USE OF SPLINE FUNCTIONS FOR
PREMIUM RATING BY GEOGRAPHIC AREA

By G.C. TAYLOR

ABSTRACT

The paper gives details of a case study 1n the premium rating of a Householders
Contents insurance portfolio. The rating is performed by the fitting of bivariate
spline functions to a version of operating ratio described in Section 3.

The usec of bivanate sphnes requires a small amount of mathematical equip-
ment, which is developed 1n Section 4 The fitting of splines, using regression 1s
carried out 1n Sections 5 and 6, where the numenical results are given, including
some assessment of goodness-of-fit.

Contour maps of the spline surfaces are also given, and used for the selection
of geographic areas used for premium rating purposes. These are compared with
the areas, past and present, actually used by the insurer concerned.

|. INTRODUCTION

It 1s common 1n nsurance of domestic property lines, ¢ g. motor vehicle (colli-
sion damage) and householders, to find that the risk premium per unit exposure
varies with geographic areca when all other risk factors are held constant.

Such variation may or may not be continuous as a function of spatial coor-
dinates. In cither event, 1t will be necessary for practical purposes to divide the
total area for which premium rates are required into a relatively small number
of regions of reasonable size such that, all other risk factors equal:

(1) premiums vary as between region,
(1) premiums do not vary within region.

Henceforth, such regions will be referred to as rating regions,

This raises the question of how such regions should be determined. The pre-
sent paper consider this 1n a context in which the determination is to be made
solely on the basis of data. In practice, of course, 1t may be necessary to modify
the conclusions reached 1n this way in order to make suitable allowance for
available anecdotal or circumstantial evidence.

Thus 1t 1s assumed that claims and exposure data are available in respect of a
number (possibly a large number) of subdivisions of the total area for which
premium rates are required. In the specific example considered here these sub-
divisions are postal areas (postcodes in Australian terminology). The problem
consists of identifying the appropriate aggregations of the postcodes into rating
regions satisfying the two conditions set out above.

It 1s possible to regard the problem as one of cluster analysis, suitable clusters
of postcodes being sought However, it 1s evident that clustering must be carried
out according to the criteria of both geographic clustering and clustering by
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premium. Definition of a metric for the clustering algorithm which mcorporates
both critena satisfactorily is not easy.

This paper follows a different path. Risk premtum, with all factors except
geographtc coordinates held constant, is envisaged as a continuous function of
these coordinates. This function is then estimated and examine for steep gra-
dients which would lead to the defimition of rating areas satisfying conditions (1)
and (1) above.

Thus, the fitting of the premium function becomes the major task. The
mathematical form of this function 1s quite unknown. A natural way to fit 1t
smoothly to the available data points is to make usc of spline fitting. Note that
the fitted spline function 1s bivariate.

This fitting 1s carried out in Section 3 and the results presented in Sec-
tion 4.

2. DATA AND NOTATION

2.1, Data

Data available 1n respect of each metropolitan postcode related to the experience
of the Householders Contents portfolio of a large Australian insurer in the
financial year 1985/86 and 1n the state of New South Wales. The data compri-
sed:

0] postcode identifier and geographic coordinates;

(1)  years of exposure to risk,

(i)  number of claims;

(1v) average cost per claim;

(v)  average sum insured;

(v1) average jewellery penetration (1.e. the proportion of policies carrying
jewellery insurance, this risk requiring a separate coverage);

(vn) average jewellery sum 1nsured, the average being taken over those cases
which carry a non-zero sum insured;

(vin) average earned premium per year of exposure;

(1x)  average gross experience premium per year of exposure. consisting of:

average observed nsk premium per year of cxposure
plus

administration expensc loading consisting of a charge per policy, a
charge per claim, a percentage of claim payments, and a percentage
of premium,

where average observed risk premium per year of exposure 1s defined
as:

number of claims per year of exposure
X

average cost per claim,
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(x)  the Company’s present system for premium rating the relevant postcode,
consisting of:

(a)
(b)

the rating region to which that postcode is currently assigned;
premium rating formula for that rating region, of the form:

base premium + const, x sum insured + const, x jewellery sum nsu-

red,

the terms “base premium” and “const.” each varying with rating
region.

A small sample of these data 1s displayed in Appendix A

2.2. Notation

The remainder of this paper uses the following notation. Suppose there are N

postcodes.
red 1,2, ..

Without loss of generality, they can be treated as numbe-

., N (although in fact they are not). In the following definition of

notation a subscript : denotes postcode i.

Let

ST xR
1T | T I

H =

= number of years exposure;

number of claims;

average cost per claim;
average sum insured;

average jewellery penetration;
average jewellery sum insured:

= average earned premium per year of exposure before allowance for

no claim discounts (NCD);
average risk premium per year of exposure n,x,/E,, as defined n
Section 2.1,

= average gross experience premium per year of exposure;
= average NCD in the portfolio, expressed as a proportion of premium

payable net of NCD;

= raung region to which the postcode is assigned in the present pre-

mium rating system,

= basc premium in rating region R;
= premium rate per $ 1000 of sum insured n rating region R,
= premium ratc per $ 1000 of jewellery sum insured in rating region

R;
UR{") = total region covered by postcodes.

According to this notation, the jewellery premium rate for postcode : is denoted
by n‘,{ip). This very cumbersome expression is abbreviated to 7f. Similarly, bgm

and n,?fn

are abbreviated to b, and 7{® respectively.



94 G C TAYLOR
3. ISOLATION OF GEOGRAPHIC AREA AS A RISK FACTOR

3.1. General context

As Section | explains, the objective of this paper 1s to fit a2 function to the
*“geographic area effect ”. This requires controlling for any other factor affecting
risk premium.

Strictly, all nsk factors should be fitted to the data simultaneously. This,
however, would be extremely difficult. It is assumed here that risk premiums are
estimated by a three-stage procedure:

— Stage 1. Fit all factors simultaneously, but with only a rough fit of the
*“geographic area effect™. This effect could be roughly incorporated in the
model using rating regions taken from an existing premium rating system or
even chosen by guesswork.

