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ABSTRACT 

The first method, essentmlly due to GOOVAERTS and DE VYLDER, uses the 
connection between the probablhty of  ruin and the maximal aggregate loss ran- 
dom variable, and the fact that the latter has a compound geometric d lsmbu-  
tlon. For the second method, the claim amount  distribution is supposed to be a 
combination of  exponential or translated exponential distributions. Then the 
probablhty of  rum can be calculated in a transparent fashmn; the mare problem 
is to determine the nontrlvlal roots of  the equation that defines the adjustment 
coefficmnt. For the third method one observes that the probabihty of  ruin is 
related to the stationary distribution of  a certain associated process Thus it can 
be determined by a single simulation of the latter. For the second and third 
methods the assumption of only proper (positive) claims is not needed 
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1. INTRODUCTION 

Traditionally, practitioners have approximated the probablhty of  ruin by the 
expression e -Ru, where R is the adjustment coefficient (by some authors called 
insolvency coeFficmnt or Lundberg's constant) and u the inltxal surplus. From a 
technical point of  view, the need for such an approximation has become less 
important;  thanks to the arrival of  efficient computers and even personal com- 
puters, the exact probablhty of  ruin can be calculated. This has been demons- 
trated by several authors, l.a. THORIN and WIKSTAD (1976), SHXU (1988), 
MEYERS and BEEKMAN (1987), PANJER (1986), and indirectly by STRO- 
T E R  (1985). 

In this paper we shall present three methods; they have the merit that they 
can be explained in elementary terms and they can be implemented numerically 
without any difficulty. 

The method of upper and lower bounds (section 2) is a method of numerical 
analysis and is essenUallly due to GOOVAERTS and DE VYLDER (1984) The main 
drawback of this method is that it is limited to the situation where negative 
claims are excluded. 

Method 2 (section 3) is analytical in nature (but it can be understood without 
extcnslve knowledge of complex analysis); it generalizes a method that has been 
proposed by BOHMAN (1971). If  the clmm amount  distribution is a combination 
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of  exponential or translated exponential distributions, the probabd~ty of  rum 
wdl be of  the form as shown m formula (42). The mare task is the numerical 
determination of the nontrivml (possibly) complex roots of  the equation that 
defines the adjustment coefficient. 

The probabdlty of  ultimate rum can also be obtained by s~mulation (sec- 
tion 4), although this seems to be a paradoxical idea at first sight. If  the claims 
are reinsured by (for example) an excess of  loss contract, the distnbut~on of 
retained cla,ms cannot by approximated by a combination of exponentml d~s- 
tnbut~ons, and Method 2 cannot be apphed. Method 3 is generally applicable 
and does not have the drawbacks of Method 1 (no negative claims) or Method 2 
(no reinsurance). 

2. METHOD OF UPPER AND LOWER BOUNDS 

2.1. Introduction 

In th~s section we shall present a method that leads to the bounds that are due to 
GOOVAERTS and DE VYLDER (1984); our denvat ,on wdl be very s imdar  to PAN- 
JER'S presentation (1986) and along the ~deas of  TAYLOR (1985). 

2.2. The Model 

In the following we shall use the model and the notation o fcon tmuous  t~me ruin 
theory as ~t ~s explained m the text by BOWERS et al. (1986, sections 12.2, 12.5, 
12.6). Thus 

(1) U(t) = u + c t - S ( t )  

~s the insurer's surplus at t~me t >_ 0. Here u >_ 0 ~s the m~tml surplus, c the rate at 
which the p remmms  are received, and S(t) the aggregate clmms between 0 and t. 
It ,s assumed that S(t) ,s a compound Polsson process, given by the Po~sson 
parameter  2 (claim frequency) and the d~stnbutlon function P(x)  of  the m&vx- 
dual claim amounts.  In thts section we assume that P ( 0 ) =  0 (no negative 
" c l a ims" ) ,  afterwards this assumptxon wdl be dropped. 

The mean claim size is denoted by Pt- Of  course we assume that c exceeds 
,l.p I, the expected payment per umt time. The relative security loading 0 ts 
defined by the condition that c = (I +0 )2p l .  

We denote by ~(u)  the probability of  " r u m " ,  i.e. that U(t) ts negative for 
some t > 0. It ~s well known that ~(0) = 1/(1 +0). For notational convenience we 
denote this quantity by q. 

