY OF RUIN FOR COMBINATIONS OF EXPONENTIAL DISTRIBUTIONS AND THEIR
TRANSLATIONS

The numerical values are shown 1n table 2, column a., and confirm our findings

of table .

b. For the sccond example we translate the probability density (26) by 0.1 to
the left. Thus the claim amount distribution 1s now given by 7 = 0.1 and (55).

a. b.

u T=20 T =20.1
.0 0.583333 0.584204
.5 .375661 .365203
1.0 .229644 .219122
1.5 .139433 .130687
2.0 .084583 .077873
2.5 .051303 .046396
3.0 .031117 .027642
3.5 .018873 .016468
4.0 .011447 .009812
4.5 .006943 .005845
5.0 .004211 .003483
5.5 .002554 .002075
6.0 .001549 .001236
6.5 .000940 .000736
7.0 .000570 .000439
7.5 .000346 .000261
8.0 .000210 .000156
8.5 .000127 .000093
9.0 .000077 .000055
9.5 .000047 .000033
10.0 .000028 .000020

The mean size is now

We assume the same relative security loading as 1n the first example, § = 5/7.
Thus, if for example ¢ = 1, we assume A = 35/29. From (40) we find

P, =1/12-0.1 = 29/60.

r, = 1.035774,

From (49) and (47) we obtain

C, =0.618102,

ra

= 4.817225

C, = —0.033898.

Then the probability of ruin is given by the expression

(//(u) — Cle_r|"+C2€_rz“-

The numerical values are shown 1n table 2, column b.



THREE METHODS TO CALCULATE THE PROBABILITY OF RUIN 85

4. SIMULATION

4.1. Introduction

If the probability of a certain event 1s to be found by simulation, the usual
proceeding 1s to repeat the stochastic experiment a number of times and to see
each time, if the event does or does not take place. Then the observed empirical
frequency 1s used to estimate the probability of the event.

Obviously, this method of brute force 1s not very pratical, if we are to find the
probability of ultimate ruin. Nevertheless the probability of ultimate ruin can be
obtained by simulation, if the following two facts are kept in mind: Firstly, the
probability of ruin 1s equivalent to the stationary distribution of a certain asso-
ciated process, and secondly, this stationary distribution can be obtained by
pathwise simulation,

4.2. Duality
Let us introduce
(56) L{t)y=S()—ct, =20,

the aggregate loss at time ¢, and

(57) M) = max L(z), (>0,

0zt
the maximal aggregate loss in the interval from 0 to . Then
(58) l—w(u,t) = Pr(M(1) < u),

1e., the probability of survival to time ¢ (a functuion of the initial surplus) 1s the
distribution function of M(r). Note that (58) generalizes (3).
We shall also consider

(59) W)=L({)— min L(z).
0<zst

The process | W(r)} 1s obtamed from the process {L(1)} by introduction of a
retaining barrier at 0 This is 1llustrated in figure 2.
Let

(60) F(x, 1) = Pr(W()<x)

denote the distribution function of W(r). Now we rewrite (59) as follows

(61) W) = max {LW)-L(2)}.
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FIGURE 2 Construction of the process { W (1)}

wi(r)

L(r)

Since the process {L(¢)} has stationary and independent increments, 1t follows
that W (1) and M () have the same distribution. Therefore

(62) l—w(u,t) = Fu,t).
Let
(63) F(x) = hm F(x, 1)

denote the stationary distribution of the process { W (¢)}. Then 1t follows from
(62) that
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(64) l—w(u) = F(u).

It remains to show how F(u) can be obtamned cfficicntly.

REMARKS: The fact that W(t) and M (1) are idenucally distributed 1s well
known, sec for example FELLER (1966, V1.9) or SEAL (1972).

4.3. Determination of the stationary distribution

The distribution F(x) can be obtained by pathwise simulation 1n the following
fashion: For a particular value of .x let D(x, t) denote the total duration of time
that the process { W(z)} 1s below the level x before time ¢. Then one can show
that

D(x, 1)

(65) - F(x) for ! - oo.

This is essentially an application of the Strong Law of Large Numbers and can
be found in HoEL, PORT and STONE (1972, section 2.3). From (64) and (65) we
see that the probability of ruin can indeed be obtained by simulation, where the
process { W(z)} has to be simulated only once.

4.4. Practical implementation

We simulate 7', T, ..., the ttmcs when the claims occur, and X, X5, ..., the
corresponding claim amounts. Instead of keeping track of D(x, t), 1t 1s easier to
keep track of D,(x), the duration of the time that the process | W (1)} is below
the level x before the time of the n-th claim. Then 1t follows from (65) and the
fact that 7, - oo for n — co that

(66) D, (x)

- F(x) for n - .

n

Thus 1if n s sufficiently large, 1 —w(u) = F(u) 1s esumated by the value of
D,(uyT,.

For a given value of x, D,{x) can be computed recursively as follows. First
D, (x)=17,. Then for n = 1,2, ..

(67) Dy(X)+ Ty — T if W,+X,sx

Dn+l(x)= W—I—X—\'
n n—~
C

D,,(x)+(T,,+|— = ) if W,+X,>x.
+
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Here W, denotes the value of W(r) immediately before the n-th claim. Thus
(W,+X,), 1s the value of W(t) just afier the n-th claim. Thereforc we can
calculate the W,'s recursively according to the formula

(68) Wn+| = [(Wn+Xn)+_c(Tn+l_Tn)]+ s

with starting value W, = 0.