— Stage 2. Control for all rnisk factors other than geographic area by calcula-
ting, for each postcode, an index of nisk (the following uses a version of
operating ratio) based on standardized values of all other risk factors.

— Stage 3. Treating this index as function of geographic coordinates x, y, fit a
function 7(x, y). Then estimate risk premium at (x, y) as proportional to
I(x, y).

In the present application, Stage 1 was taken as being carried out by the existing
premium rating system, which was believed to be reasonably accurate.

In a general context Stage 2 proceeds as follows.

The operating ratio for postcode ¢ 1s:

(3.1.1) pr = (1+k)PC/PE.
A more accurate version of this formula would have been
pr= (L+k) PI/PE,

with an NCD factor k, specific to postcode . Unfortunately, the factors k, were
not available and 1t has been necessary to use the compromise formu-
la (3.1.1).

This would result in a tendency to reduce high observed operating ratios, and
increase low ones. Such attenuation of the data would have little effect on the
present exercise, since the selection of geographic rating regions depends largely
on the risk ordering of postcodes rather than the magnitudes of their risks. It is,
however, a factor which would need to be taken into account in the subsequent
exercise of determining premium rates for the rating regions selected.

Suppose that the premium rate depends on m factors F|,..., F,,, with F|
representing rating region (of the present system). Let n(f,,...,f,,) be the pre-
sent tabular premwum when F, = f,,..., F,, = f,.

Now let f,,y = 2,..., m, denote the average value of F, observed in postcode
1; and let f_j, J = 2,...,m denote the corresponding average over the entire
portfolio. Averages here are weighted averages with years of exposure used as
weights.
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Next sclect a “standard ™ rating region, preferably not near the extremes of
high or low risk, and denote 1t by RY’. With a slight abuse of notation, the
tabular premium n this region on the basis of average values of risk factors

F,, .., F,, taken over postcode : may be written as n (¥, Saseoisfom).
Then, to a reasonable degree of approximation, the factor:
(3.1.2) ¢ = Jis - S/ T S fom)

1s the factor by which premium actually received 1n respect of postcode ¢ has
been increased relative to the premium which would have been received had
rates of the “standard™ rating region been applied to all postcodes.

Removal of the geographic area effect adjusts PE to PF/¢,, and hence p, to:

(3.1.3) ™ =p.g,,
by (3.1.1). By (3.1.2) and (3.1.3),
(3.1.4) P = pr(t, fas oo SV fias s o) s

which 1s the operating ratio which would have been observed in postcode ¢ had
that postcode been subject to the premium rates of the “ standard ™ region. It is
essenuially an estimate, subject to sampling error, of relative costs of the various
postcodes. This will be referred to as the operating ratio adjusted for region.

Now let (x,, y) denote the centroid of the polygonal postcode area ¢, 1.e. the
average of the vertex coordinates (sce Appendix Al). Then a first approximation
to the index of risk required 1n Stage 2 is:

(3.L.5) I(%,,7) = pf*.

An alternative version of ¢, may be considered. This is:

(3.1.6) AT U ST O V2 1L PR S

Usually (3.1.2) woul be preferred to (3.1.6) since the former takes into account
any unusual variation in the risk factors F,, ..., F,, as between different postco-
des.

3.2. Specific context

In the specific context of the premium rating system set out 1n Section 2.1, item
(x)(b), m = 4 with

F, = rating region;
F, = sum 1nsured,
F5 = jewellery penetration;
F, = jewellery sum 1nsured;

where, for an individual policy,

F5 = 1, if the policy carnes a jewellery sum insured,
= 0, otherwise.
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Thus, the numerator of ¢,, as defined in (3.1.2), 1s the premium for a policy
writlen 1n posicode ! carrying the average sum insured and average jewellery
sum nsured of that postcode and with the jewellery component of the premium
scaled down by the jewellery penetration factor The denominator of ¢, 1s the
same except based on premium rates of the “standard” region instead of the
region containing postcode 1.

A small sample of the results of these calculations 1s set out in Appendix B As
appears there, the two versions ¢, and ¢, of operating ratio adjusted for region
produce quite similar results and only ¢, has been used subsequently.

4. SPLINE FITTING

4.1. General

According to the preamble in Section |, the operating ratio adjusted for region is
envisaged as a function /(x,y), x,ye.# By (3.1.5), esumates of I(x,,y,) are
available. The function /(x, y) 1s to be estimatcd as a spline which fits these
estimates adequately.

4.2. Analytical

It 1s first necessary to clarify what 1s meant by a spline with multi-dimensional
domain. The present application 1s concerned with a 2-dimensional domain,
and discussion will be restricted to that dimensionahity. The concepts generalize
readily to higher dimensions, but at the cost of more complex definitions which
would represent impedimenta tn the present context.

DEefINITION. Lct be the 2-dimensional domain [0, oo) x [0, c0), and (u, v):

H— A A Cce byection. Let O<h <hy<...<h, <oco and
0 <k, <ky<...<k, <. Decfinc y, to be the curve with parametric form:
4.2.1) vy =[ult, k), vit, k)], ,=1,..n,

and similarly define the curve 4,:

(4.2.2) 0,@t) = [u(h,, ), vih,, NI, 1l =1,.. ,m.

The curves y, and J, will be called Ainges. They arc sometimes called knot lines
in the hiterature. A subset of ##bounded only by hinges will be called a finged
subset A hinged subset which does not contain any other hinged subset as a
proper subsct will be called a minumal hinged subset A real function defined on
A 18 a sphne function of degree p f, when restricted to any minimal hinged
subsct, 1t 1s a bivariate polynomial of degree = p, at least one such polynominal
having degree cqual to p, and all derivatives (including mixed derivatives) of
order = p—1 are continuous on the whole of %
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REMARKS. The function (u, v) establishes curvilinear coordinates in R. The set of
curves {y,,d,} are coordinate lines 1n these new coordinates The remainder of
the definition generalizes concepts involved in spline functions of a single vana-
ble. The correspondences between univariate and bivanale splines are as fol-
lows.