The maximal aggregate loss, 

(2) L =  max { S ( t ) - c t } ,  
t~0 
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is a random variable of  great interest, since 

(3) l - ~ ( u )  = Pr(L_< u), u ~ 0 ,  

i.e. the probablhty of  survival is the distribution function of  L, see BOWERS et 
al. [1986, formula (12.6.2)]. We can write L as a random sum, 

(4) L = L i + L 2 + . .  + L N ,  

see BOWERS et al [1986, formula (12.6.5)]. Here N is the number  of  record highs 
of  the process S ( t ) - c t  and has a geometric distribution: 

(5) Pr(N = n) = ( l - q ) q " ,  n = O, 1, 2 . . . . .  

The common distribution funcuon of  the L,'s  ~s 

x 

(6) H ( x )  = [1 - P ( Y ) ]  d y .  
0 

Furthermore, the random variables N, Lj ,  L2 . . . .  are indcpendent 
Thus L has a compound geometric distribution, 

(7) P r ( L < u ) =  ~ ( 1 - q ) q " H * " ( u ) .  
n=O 

Together with (3) this yields the convolution formula for the probability of  ruin, 
which ts often attributed to BEEKMAN (1974, section 13.4), but can also be found 
In DUBOURDIEU (1952, p. 246). 

2.3. Derivation of the bounds 

Since H ( x )  is a continuous dlStrlbution function, the expression of the right 
hand side of (7)  cannot be evaluated directly. According to PANJER (1986), the 
~dea ~s to replace H ( x )  by one or several discrete distributions. Here we prefer to 
go one step back and use (4) as a starting point 

For the ease of  presentation and notation we assume that the interval of  dls- 
crettsat~on is the umt interval (in fact this means that the monetary unit is 
identxcal to the length of  the interval of  dlscretlsation). Then we introduce two 
new random variables that are closely related to L '  

(8) L l =  [L i ]+ [L2]+  ... +[LN] , 

and 

(9) L ~ = [ L i +  I ] + [ L 2 +  1]+ ... + [ L N +  1]. 

Thus the idea is to round the summands  m (4) to the next lower integer, which 
gwes (8), or to the next higher integer, which gives (9). Clearly 

(1 O) L I ~ L _< L u , 

which tmphes that 
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(11) P r ( L / >  u)_< Pr (L > u)_< Pr(L"  > u) 

for all u Since ~(u)  = Pr (L  > u) is a cont inuous function for u > 0, it follows 
that 

(12) Pr (L  l ~_ u)_< ~(u)_< Pr(L" > u), u > 0 .  

Since the dxstrlbuuons o f  L / and L" can be calculated recursively, these bounds 
are o f  a practical interest. 

2.4. Numerical evaluation of the bounds 

Let h~ denote the probabili ty that a given s u m m a n d  in (8) is equal to k, i e ,  that 
a given summand  in (4) is between k and k +  l Thus  

(13) h~ = H ( k +  l ) - H ( k ) ,  k = 0, I, 2, 

Let h~ denote the corresponding probablhty  for the summands  in (9). Thus 

(14) h,~ = H ( k ) - t t ( k -  1), k = 1, 2, 3 . . . . .  

Here H ( x )  is given by formula (6). We want to calculate 

A = Pr( Ll = I), l = 0, 1, 2 . . . .  (15) 

and 

(16) 

Then 

f u =  Pr(LU = l), ; = 0 , 1 , 2  . . . . .  

(18) f o /  I - - q  
l - q h ~  ' 

(19) 

and 

(20) 

(21) 

according to (12). 
The probablllUes (15) and (16) can be calculated recurslvely by the formu- 

las 

q ± 
t =  1 ,2 , .  

f o~= l - q ,  

= ~ h uCu . . . . .  f ir q kJl-I,  , t = l, "7, 
k= l  

These formulas can be derived as follows. By the law of  total probabili ty 

u- i 

(17) 1 - ~ f /_<  ~,(u)_< l - f / ' ,  u = o ,  1 . . . . .  
1=0 1=0 
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(22) Pr(L t = t ) =  Pr(L t = t l N = 0 )  P r ( N = 0 )  

+ ~ Pr(ff = t l N>_ 1, [L~] = k). Pr(N>_ 1, [Li] = k) 
k=0 

for t = 0 ,1 ,2  . . . . .  Thus for l =  0 

(23) f0' = l-q+qfoth~, 
which gwes (18), and for l : 1, 2 . . . .  

I 

(24) f /  = q ~ f/-k hl, 
k=O 

which yields (19) 
superscript " l "  by 

75 

For the derivation of (20) and (21) we simply replace the 
" u "  and observe that h~ = 0. 