4.5. Illustration

We condider the two examples of section 3.8. Each time the simulation has been
carried out through | million claims, and the results are shown 1n table 3a and
table 3b. We note that in each column the estimators for the probability of ruin
approach the exact value (taken from table 2) as simulation progresses. We note
that the convergence 1s quite satisfactory, perhaps with the exception of the
“large” values of u, where the probability of ruin 1s small In any case, 1f one 1s
not satisfied with the convergence, the stmulation can be continued to obtain
more precise results. Of course for this it would be advisable to do the simula-

tion on a mainframe computer! (The simulations above have been carried out
on a PC).

TABLE 3a
PROBABILITY OF RUIN BY SIMULATION

u= 0 1 2 3 [ 5 6 7

500 0.588746 0.254429 0.127094 0.076168 0.028443 0.011798  0.002875 0.000119
100000 0.581629 221634 0,077008 0.027749 0.009953 0.001666 0.001)98 0.000596
150000 0.581775 222313 0.077642 0.027530 0.009794 0.003529  0.001290 0.000486
200000 0.582200 223009 0.078331 0.027859 0.009804 0.003503 0.001262 0.000454
250000 0.583733 .221995 0.079864 0.028884 0.010299 0.003720  0.001387 0.000503
300000 0.583160 224523 0.079211 0.028330 0.009968 0.003550  0.001305 0.000468
350000 0.582982 . 224037 0.079002 0.028149 0.0097517 0.003403  0.001233 0.000450
400000 0.582879 .223622 0.078979 0.028174 0.009790 0.00342)  0.001225 0.000443
450000 0.582922 223279 0.078748 0.028017 0.009683 0.003379  0.001186 0.000421
500000 0.583052 223807 0.079248 0.028304 0.009855 0.003432  0.001200 0.000429
550000 0.583466 .224405 0.079577 0.028410 0.010002 0.003567 0.001309 0.000434
600000 0,583861 224748 0.079699 0.028368 0.009971 0.003535 0.001293 0.000479
650000 0.583791 .224570  0.079593 0.028316 0.009929 0.003488  0.001261 0.000457
700000 0.58374] 224869 0.079917 0.028544 0.010073 0.003550  0.001261 0.000445
750000 0.583600 .224708 0.079819 0.02849) 0.010052 0.003563  0.001284 0.000465
800000 0.583540 224802 0.079999 0.028697 0.010211 0.003646 0.001303 0.000460
850000 0.583609 224789 0.079971 0.028726 0.010262 0.003675 0.001334 0.000486
900000 0.583758 225065 0.080087 0.028787 0.010314 0.003707 0.001349 0.000488
950000 0 5813820 .225186 0.080183 0.028808 0.010274 0.003658  0.001321 0.000481

1000000 0.583951 .225311 0.080232 0.028808 0.010221 0.003613 0 001301 0 000478

coeoO000000RLO0000000

exact 0 583333

o

229644 0.08458) 0.031117 0.011447 0.004211  0.001549 0.000570
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TABLE 3b
PROBABILITY OF RUIN BY SIMULATION

u=s 0 1 2 3 4 5 6 1

S00  0.593045 0.243940 0.091826 0.034948 0.008195 0.000000  0.000000 0.000000
100000 0.584593 0.214373 0.074654 0.027335 0.010103 0.003662  0.001404 0.000710
150000  0.583146 0.212020 0.072741 0.026267 0.009432 0.003226  0.001140 0.000527
200000 0.58229) 0.211215 0.072141 0.025765 0.009309 0.003361  0.001177 0.000509
250000 0.582775 0.212572 0.073010 0.026148 0.009469 0.003316 0.001122 0.000453
300000 0.583533 0.213759 0.073920 0.026537 0.009531 0.003)35 0.001153 0.000439
350000 0.584117 0.214489 0.074245 0.026771 0.009687 0.003398  0.001142 0.000103
400000 0.584564 0.214564 0.074286 0.026818 0.009652 0.003421  0.001131 0.000376
450000 0.584437 0.214486 0.074457 0.027060 0.009865 0.003507 0.001167 0.000395
500000 0.584456 0.214311 0.074225 0.026841 0.009749 0.003449  0.001122 0.000361
550000  0.584328 0.213919 0.073795 0.026510 0.00953) 0.003350  0.001072 0.000337
600000 0.584500 0.214244 0.074049 0.026507 0.009519 0.003182  0.001111 0.000372
650000 0.584395 0.2142)9 0.074237 0.026734 0.009640 0.00)467  0.001162 0.000393
700000 0.584397 0.214095 0.074108 0.026711 0.009612 0.003425 0.001144 0.000386
750000 0.584731 0.214106 0.074305 0.026732 0.009607 0.003393  0.001118 0.000373
800000 0.584664 0.214142 0.074188 0.026633 0.009533 0.003340  0.001084 0.000355
850000 0.584454 0.213887 0.074059 0.026543 0.009460 0.003308  0.001068 0.000353
500000 0.584524 0.213940 0.074002 0.026448 0.003437 0.003318  0.001089 0.000375
950000 0.584671 0.214196 0.074177 0.026499 0.009438 0.003325 0.001124 0.000405

1000000 0.584531 0.214211 0.074280 0.026556 0.009482 0.003337 0.00112) 0.000400

exact 0.584204 0.219122 0.077873 0.027642 0.009812 0.00348)  0.001236 0.000439
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