Univariate Bivanate
Knot Hinge
Interval Minimal
between knots hinged subsct

Note that, because the map (u, v) 1s a biycction, 1.e a coordinate transforma-
tion, its inverse (call 1t g) transforms the hinges into coordinate lines in R, Thus,
instead of fitting a spline function with hinges y,, 4, to observations /(X,, ) onc
might fit a sphine function to obscrvations [(g(X, y)) with hinges (in the xv-
plane) x =h,,1=1,...,mand y =k, j=1,...,n

In this coordinate system, all minimal hinged subsets will be rectangular. In
all subsequent analytical development, thercfore, this rectangular structure will
be assumed without any loss of generality.

It should be noted that, since the coordinate transformation 1s in general non-
linear, a spline function fitted in the coordinate system in which hinges are
rectilinear will not necessarily induce a spline function in the coordinate system
of curvilinear hinges Nevertheless, the function fitted in this latter coordinate
system will be a reasonable interpolating function

DEFINITION. Let (z), denote max (z,0), and read (z)”, as [(z),]”. An M-spline
of degree p is a function (defined on the Euclidean xy-plane) which assumes one
of the two forms (x—#)*, for some constant A or (v-k)?. for some con-
stant K.

The AM-sphines arc of use in constructing spline functions as the following
result shows. Therr univanate version is discussed by GREVILLE (1969, pp. 2-3),
though not under that name.

PROPOSITION. Any spline function of degree p with hinges x = A, ..., A, cutting
the x-axis and hinges y = k,, ..., k, cuting the y-axis can be decomposed into a
sum of:

(i) a polynominal of degree =p on £ and
(n) constant multiples of the M-splines (x—h)", , 1 =
(i) constant mulitples of the M-splines (y—k)% , J

ol
S 3

ProOF. See Appendix C
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4.3. Choice of hinges

Certain criteria can be established for the determination of the hinges of biva-
riate spline functions to be fitted to a particular data set.

First, the more hinges are specified, the more parameters are to be estimated,
since the sphine function changes 1ts polynomial form each time a hinge 1s cros-
sed. Thus, the choice of too many hinges will lead to over-fitting, 1.e. a *“ wrin-
kly " fitted surface For this reason the number of hinges used should be mini-
mized subject to adequate fit to data.

Second, the choice of hinges should be related 1n some way to the * flatness™
of the data points. For example, if all data points assumed the same value, a
constant polynominal would fit over the entirety of the relevant domain. There
would be no purpose in choosing any hinges to allow the polynominal form to
vary from one hinged subset to another.

Strictly, 1t 1s not “flatness” which matters but rather conformity of data
points with a ssmple polynomial form. For exampile, 1f a quadratic spline is to be
fitted and all data points lie on a quadratic surface, there would again be no
purpose 1n choosing any hinges. However, this type of conformity of the data
will often be difficult to verify by simple inspection.

Conversely to the second point, hinges will need to occur more densely in
those subregions where the surface to be fitted is evidently changing more rapid-
ly.

Thus, in general terms, hinges should be chosen to delineate *“ essentially dif-
ferent” parts of the surface, with greatest (resp. least) density in those areas
where the surface 1s changing most (resp least) rapidly. Parts of the surface
which are apparently different can be identified from the map in Appendix Gl.
It can be seen in the following diagram that the hinges have been chosen to
approximate the boundaries of these regions, 1solating for example-

(1) the north-east and south-east corners;
(1) the central east region around the harbour;
(111) the far west region.

With all this, however, 1t must be said that the choice of hinges actually adopted
on any particular occassion remains very much a subjective one.

The following diagram provides a schematic representation of the (curvili-
near) hinges chosen 1n relation to the fitting of operating ratio adjusted for
region detailed 1in Appendix B. In fact, in the actual surface fitting procedure,
some of these hinges were very slightly distorted, as described 1n Section 5.2.

The rectangular region covered by these coordinates 1s the region appearing in
the diagrams of Appendix G, though the horizontal scale has been distorted
relative to the vertical scale in the schematic representation.

The precise definition of these hinges i1s given n the numerical detail of Sec-
tion 5.1. Initially, two further hinges, like flatter versions of the seemingly para-
bolic hinges to the right of the diagram, were considered to the left of those.
However, the numbers of observations in the minimal hinged subsets so created
were sufficiently small that the additional hinges were dropped.
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4.4. Fitting by regression

The hinges illustrated 1in Section 4 3 were transformed to rectilinear hinges by
means of the coordinate transformation set out in Section 5.2. The rectilinear
hinges were:

x = 300, X = 400;
v = 100, y = 150, v = 180, v = 200.

Then, by the spline decompositon result quoted in Section 4 2. quadratic and
cubic spline functions can be written n the forms:

m

Quadratic spline: f(x, y) = Z ayxtyl + Z b(x—h): +
k! 1=1
S

4.4.1) + > ¢y
J=1

m

Cubic spline. f(x,y) = z ayxty' + > b(x—-h) +
k. (=0 =1
K+ 1=3

(4.4.2) + 2 ¢(v-k)>
J=1
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The splines are fitted by esumatuion of the cocfficients ay, b,, ¢, Since f1s linear
in these unknowns, regresston can be used 1o carry out the fit.

Regressions have been performed using the GLIM (Generalised Linear Inte-
ractive Modelling) system (PAYNE, 1985). Regression fits are carried out in this
system by the method of maximum lhikelihood. It 1s assumed that cach obser-
vation respresents a drawing from a gamma distribution This recognises the
csscntial positivity of the sampled vanable, operating ratio adjusted for region.
Each obscrvation 1s assigned a weight E,. This means that the coefficient of
variation of the gamma distribution associated with postcode 115 taken to be

const./E},

where the const. term is independent of ¢.

The difficulues arising 1in the choice of an error distribution deserve some
discusson. It may be reasonable to regard the amount of claims 1n each cell as a
gencralized Poisson vanate. For a large expected number of claims, i.e. large E,,
this 1s known to approximate a gamma variate (SEAL, 1977). Hence operating
ratio adjusted for region p, *), a scalar multiple of this claims amount (see (3 1.1)
and (3.1.4)), will also be a gamme variate approximately.