13 

FIGURE I C o m b m a t m n  of  exponentml  densmes  
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TABLE 1 

UPPER AND LOWER BOUNDS FOR THE PROBABILITY OF RUIN 

8 
8 
9 
9 

i0 

.0 

.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 
5.5 
6.0 
6 5 
7 0 
7 5 

0 
5 
0 
5 
0 

.583333 

.373585 

.226752 

.136653 

.082274 

.049528 

.029814 

.017947 

.010804 

.006504 

.003915 

.002357 

.001419 

.000854 

.000514 

.000309 

.000186 

.000112 

. 0 0 0 0 6 8  

.000041 

.000024 

I 

lower bounds 

1 
583333 583333 
374626 375144 
228198 228921 
138040 138736 
083424 084002 
050410 050855 

.030461 030788 

.018406 018639 

.011122 011284 

.006720 006831 

.004061 004135 

.002454 002504 

.001483 001516 

.000896 000918 

.000541 000555 

.000327 000336 

.000198 000204 

.000119 .000123 

.000072 .000075 

.000044 .000045 

.000026 .000027 

I L_ 

upper bounds 

.583333 

.376177 

.230367 

.140132 

.085165 
051753 
031449 
019110 
011613 
007057 
004288 
002606 
001583 
000962 
000585 
000355 
000216 
000131 
000080 
0 0 0 0 4 8  
0 0 0 0 2 9  

.005 - ~  

.01 

.02 

.583333 .583333 

.376692 .377718 

.231089 .232535 

.140831 .142234 

.085750 .086926 

.052206 .053119 

.031783 .032459 

.019350 .019835 
011780 .012120 
007172 .007406 
004366 .004526 
002658 .002766 
001618 .001690 
000985 .001033 
000600 .000631 
000365 .000386 
000222 .000236 
000135 .000144 
000082 .000088 
000050 .000054 
000031 .000033 

J r 
length of interval of dlscretlsatlon 

REMARK" In order to keep the paper self-contained, we gave an elementary 
proof of the recurslve formules (19) and (21). They could also have been obtai- 
ned from the observauon that the compound geometric dlstnbuUon is a special 
case of the family of  the compound distributions considered by PANJER (1981) 
For the reader who is familiar with renewal theory formulas (19) and (21) are 
easy to understand The solution of such a renewal equation is a compound 
geometric distribution. Thus m this particular context we use this relationship 
backwards, i.e, that a discrete compound geometric distribution can be inter- 
preted as the solution of  a renewal equation. 

2.5. Illustration 

For a numerical illustration we assume a claim amount distnbunon with a pro- 
bablhty density function 

(25) p(x) = 12(e-3X-e-4X), x > 0, 

which is shown m figure 1. Written as 

(26) p(x) = 4 ( 3 e - 3 ' ) - 3 ( 4 e - 4 X ) ,  x >  0, 
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it can be interpreted as a c o m b m a n o n  of  exponential  dcnsmes,  where the coef- 
ficients are 4 and - 3 .  The mean claim size is 

1 1 7 
(27) Pl = 4 - -  3 - = - - .  

3 4 12 

We assume further that 2 = c = 1, thus 0 = 5/7. 
From (26) we get 

(28) P(x)  = I - 4 e - 3 X + 3 e  -4x, x > 0 .  

Using (6) we obtain 

16 9 
(29) H ( x )  = 1 - - -  e -3x + e -4-~, 

7 7 
x > O .  

The method of  upper and lower bounds  has been used for discretisatlon inter- 
vals w~th length .02, .01 and .005. The resulting bounds  are displayed m table 1 
(The first hne, u = 0, shows the known exact value, q = 1/(1 +0)  = 7/12). 

3. COMBINATIONS OF EXPONENTIAL DISTRIBUTIONS 

AND THEIR TRANSLATIONS 

3.1. Improper claims 

In section 2 negative claims were excluded, P(0) = 0. If  the claims can be nega- 
nvc,  0 < P(0) < 1, the method of  section 2 cannot  be applied (The basic formu- 
las (3) and (4) still hold,  but the parameter  q o f  the geometric distribution o f  N is 
unknown,  as well as the c o m m o n  dis t r ibunon of  the L,'s). We shall present two 
methods  for this more general sl tuatmn The first is for a particular family o f  
claim amount  d l s tnbutmns ,  the second wdl be d~cussed m section 4. 

3.2. A special family of claim amount distributions 

Wc assumc that the claim amount  distribution is either a combination of  expo- 
nentials, with probabili ty density function o f  the form 

(30) p ( x ) =  ~ A,fl, e -p'x, x > 0 ,  
I= l  

or else a dlStrlbunon that is obtained if a combina t ion  o f  exponentials ~s trans- 
lated by r > 0 to the left, then the probabihty  density function is 

(31) p(x )  = ~ A,fl, e -p'cx+~), x > - z .  
I=1 

The fl,'s arc posmve  parameters;  for simplicity we assume 0 < '81 < ,82 < ... < fin. 
Some of  the A,'s may bc negative, but o f  course 
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(32) Ai+A2+...  +An= 1. 

If  all the A,'s are posmve,  (30) is a mtxture o fe xponenua l  densities, and (31) is a 
t ranslauon o f  a mtxture of  exponenual  densities. 

The family o f  combina t ions  o f  exponentials is much richer (and therefore 
more  useful) than the family o f  mixtures;  note that for the latter the mode  is 
necessarily at 0. In the following we shall treat (30) as a specml case (r = 0) o f  
(31). We shall show how the probabili ty o f  ruin can be calculated, if the clmm 
amoun t  distr ibution has such a density. 

3.3. A functional equation 

By dlst ingmshing according to t ime (say t) and amoun t  (say x)  o f  the first clmm 
we see that the probabili ty o f  ruin satisfies the following functional equat ion:  

(33) ~u(u) = 2e -a¢ ~ ( u + c t - x )  dP(x) dt 

-JU ~ ;  ~C-- "l'/ [ [ -- P (~ "-JU ct)] dt 

In a sense, this equatmn has a unique solution 

LEMMA. The funcUonal equaUon 

(34) g(u) = 2e -a '  g ( u + c t - x )  dP(x) dt 
- r  

• --~ 5 ;  /].~- ]'I [ ] -- P (~, -~- Ct)] a t  

has exactly one soluuon g(u) ,  u ~ O, with the property that g(oo) -- O. 

PROOF: Since ~'(u) is a solution, such a solution exists. To show the uniqueness, 
we assume that there are two different solutions gl(u) and g2(u) with 
gl(oo) = g2(oo) = 0. Then their difference ef(u) = gl(u)-g2(u) saUsfies the 
equation 

(35) ~(u) = 2 e - a ~  ~(u+ct-x)dP(x)d t .  

Now let m = max [~f(u)l and let v be a point at which the max imum is 
u>0 

at ta ined:  m = ] ei(v)[. From (35) it follows that 
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~CO ~v+Ct 
(36) m = [ fi(v)] < m 2e -'~l dP(x) dt 0 -l" 

= m~:  2e-~tP(v+ct)dt<m, 

which is impossible. Thus it is not possible that there are two different solutions 
that vanish at co. Q.E.D. 

The lemma provides us with a simple tool to determine the probabdl ty  o f  
rum. If  we can construct  a function g(u) that satisfies (34) and vanishes at co, we 
know that it is the function ~,'(u). 

3.4. Construction of a solution 

We try to solve (34) by an expression o f  the form 

(37) g(u) = ~ Ck e-re" u > O 
/,=1 

We subsmute  this and (31) into (34). After some calculations we obtain the 
condit ion that 

(38) ~ Cke -r~ ~ ~ A,fl, C~2 u = e - r k ( u + r )  

k=~ ,=~ k=~ ~ , - - I k ) ( ; t + r ~ c )  

_ ~ ~ A,fl, Ck2 e_/t,,,,+~ ) 

,=,  k=, (fl,-- r~) (~. + ¢¢, c) 

A~2 
+ - -  e-P,(u+o 

,=t ~+f l ,  c 

Compar ison  of  the coefficients o f  C~e .. . .  ymlds the condit ion that 

(39) 1 =  ~ A,fl,2 e -r*~. 
,=1 (fl,--rk)(X+rkc) 

But this means that r I , r2, .. , t,, must  be roots o f  the cquation 

(40) X+cr  = X ~ A, fl' e-r', 
,=1 (/St-r) 

which is the equation that defines the adjustment  coefficient 

Now we compare  the coetTicmnts o f  .,1.A~ - - e  -p'("+O m (38). This gwes 
2 +fl, c 
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n 

(41) ~'~ fl' Ck = i .  
k= l  flt-- rk 

Our prehminary  result is the following: l f r l ,  r:, . . . ,  r, are solutions of(40),  and 
if Cl ,  C2 . . . . .  C,  sausfy (41) for l = 1, 2 . . . . .  n, expression (37) is a solution o f  
(34). But how can wc be sure that g(oo) = 0? 