Difficulties arise when £, 1s small. In this case the distribution of p™*! consists
of a spike at zero, togcther with a continuous distributions on strictly positive
support. No standard distribution provides a model for this

It 15 evidently extremely difficult to find an error distribution which provides
an adequate representation of p* at both large and small exposures, and 1s also
computationally manageable for regression purposes Certainly, the standard
regression packages do not appear to provide for this

In the event, only a small minority of cells contained smali £,. The great
majority contained E, of at least somc hundreds, probably sufficient to justify
the adoption of the gamma error distribution.

When the gamma error distribution s used, it is natural that the seciprocal of
the hinear model (i.e. the reciprocal of the spline function) be fitted to the data.
This 1s done by the GLIM package.

5. RESULTS

5.1. Hinges

The reasoning governing the selection of hinges 1s set out 1n Section 4.3, as 1s the
general shape of those actually selected. The precise forms of the hinges, special
cases of (4.2.1) and (4.2.2), are as follows*

y,(t) = {4, k,+sgn (k,—150) exp [ -0.0004 | k,— 150 | (1—500) +
(5.1.1) + 5(k,—100)3]}, 0=r=600,

forj = l, 2, 3, 4, with kl = 100, kz = 150, /\'3 = 180, /(4 = 200, and
(5.1.2)  81) = {h,+600000(t — 150)2/(600—h,)* 1}, 0=r=300,
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for 1 = 1, 2, wath A, = 300, h, = 400, wherc sgn (.) 1s defined by:
sgn(x) = +1, x>0,
0, x=0;
—1,x <0.

The functional forms nceded to produce hinges of the right shape are evidently
complicated, as they will be 1n most practical implementations. Discovery of
these forms, and production of the associated coordinate transformations (Sec-
tion 5 2), are the only non-routine, and hence difficult, parts of the whole fitting
procedure.

5.2. Coordinate transformations

As remarked just after the definition of a spline function 1n Section 4.2, the
hinges J, are the images under the coordinate transformation (&, v) of the coor-
dinatc lines x = A, 1n the xy-plane Simularly, the hinges y, are the images of the
coordinate lines y = &,.

Companson of (4 2.2) with (5.1.2) indicates that, along the hinge 4,,

u(x, y) = x+600000[v(x, ¥)— 150]%/(600—x)>.

For convenience, write x’, y* for the transformed coordinates induced by x, y.
Then, along 4,,

(5.2.1) X' = x+600000 (¥’ — 150)*/(600—x)>.
Similarly, along y,,
(5.2.2) y* = y-+sgn (y—150) exp [—0.0004 | y— 150 | (x" —500+5(y—100)/3].

Now (5.2.1) and (5.2.2) together do not give a coordinate transformation 1n a
convenient form since they give:

(x, ) = X’

(% p) =y,
and not
(3.2.3) x,p) = (X9,
as required.

In the present case this difficulty can be overcome by using the fact (from
(5.2.2)) that y” ~ y for large x’. The coordinate transformation chosen 1s there-
fore:

(5.2.4) X’ = x+600000(y— 150)*/(600—x)*;
(5.2.2) y’ = y+sgn (y—150) exp [—0.0004 | y— 150 | (x"— 500+ 5 (v~ 100)/3] .

Equation (5.2.4) 1s of the form required by (5.2.3). If x" 1n (5.2.2) is expressed 1n
terms of x, y by means of (5 2.4), then (5.2.2) 15 also 1n the form required by
(5.2.3)
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The means of converting each (x’, ) pair used in defining a postcode (Ap-
pendix A) to a point {x, ) 1s given in Appendix D2.

Naturally, the approximation of y* by y in (5.2.4) will distort the hinges defi-
ned by x = A, and y = k, respectively. However, for the points x’, y” with larger
values of x” and smaller values of y’-150, which are primarly the ones where
the definition of the hinges needs to be reasonably precise (see the diagram in
Section 4.3), the distortion willl be small. This 1s illustrated by the following
diagram which displays the hinges x = 300, 400 and y = 100, 150, 180, 200 in
the x’ y’-plane, as produced by the coordinate transformation (5.2.4) and (5.2.2),
and overlays them on the diagram of the desired hinges illustrated in Sec-
tion 4.3. The difference between the two sets of hinges 1s very small for practical
purposes, and 1n a number of respects the two are quite indistinguishable.
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It should be pointed out here that (5.2.4) and (5.2 2) do not 1n fact provide a
coordinate transformation of % The appearance of the terms sgn (y— 150) and
| y—1501 1n (5.2.2) produces discontinuities in the gradients of the expression
given there for y’. However, (5.2.4) and (5 2 2) do provide separate coordinate
transformations of the two subregions of -#defined by the constraints y = 150
and y =150 respectively. It is evident from (5.2.2) that these subregions are
mapped to y’' = 150 and y” = 150 respectively. It follows that the line y = 150 1s
mapped 10 y" = 150

6. THE SPLINE SURFACES

Section 4.4 gives the algebraic forms of the quadratic and cubic sphines whose
reciprocals are to be fitted to the data [see (4.4.1) and (4.4.2)]. These are written
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in terms of (x, y) coordinates indicating that the independent coordinates are
from the domain 1n which the hinges are rectilinear, as assumed in the formulas
given. Details of the regression model used in the fit are also given in Sec-
tion 4.4

The function to which the reciprocal spline 1s fitted 1n Section 4.4 1s taken as
I(x, y), the operating ratio adjusted for region, as experienced at (x, v). As noted
in (3.1.5), observations f(x, y) on this function arc taken as available at the
centroids (x,, y,) of the various postcodes. A sample of observations 1s listed 1n
Appendix B.

Note that these centroids must be expressed 1n terms of the (x, y) coordinates.
This has been done by means of the following procedure:

(1) for each vertex (x’, y’) of postcode : listed in Appendix Al, calculate the
corresponding coordinates (x, y),

(n) calculate (x,, y,) as the average of all the vertex coordinates (x, y) related to
postcode 1. :

The results of these computations are sampled in Appendix E. Note that, becau-
se the transformation between the (x, y) and (x’, ¥’) coordinate systems is non-
linear, postcode polygons in the (x’, y’) coordinates will not have rectilinear
sides n the (x, y) representation. Therefore, the evaluation of a centroid as the
average of the vertex coordinates will involve some error. Since most postcodes
are small 1n area, especially where the curvature of the coordinate transforma-
tion 1s greatest, this error will be small and probably neghgible.