3.5. The probability of ruin 

The function (37) vanishes at 0% if all the rk'S are posmve  or (if some are 
complex) have a positive real part. Thus  the question arises, if equation (40) has 
n such solutions. Two cases have to be distinguished 
1) If  all the A,'s are posmve  (i.e. the claim amoun t  distribution is a mixture or a 

translated mixture o f  exponentials) the answer is easy to obtain. The geome- 
tric argument  o f  BOWERS el al (1986, figure 12 7) can also be apphed i f z  > 0. 
Thus  in this case equanon  (40) has n positive solutions r l ,  r2 . . . .  r ,  with 
0 < r  I = R < f l l < r 2 < f l z < . . . < r . < f l . .  

2) If  some of  the A,'s are negative, the situation is more complicated,  since 
some of  the solutions o f  (40) may be complex. But even here one can show 
that equation (40) has exactly n solunons that are posmve  or have a posmve  
real part;  the interested reader is refered to DUFRESNE and GERBER (1988, 
Appendix).  It is possible that some o f  the rk'S coincide,  in the following we 
exclude this unlikely situation from our  discussion 

Thus  we have found the following result: The probabihty  o f  rum ~s 

/1 

(42) ~'(u) = ~ Cke- '~u;  
k= l  

here r~, r2 , . . . ,  rn are the n roots o f  equation (40) that are positive or have a 
pos tu re  real part, and the coefficients C~, C2, . . . ,  Cn are the solutions o f  the 
system of  linear equat ions 

k=~ C k = 1, = 1, . . . . . .  (43) t 2 n 
=1 fl~-- rk 

(Such a system has a unique soluuon,  which we shall determine in the following 
paragraph). 

REMARK: CRAMI~R (1955, section 5.14) derived (42) for the case I) above;  howe- 
ver he did not give any explicit formulas for the C~'s. 
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3.6. The coefficients 

81 

To determine the coefficaenls we consider lhe ratmnal function 

~ I f i  ( f l j - r , ) f i ( x - ~ ' )  
- -  , = 1  J = l  ~ j  k = l  t~,/ 

(44) Q(x)  = 

fi (x- rk) 
k=l 

We note that Q(flj) = l///j, j -= 1, 2 . . . . .  n. By the principle of partial fractions 
there are umque coefficients D~, D2, . . . ,  D, such that 

n 
(45) ~, Ok _ Q ( x ) .  

k=l x - - r  k 

They can be determined by the condit ion that the expressmn on the two sides 
must be equal for n different values o f  x, for example for x = / / j  
(j = 1, 2 . . . .  , n). 

(46) ~ D~ _ 
1 

k=l f l j - rk  Q([3j) =--.flj 

But this system ~s eqmvalent to (43), and we find as a first result that 

(47) C~ = Dk, k = 1,2 . . . .  n .  

Fmally we determine these coefficients as follows First we multtply (45) by 
(V--rh) to get 

& x Fh 
(48) ~ D~. = 

k=l x - t "  k 

For x = i"/, this gives 

1 _ 

f i  ( x -  r k) 
k= I 
/,.¢h 

j=I gk= ,  ,=, 
(49) Dh = 

f i ( r h - r ~ )  
/,=1 
k~h 

In vtew o f  (47) this ~s the desired result. 
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REMARK: The case where c = 0 is o f  some unexpected interest : Then ~(u)  can 
be interpreted as the probabihty  o f  ruin in a discrete time model in which the 
annual  p remium is r and the probabili ty density function o f  the annual aggregate 
claims is given by (30). 

3.7. The case r = 0 

In the special case where the clmm amoun t  d~stribunon is a combina t ion  o f  
exponentials (without translation), there is an alternative and somewhat  simpler 
expression for the coefficients 

First o f  all, there is an alternative way to get the rk's. We replace 

fll r 
by 1 + - -  

~,-r  #,-," 

in (40), substract 2 on both stdes, and d~vlde the resulting equanon  by r to get 
the condit ion that 

,L A, 
(50) c = 2 

t= I ~ t - -  r 

Then rt, r2, . . . ,  rn are the roots o f  this equation. 
Now consider the rational function 

I 
(51) 0 ( x )  = --  

X 

2 ~. A----L-~ - 2p I 
t= I f i t - -  x 

2 ~ A, 
- -  - -  C 

t= I f l t - -  X 

where pl = ~ A,/fl,. Since (2(x) 
t= l  

1 
O(flj) = _ = Q(fl/), 

Pj 

we conclude that (~(x) is m 
Q(x). Thus  we gather from (45) that 

(52) ~ Dk 
k= l  x - r  k 

has the same poles as 

j =  1 , 2 , . . . , n ,  

fact identical to 

- O ( x ) .  