Appendix E summarizes a small sample of the data used in the spline-fiting
regressions.

The results of the regressions are as follows.

QUADRATIC SPLINE

Sphine coefficient

Term
Fitted value Standard error

const 1 555 1 659

X —6247x 1073 2830x107?
v 4236x 1072 3725% 1072
a? 1297x10-? 5095x10-°
xy 1387x1073 1253x 103
y —3648x 10 2142%x 1074
(1 —300)% ~-4326%x107° 1996103
(x—400)2 1312x10°° 5250x10~°
(y—100)% 5741 x107* 3003x10¢
(y—150)3 —1L512%x 10 2483 x10-*
(y—180)% 4'544x 10~ 4319x10-4
(v—200)2 ~5708x 10~ 3876x 10~

It may be noted that a number of the coefficients here arc not statistically
significant. This fact 1s taken no further here, but will be referred to again below
in relation to the fitted cubic sphine
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CUBIC SPLINE

Spline coefTicient

Term
Fitted value Standard error

const — 1681 4916

X 1300x 1073 2098x 1072
y 1287x 1072 1519% 10-!
x? 1198 % 10-° 4694x 1073
xy —2965x 104 1610x 1074
y 5945x 1074 1837x 103
x? —2016x10"7 5861x 108
xzzv 9316x 10-? 1352x 1077
Xy 7772% 107 3412x 1077
y? —3670x10°° 7013x10°¢
(x-300;3+ 5835x 1077 2167x 1077
(x-400)T —1744x10"% 8728x 1077
(y—100)% 7390x%10°¢ 9671x10-¢
(y—150)3 —3353x10"° 7737% 1078
(y—180)7 5155 1076 1270 10
(y— 2000, 78551076 11021073

As was the case with the fitted quadratic spline, many of the terms in the
cubic spline are not statistically significant. It is possible to ehhminate these from
the fit. Experimentation with the elimination of insignificant varnables led to the

following cubic spline function.

Spline coefficient

Term
Fitted value Standard error

const 3742 04087

x —3229x 1072 6474% 1073
x? 1695x10-* 3306x10°°
x3 —2542x 1077 5132%x 10°8
y? —5215x 1077 6686x 1072
(x—300)% 6871x 107 2051 %1077
(x—400)% —1857x10"¢ 8625x 1077
(y—100)% 3401 x10-8 5307x 1077
(y—150)% —3884x10-¢ 9090 % 10-7

Some further statistics related to the regression models, particularly concer-
ning goodness of fit, are of interest. These appear in the following table.

The meaning of the estimated coefficients of variation 1s as follows. For the
largest postcodes, with exposures in excess of 4000, the coefficient of variation
of the adjusted operating ratio is about 15%. For a relatively small postcode
with 100 years of exposure, the coefficient of variation 1s about 100%.
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Estimated coefficient Coefficient of determination
Spline of varauon of of regression (b)
suprface operating ratio
adjusted for Unadjusted Adjusted
region (a) % %
Quadratic 107 39 35
Cubic
full model 10.1 46 41
reduced model 101 44 41

Notes (a) This coeflicient of vanation relates to a single year of exposure The corresponding coeffi-
cient for E, exposure years 1s this figure adjusted by a factor of £~}
(b) The adjusted coefficient of determination 1s defined as (SEBER, 1977, pp 362-363)

1 —nSz/(n-p) s

where

residual sum of squares of the regression model fit

residual sum of squares of a constant model! fit

= | — unadjusted coefficient of determination

These cocfficients of variation seem large, but perhaps not unreahstically so.
For example, if each cell were Poisson distributed the coefficient of vanation for
a single year’s exposure would be 1. Since it is fair to assume that there 1s
variation in the mean claim frequency associated with individuals within a cell,
1t may be inferred that the coefficient of varniation of claim frequency associated
with a single year's exposure will be larger than | (see e.g SEAL, 1969, p. 25) It
1s also known that the distribution of Contents insurance claim sizes tends to be
long tailed. When additional allowance i1s made for this component of variation,
1t may be that the actual coefficient of vanation of the adjusted operating ratio
approaches the value estimated from the data. Otherwise, the conclusion would
be that the sphine fit 1s 1nadequate, and its deviation from the true underlying
adjusted operating ratio manifests itself as a spurious increase in random noise.

The unadjusted coefficients of determination show the proportion of variation
1n the data explained by the fittcd spline surfaces.

As explained by SEBER (1977, p. 363), the unadjusted coefficients of determi-
nation of regressions involving different numbers of regressors are not compa-
rable. The adjusted coefficient of determination is intended to make for compa-
rability

On the basis of these statistics there seems httle to choose between the two
cubic splines, both of which appear somewhat superior to the quadratic spline.
The quadratic spline was dropped from the final process of selecling rating
regions.
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QUADRATIC SPLINE

Standardized
residual

.900 |

.600 |

.300

.000 |

.700

L4400 |

.100

.800 |

.500 | * 3% *

.200 22 *
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.600 ! 2 % % %5 = + 3 * x  * %% *
.300 ! 3 tx ax *3 224 2t =

.000 ! * 3 £x rEx * Drx D * *

.300 ! *2 % 44 222 23 2% 2 ’ *
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.900 ! LEES JE SN 4 * 2%% ¥ 2

.200 | * % X% KFr X X%x) X 2

.500 !
.800
.100 |
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Fitted value of
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FULL CUBIC SPLINE

Standardized
residual

.800 |
.400
.000
.600
.200
.800
.400
.000

; rxx x * % *

: * 2 *
.600 | * * *
.200 | * x 5 x *
.800 ! ¥ 3 *x¥ * * t2 TEQE ¥ X *
400 2 3 *2 Ed xx XX DOXXBLX AX X x *
.000 | 3 22 322 *2% 2235 *
~0.400 |  *33#*#2%% 2:2 223433 * .
—0.B00 | 4%x122% % #%% £ 2% $CE¥2%D * x x
-1.200 | ** #x 2 2% % 22 *
-1.600 !
-2.000 |
-2.400
-2.800 |

COOHHFNNNWWE S &

0.375 0.62 0.875 1.125 1.375 1.625 1.875

Fitted value of
operating ratio
adjusted for
region
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REDUCED CUBIC SPLINE

Standardized
residual

.600 ! *
.300
.000
.700
.400
.100
.800

E 252
: * 2 * *

.500 | *ox ok
.200 ! 2 2
900 : * 2 % 2 * L EX ) »
.600 | 2 * *x & D32%23% %%
.300 ! * 32% s+ 33222 *t
.000 ! **  *x 73 2%x 33¥ *

-0.300 ! 3% *2 23 3%3% * * *

-0.600 | *Hx3 32%2% 2325622 *

-0.900 ! 23 2% » 2*5 * *

-1_200 : * 322 LR 4 *

~1.500 !