Muluphca t ion  by x--rh gives 

Q(x) and since 

the function 
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x - - r h  1 
(53) Dk = --  

k=l  X - -  r k X 

J. ~ A...........~ _ ,;tPi 
1=1 ~t-- x 

2 ,=l f l , -  x c ( x -  rh) 

Now we let x--, r h. The the denominator  of  the expression on the nght will tend 
to the denvauve  of the function 

2 ~  AI 

t = l  flt--X 

at x = rh. Thus in the limit we obtain from (53) the formula 

AI P l  

1 ,=l f l - - r  h 
(54) D h = - -  , 

rh ~ A~ 

,=I (fl,--rh) 2 

which Of z = O) can be used instead of  (49). 

REMARK: A formula that is essentially ~dentlcal to (54) has been given by BOH- 
MAN (1971) for the case of  mixtures of  exponentials A result similar to (54) can 
be found m CRAM~R (1955, section 5.14), see also SHIU (1984). The Importance 
of  combina t ions  of  exponenUals has been recognized by THORIN and WIKS- 
TAD (1977) and GERBER, GOOVAERTS and KAAS (1987). 

3.8.  I l lustrat ion 

We consider two examples:  

a For the first example we use the combination of exponentml densities of  
section 2.5, where r = 0 and 

(55) n = 2 ,  fll = 3, f l 2 = 4 ,  Ai = 4 ,  A 2 = - 3 ,  

and assume, as before, 2 = c = I. The soluUons of (50) are 

r I = 1, r2=5. 

Then we get from (54) and (47) 

Cl = 5/8, C2 = - 1/24. 

Thus the probablhty of  rum is given by the expression 

5 1 
~u(u) = - e  -u - - - e  - s " .  

8 24 
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T A B L E  2 

THE PROBABILITY OF RUIN FOR COMBINATIONS OF EXPONENTIAL DISTRIBUTIONS AND THEIR 

TRANSLATIONS 

a. b. 

u r = 0 r = 0.I 

.0 0.583333 

.5 .375661 
1.0 .229644 
1.5 .139433 
2.0 .084583 
2.5 .051303 
3.0 .031117 
3.5 .018873 
4.0 .011447 
4.5 .006943 
5.0 .004211 
5.5 .002554 
6.0 .001549 
6.5 .000940 
7.0 .000570 
7.5 .000346 
8.0 .000210 
8.5 .000127 
9.0 .000077 
9.5 .000047 

10.0 .000028 

0.584204 
.365203 
.219122 
.130687 

.077873 

.046396 
027642 
016468 
009812 
005845 
003483 
002075 
001236 
000736 
000439 
000261 
000156 
000093 
000055 
000033 
000020 

The numerica l  values are shown in table 2, co lumn a., and confirm our findings 
of  table 1. 

b. For the second example we translate the probabdi ty  density (26) by 0.1 to 
the left. Thus  the claIm a m o u n t  d~strtbuUon is now given by r = 0.1 and (55). 
The mean  size is now 

Pt = 7 / 1 2 - 0 . 1  = 29/60 .  

We assume the same relative security loading as m the first example,  0 = 5/7. 

Thus,  if for example c = 1, we assume 2 = 35/29. From (40) we find 

rl = 1.035774, r 2 = 4.817225 

From (49) and (47) we obta in  

Ct = 0.618102, C2 = - 0 . 0 3 3 8 9 8 .  

Then  the probabi l i ty  of  rum is given by the expression 

~ ( u )  = C~ e - "  "+  C2 e - '2"  

The numerical  values are shown m table 2, co lumn b. 
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4. SIMULATION 
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4.1. Introduction 

If the probablhty of a certain event IS to be found by simulation, the usual 
proceeding is to repeat the stochastic experament a number of times and to see 
each tame, if the event does or does not take place. Then the observed empirical 
frequency is used to estimate the probability of the event. 

Obviously, this method of  brute force is not very pratlcal, if we are to find the 
probabd~ty of ult:mate ruin. Nevertheless the probability of  ultimate rum can be 
obtained by simulation, if the following two facts are kept m mind: Firstly, the 
probability of ruin is equivalent to the stationary distribution of  a certain asso- 
ciated process, and secondly, this stationary d~stnbutlon can be obtained by 
pathwise simulation. 

4.2. Duality 

Let us introduce 

(56) L(t) = S ( t ) - c t ,  t > 0,  

the aggregate loss at time t, and 

(57) M(t) = max L(z), t > O, 
O<z<t 

the maximal aggregate loss in the interval from 0 to t. Then 

(58) l - ~ ( u ,  t) = Pr(M(t)_< u) ,  

i.e., the probablhty of survival to time t (a function of the initial surplus) is the 
distribution function of  M(t). Note that (58) generalizes (3). 