-1.800 !

-2.100 |

-2.400 !

0.000 0.40 0.800 1.200 1.600 2.000 2.400

Fitted value of
operating ratio
adjusted for region

CQOOO+HHHNNNWLWWW

A small sample of values of operating ratio adjusted for region fitted by each
of the three splines 1s displayed in Appendix F, together with the standardized
residuals 1n each case. Plots of these standardized residuals against the fitted
values appear above. In these plots, a * in the (x, y) position denotes occurrence
of a standardized residual of y in the casc that operating ratio adjusted for region
1s x; a 2 1n the (x, y) position 1s equivalent to two *’s there; a 3 equivalent to
three *s, ctc.

The plots appear reasonable. There is perhaps a hint that, for constant expo-
sure, coefficient of vanation decreases with increasing operating ratio. It might
have been fearcd that the spline surface would tend to flatten out real eccentn-
cities 1n operating ratio There 1s, however, no evidence that the splinc surfaces
tend to under-estimate (resp. over-estimated) at the upper (resp. lower) extreme
of operating ratios.

In the case of each of the cubic splines, maps of the total rating region were
produced showing the division into different ranges of adjusted operating ratio
as esumated by the spline function in question. The map for the reduced cubic
spline appears in Appendix G2. This may be compared with the corresponding
map 1n Appendix G1 which shows the division into different ranges of adjusted
operating ratio as observed

Contour maps of the two cubic sphine surfaces were also produced These may
be used to select rating rcgions The map relating to the reduced cubic spline 1s
reproduced below.
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NEW RATING AREAS

The contours indicate five regions of steep gradient which divide off five clear
rating areas:

(1) the north-eastern suburbs (low risk);

(1) the south-eastern suburbs (low risk);

(1) the far western suburbs (low risk);

(1v) a small pocket of certain eastern suburbs (high risk);
(v) the central western suburbs (high risk).

The remainder of the total region would then provide a sixth rating region.
In practice the task would be completed by using the contours to determine
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boundaries of the six rating regions, which would then be treated, for rating
purposcs, as homogencous with respect to operating ratio.

It 1s of interest to compare these suggested rating regions with those actually
used by the nsurer concerned. Appendix G3 displays the regions in use during
1985/86, the period to which the data of the present paper relate, the immedia-
tely preceding map, in which Areas A to E are in descending order to risk,
displays the regions currently in use.

This map does indeed indentify most of the rating regions suggested by the
splines. Moreover, a comparison with Appendix G3 shows that in the recent
past the insurer concerned has considerably expanded its high risk region 1n the
central west. The splines 1dentified the need for this from 1985/86 data, 1.e. at
least 17 months before 1t actually occurred.

The main differences between the rating regions suggested by the splines and
those actually currently 1n use are:

(1) the actual regions do not identify any of the eastern suburbs as of particu-
larly high risk, whereas the splines do;

() the actual regions 1dentify Sydney city as high risk, whereas the splines do
not,;

(11) the actual regions identify a corridor of relatively high nsk inner western
suburbs, whereas the splines interpret this 1n a relatively minor way.

Reference to Appendix G1 (the data) can assist in resolving these disparities,
although one must remember that Appendix Gl gives no indication of the
eaposure, and therefore the statistical significance, of each of the postcodes
mapped.

However, such a comparison suggests the following conclusions.

First, the splines are probably correct in 1dentifying a very high risk pocket of
eastern suburbs.

Second, the splines are probably wrong in their trcatment of Sydney city and
some of the mnermost suburbs This may be indicative of sphines’ failure, as
locally low degree polynomials, to respond to highly localized steep gradients.

7. CONCLUSION

Spline functions can provide an effecive means of determining gcographic
regions for premium rating. Most of the implementation 1s routine. The excep-
tion 1o this 1s the determination of a suitable set of curvilinear coordinates, and
the transformations which take these coordinates to and from rectangular coor-
dinates. This step can be difficult and time-consuming.
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APPENDIX A
DATA

Al. Geographic coordinates of postcodes

Postcode boundaries have been approximated by polygons. These have been
defined by the geographic coordinates of the vertices of the polygons.

These coordinates take the form of a list of (x, y)-coordinates for each post-
code, a small sample of which follows.

Post Coordinates Post Coordinates Post Coordinates
code ¥ y code ¥ ¥ code < v
2000 456 162 2011 477 150 2020 446 178
460 157 473 148 433 188
463 153 471 148 434 193
467 150 468 150 442 193
468 145 467 150 449 202
464 147 463 153 455 201
464 145 2015 444 172 453 199
462 144 451 173 451 199
461 146 446 178 447 193
459 146 457 178 456 192
456 143 460 177 464 186
451 145 460 173 464 181
455 154 460 171 457 181
451 153 456 165 457 178
451 155 454 165 446 178
456 159 448 167 2021 473 164
456 162 451 169 475 167
2006 447 164 444 172 478 168
451 160 2016 456 165 485 167
442 161 469 165 489 166
443 162 469 162 489 163
447 163 464 162 481 159
2007 451 155 456 162 483 156
456 159 456 162 479 155
451 160 454 164 473 155
447 155 454 165 468 158
447 155 456 165 473 164

451 155
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A2. Claims data (sample only)

Average Jewellery Avcrage Number Average Average Average Average

Post Years sum penet-  jewcllery of claim earned observed  gross
code of insured  ration sum insured claims cost premium risk experience
exposure premium  premium
$000's % $ 3 3 N 3
2006 3 44 667 000 2 1300 29080 86592 93598
2008 66 21 388 10 67 1734 9 4293 26773 58513 60865
2749 45 23329 952 1562 6 2974 10351 39517 42729
2027 340 42 688 10 5! 15048 35 2865 20852 29554 31626
2157 226 28.816 522 3435 19 2189 11960 18430 20878
2171t 841 25920 575 2978 106 1510 14031 19084 21602
2759 393 24 307 918 1973 42 1414 11034 15180 179 95
2115 381 24 129 809 2305 37 1608 10828 156 80 176 94
2177 314 22 368 4 86 2690 41 1595 18319 20902 23224
2025 274 33654 967 5551 32 1671 16803 19600 21804
2761 IS 221253 403 2404 18 1243 18260 19481 228 10
2026 1153 22432 1103 3540 102 1921 14428 17068 190 13

A3. Existing premium rating system

Each metropolitan postcode 1s asigned to one of 5 rating regions For these
regions, the existing premium formula has been taken as the following

Basic (1e non-jewellery) premium Jewellery premium
?allmf Base premium Premium per § 1000 Premium per $ 1000
cglo basic sum nsurcd Jjewellery sum insured
h) $

A 130 360 20 00

B 94 270 20 00

C 72 200 1500

D 49 200 1500

E 27 200 1000

In fact, some 5% to 10% of policies were subject to a loading of 33% on these
rates, but this fact has becn ignored in the following.
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APPENDIX B

OPERATING RATIO ADJUSTED FOR REGION

113

The following results rclatec 1o the same sample of postcodes as appears In
Appendix A2.

Adjustment to opcraung rauo for region
Ist version (31 2)

2nd version (31 6)

Loss ratio ajusted for region

Rating Post  Operating Ist 2nd Ratio of
region code ratio Nume-  Denomi-  Nume-  Denomi-  version version Ist

ralor nator rator nator based on based on  version

(Area C) (Area C) (312 (316) 10 2nd
a 2006 3862% 29080 16133 22576 12826 6962% 6799% 1024
a 2008 2728% 21070 11755 22576 12826 4890% 4802% 1018
d 2749  4954% 9789 120 89 103 25 12826 401 1% 398 8% 1 006
c 2027 1820% 18110 181 10 126 25 12826 i820% 1792% 1016
d 2157 2095% 109 32 132 32 103 25 12826 1731% 168 6% 1026
c 2170 1848% 1264) 126 41 126 25 12826 1848% 18] 9% 1016
d 2759 1957% 10033 123 33 10325 12826  1592% 157 5% 1011
d 2115 196 1% 100 06 123 06 103 25 12826  1594% 157 9% 1010
b 2177 1521% 15701 118 70 167 17 12826  2012% 198 3% 1015
c 2025 1557% 14736 147 36 126 25 12826 1557% 153 3% 1016
b 2761 1499% 15602 11796 167 17 128 26 1983% 1954% 1 015
[ 2026 1581% 12272 12272 126 25 12826 158 1% 1557% 1016
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APPENDIX C
PROOF OF SPLINE DECOMPOSITION

PROOF OF THE PROPOSITION IN SECTION 4.2 Consider any particular spline func-
tion f(x, y). Define the polynomial (1) in the statement of the Proposition to be
the extension to wof f(x,y) for 0=x=h,, 02 p=k,. Call this polynomial
p(x, ¥). Now consider the spline function for iy S x=h,, 0=y=k,. It 15 a
polynomial of degree =p on this rcgion, and thercfore so s
S, v)—=p(x, y) = q(x, y), say. Then g(x, y) can be written as a linear combina-
tion of terms x° %, a+ b = p. By a change of origin (on the x-axis), g(x, ) can be
written alternatively as a linear combination of terms (x—h))?y®. Thus, 4(x, y)
as a function over the region 0 = x = h,, 0 £y =k, 1s a hinear combination of
terms (x—h,)% y°.

Now recall the continuity requirements on the derivatives of a spline function.
These tmply continuity of all derivatives of ¢(x, y) of order < p. Suppose a <p
and consider (8%/0x?) [(x—h,)% y"]. It 1s simple to venfy that this derivative
does not exist at x = #h,, y>0. Thus ¢(x,y) reduces to a multiple of
(x—h)s.

The traversal of other hinges can be dealt with in precisely the same way.
Traversal ol each hinge x = A, (in the positive dircction) adds a multiple of
(x—h)%. to the spline function. Traversal of each hinge y = &, (1in the positive
direction) adds a multiple of (y—k,)%,. .
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APPENDIX D
COORDINATE TRANSFORMATIONS

D1. Methodology

The coordinates against which actual claims data are recorded are denoted by
(x’, y"). This 18 the coordinate system in which the postcode boundaries of
Appendix A are defined; and also 1n which the hinges 1llustrated 1n Sections 4.3
and 5.2 are defined.

An alternative coordinate system in which thesc hinges arc rectilinear uses
coordinatc pairs denoted by (x, y) (Sections 4.1 and 5). The transformation
(x, ) — (x’,¥)1s given by (5.2.4) and (5.2 2)

The inverse transformation (x’, ') — (x, p) for each of the pairs (x, ) hsted
in Appendixn Al 1s given 1n Appendix D2 The inversion has been carried out
numerically, as follows.

For convenicnce, let f denote the function (u, v), such that

() =fxp).
Suppose that 1t 1s necessary to solve for x, y in:

(DL.1) SO, ¥) = (xg, ¥4

for paruicular values of x3, y5. Note that, for another coordinate pair (x*, ¥*) in
the xy-plane,

JO*, y®) =g, yo) = [[x*—x) (0u/0x)+ (y*—y) (Qu/dy), (x*—x) (Ov/0x) +
(D1.2) (y*—y) (v/dy)],

to first order, where all derivatives arc cvaluated at (x, y).