Wc shall also consider 

(59) W(t) = L(t) - mln L(z) .  
O~z~t 

The process { W(t)} is obtained from the process {L(t)} by introduction of a 
retaining barrier at 0 This is illustrated in figure 2. 

Let 

(60) F(x, t) = Pr(W(t)  < x)  

denote the distribution function of  W(t). Now we rewrite (59) as follows 

(61) W(t) = max { L ( t ) - L ( z ) } .  
O<z<l 
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FIGURE 2 Construction of  the process { W(I)I  

w(o 

) t 

Since the process {L(t)} has stationary and independent increments, it follows 
that W(t) and M(l) have the same distribution. Therefore 

(62) l - ~ ( u , t )  = F(u,t). 

Let 

(63) F(x) = hm F(x,t) 
l~oo 

denote the stationary &stnbutton of the process { W(t)}. Then it follows from 
(62) that 
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(64) 1-~u(u) = F(u) .  

It remains to show how F(u) can be obtained efficiently. 
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REMARKS: The fact that W(t) and M(t)  are idenucally distributed is well 
known, see for example FELLER (1966, VI.9) or SEAL (1972). 

4.3. Determination of the stationary distribution 

The distribution F(x)  can be obtained by pathwlse simulation m the following 
fashion : For a particular value o f x  let D(x, t) denote the total duration of  time 
that the process { W(z) I ~s below the level x before t ime t. Then one can show 
that 

D(x, t) 
(65) - - ~  F(x) for t --. oz.  

This is essentially an application of  the Strong Law of  Large Numbers  and can 
be found in HOEL, PORT and STONE (1972, section 2.3). From (64)and (65) we 
see that the probability of  ruin can indeed be obtained by simulation, where the 
process { W(/)} has to be simulated only once. 

4.4. Practical implementation 

We simulate TI,  T2 , . . . ,  the times when the claims occur, and X~, X2 , . . . ,  the 
corresponding claim amounts.  Instead of  keeping track of D(x, t), it is easier to 
keep track of D~(x), the duration of the time that the process I W(I)I is below 
the level x before the time of  the n-th claim. Then it follows from (65) and the 
fact that Tn ~ co for n--, oo that 

D. (x) 
(66) - -  ~ F(x)  for n ~ oz.  

T. 

Thus if n is sufficxently large, l - ~ , ( u ) =  F(u)  is estimated by the value of 
D n (u) /T n . 

For a given value of x, D,(x)  can be computed recurslvely as follows. First 
D I(x) = Ti.  Then for n = l, 2, .. 

(67) 

D~+ ~ (x) = 

D . ( x ) + T n + t - T .  if W . + X .  A x  

D . ( x ) + ( T . + t - T .  Wn+-Xn-X)c J+ if W . + X . > x .  
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Here W. denotes the value of  W(t) immedxately before the n-th claim. Thus 
(W.+X.)+ is the value of  W(t)just after the n-th claxm. Therefore we can 
calculate the W.'s recursively according to the formula 

(68) w . + ,  = [ ( w . + x . ) +  -c(T. , . , -  T . ) ] + .  

with starting value W 1 = O. 

4.5. Illustration 

We condider the two examples of section 3.8. Each time the simulation has been 
carried out through 1 million claims, and the results are shown in table 3a and 
table 3b. We note that in each column the estimators for the probability of ruin 
approach the exact value (taken from table 2) as simulation progresses. We note 
that the convergence IS qmte sahsfactory, perhaps with the exception of the 
" la rge"  values of u, where the probability of ruin is small In any case, if one is 
not sausfied with the convergence, the simulation can be continued to obtain 
more precise results. Of  course for this it would be advisable to do the simula- 
tion on a mainframe computer! (The simulations above have been carried out 
on a PC). 

T A B L E  3a 

PROBABILITY OF RUIN BY SIMULATION 

exact 0 583333 0.229644 0.084583 0.031117 0.011447 0.004211 0.001549 0.000570 

u = 0 1 2 3 4 5 6 7 
n 
500 0.588746 0.254429 0.127094 0.076168 0.028443 0.011798 0.002875 0.0(90119 

100000 0.581629 0.221634 0.077008 0.027749 0.009953 0.003666 0.001398 0.000596 
1500(X) 0.581775 0.222313 0.077642 0.027530 0.009794 0.003529 0.001290 0.000486 
200000 0.582200 0.223009 0.078331 0.027859 0.009804 0.003509 0.001262 0.000454 
250000 0.58]7]3 0.224995 0.079864 0.028884 0.010299 0.003720 0.001387 0.000503 
300000 0.583160 0.224523 0.079211 0.028330 0.009968 0.003550 0.001305 0.{X)0468 
350000 0.582982 0.224037 0.079002 0.028149 0.009757 0.003403 0.001233 0.(X~3450 
400000 0.582879 0.223622 0.078979 0.028174 0.009790 0.003423 0.001225 0.000443 
450000 0.582922 0.223279 0.078748 0.028017 0.(X)9683 0.003379 0.001186 0.000421 
500000 0.58]052 0.223807 0.079288 0.028304 0.009855 0.003432 0.001200 0.000429 
550000 0.583466 0.224405 0.079577 0.028410 0.010002 0.003567 0.001309 0.000494 
60(XX)O 0.583861 0.224748 0.079699 0.028368 0.009971 0.003535 0.001293 0.000479 
650(~0 0.583791 0.224570 0.079593 0.028316 0.009929 0.003488 0.001261 0.000457 
70(3000 0.583743 0.224869 0.079917 0.028544 0.0]0073 0.003550 0.001261 0.{X~0445 
750000 0.583600 0.224708 0.079819 0.028493 0.010052 0.003563 0.001284 0.000465 
8(X)O00 0.583540 0.224802 0.079999 0.028697 0.010231 0.003646 0.001303 0.{X~0460 
850000 0.58]609 0.224789 0.079971 0.028726 0.010262 0.00]675 0.001334 0.000,186 
900000 0.583758 0.225065 0.080087 0.028787 0.010314 0.003707 0.001349 0.000488 
950000 0 583820 0.225186 0.080183 0.028808 0.010274 0.003668 0.001321 0.000481 
]000000 0.583951 0.225311 0.080232 0.028808 0.010221 0.003613 0 001301 0 000478 
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TABLE 3b 

PROBABILITY OF RUIN BY SIMULATION 
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u= 0 1 2 3 4 5 6 7 
n 

500 0.593045 0.243940 0.091826 0.034948 0.008195 O.O0(XX~3 0.000000 0.000000 
100000 0.584593 0.214373 0.074654 0.027335 0.010103 0.003662 0.001404 0.000710 
150000 0.583346 0.212020 0.072741 0.026267 0.009432 0.003226 0.001140 0.000527 
200(300 0.582293 0.211215 0.072141 0.025765 0.009309 0.003361 0.001177 0.000509 
250000 0.582775 0.212572 0.073010 0.026148 0.009469 0.003316 0.001122 0.000453 
300(XX) 0.583533 0.213759 0.073920 0.026537 0.009531 0.003335 0.001153 0.000439 
350000 0.584417 0.214489 0.074245 0.026771 0.009687 0.(X)3398 0.(X)i142 0.000403 
400000 0.584564 0.214564 0.074286 0.026818 0.009652 0.003421 0.001131 0.000376 

450000 0.584437 0.214486 0.074457 0.027060 0.009865 0.003507 0.001167 0.000395 
50(~00 0.584456 0.214311 0.074225 0.026841 0.009749 0.00]449 0.001122 0.00036[ 
550000 0.584328 0.213919 0.07]795 0.0~6510 0.0095]] 0.003350 0.001072 0.000337 
600000 0.584500 0.214244 0.074049 0.026507 0.0095[9 0.003]82 0.001111 0.000372 
650000 0.584395 0.214239 0.0742]7 0.026734 0.009640 0.003467 0.001162 0.000393 
700000 0.584397 0.214095 0.074[08 0.026711 0.009612 0.003425 0.001144 0.000386 
750000 0.584731 0.214306 0.074305 0.026732 0.009607 0.003393 0.001118 0.000373 
800000 0.584664 0.214142 0.074188 0.026633 0.009533 0,003340 0.001084 0.000355 
850000 0.584454 0.213887 0.074059 0.026543 0.009460 0.003308 0.001068 0.000353 
900000 0.584524 0.213940 0.074002 0.026448 0.0094]7 0.003318 0.001089 0.(XX)375 
950000 0.584671 0.214196 0.074177 0.026499 0.009438 0.003325 0.001124 0.000405 

I(XXXXX) 0.584531 0.214211 0.074280 0.026556 0.009482 0.003]37 0.001123 0.000400 

exact 0.584204 0.219122 0.077873 0.027642 0.009812 0.003483 0.001236 0.000439 
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