It would be possible at this point to use Newton’s algoritm to obtain a sequen-
ce of iterations of (x*, y*) converging to the required (x, v). However, this algo-
rithm would involve the partal derivatives of /, rather messy expressions obtai-
ned from (5.2.2) and (5.2 4). To avoid this messiness, Newion’s algorithm has
been very slighly modified by replacing the partial derivatives by discretized
versions of them as follows:

(D1.3) Sx+a, vy—(x3, yg) = [a(0u/ox), a(@uv/ox)];

(D1 4) S v+ b)y—(xg, vg) = [b(0usdy), b(0v/dy)].

Now substitution of the right sides of (D1.3) and (D1 4) in (D1.2) yields
(DL.5) (u*, V%) = [[x*—x) (g, )/ a+ (y* = y){u,, v,)/b]

where

(u*, v*) = f(x*, vy —(xg, ¥0),
(Ug, Ug) = fx+a, »)—(x5, ¥O)s

(up, Vp) = S (X, Y+ b)— (x5, ¥5) -
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Equation (D1.5) represents two stmultancous equations,

(D1.6) (bug) (x*—x)+(auy) (y*—y) = abu*
(D1.7) (bu,) (x* = x)+(avy) (y*—v) = ab*
It 1s now possible to obtain the solution x*—~x, y*—y 1o (D1.6) and (D1 7)
(D1 8) X¥—x =a(u*tvy—v*up)/d,
(D1.9) y¥r—y = —bu*v,—v¥uy)a,
where
(D1.10) g = Mo
Ya Uy

Sull working to first order only, (D1 8) and (D1 9) yield-
(DI.11) X =X*~a*v,—vru)/a,
(D1.12) y=y*+bu*v,—v*u,)/a.

The whole procedurc i1s made 1terative, by letting (x*?, v, the n-th approxi-
mation to (x, y), replacc (x*, y*). Then the adaptauon of (DI 11) and DI1.12)
yields:

(D1.13) xHD = () g [ pfm_ pm yfmy/ 4
(D1 14) y(n+ _ y(")+b[u(’" l)((,")— pm ué")]/A(") ,
wherc

(D1.15) ™, ™y = £,y = (x5, 13)
(D1.16) W, v = f(x"+a, y™)—(xg, ¥4
(D1.17) (uf", vf?) = [, Y+ b)— (x§, vo) -
The recursion 1s imitialized by:

(DL.18) (09, y Oy = (xg, v9) -

It should also be noted, as remarked 1n Scction 5.2, that (5.2.4) and (5.2.2) do
nol provide a proper coordinate transformation, but rather separate coordinate
transformations of the xy-subplanes defined by the constraints p= 150 and
¥ = 150 respectively. When y” = 150, the inverse transformation gives v = 1350,
indeed (x, y) = (x’, y).

D2. Transformed coordinates

For cach of the pairs of coordinates (x’, y’) defining the polygonal boundary of a
postcode (given as (x, ¥) in Appendix Al), the inverse transformed coordinates
(x, y) were oblained by the recursive algorithm (D1.13)—(DI1.18).
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Occasionally, when the algorithm failed to produce convergence, or failed to
produce a sufficient rate of convergence, manual ntcrvention reinitialized the
procedure. For example, if the sequence of (x*, y™) oscillated with period 2, the
procedure was restarted with

(@, y@) = [+ X Oy2, (P42
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APPENDIX E

DATA FOR SPLINE-FITTING REGRESSIONS

Section 6 explains how the postcode vertex coordinates of Appendix Al are used
to compute postcode centroids tn the alternative coordinate systems. These
results are lhisted below for various postcodes. The additional data required 1n
respect of each postcode for mput to the regression have also been listed. They

are drawn from the same source as Appendix B.

Note that the first set of coordinates appearing in the following table, while

given for interest, are not used in the regression

Centroid coordinates Observed

Years of loss ratio

Postcode Given coordinate Coordinate system exposurc adjusted

system of reculincar hinges for reglon

! fl’ .‘7 1’ '\_’l .‘71 El [(-\-r A “71)
2000 458.8 1509 4537 1510 83 0275
2006 4460 1620 4305 1612 3 6962
2007 4505 156 5 4449 1556 48 1343
2008 452 4 1620 435.4 1612 66 4 890
2009 448 4 1521 4477 1516 26 0337
2010 4652 158 8 4522 1580 319 2164
2011 4710 1515 469 8 1512 329 1529
2015 4526 1717 4123 1711 123 [ 41t
2016 4593 1636 4366 1628 134 1112
2017 462 1 168 6 4254 1680 49 0262
2018 466 5 178 7 4033 178 4 337 0769
2019 4703 1930 3744 1929 284 0608
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APPENDIX F
OPERATING RATIOS FITTED BY SPLINE SURFACES

The following table displays, for each postcode appearing 1n Appendix E, the
observed operating ratio adjusted for rcgion. This 1s accompanied by the corres-
ponding operating ratio fitted by each of the sphne surfaces described 1n Sec-
1ion 6 and the standardized residual.

The standardized residuals (for a gamma error term) are calculated according
to the formula

observed value — fitted value) x weight
standardized residual = ( ) & .

fitted value x cocfficient of vanation

Full quadratic sphine Fult cubic splinc Reduced cubic spline
Postcode Observed Fitted Standardized Fitted Standardized Fitted Standardized

value restdual value residual value residual
2000 0275 10768 —-0635330 09417 —0635527 09179 —-0629436
2006 6 962 10122 0953465 1010} 1 005597 09777 1045798
2007 1 343 10519 0179540 09661 0266327 09372 0 295957
2008 4 890 10297 2852375 09986 3119427 09692 3241843
2009 0337 1.0510 —0324423 09385 -0 322000 09126 -0317242
2010 2164 10931 1 638832 09842 2109650 09595 2211845
2011 1529 1 1696 0521963 1 0260 0876103 1 0065 0928970
2015 1411 09783 0459386 1 0629 0357886 1 0458 0382018
2016 1112 10382 0077088 09985 0129678 09730 0163161
2017 0262 10100 —0485528 10234 —0513134 1 0052 —0 510541
2018 0769 09661 —0350791 1 0390 —0470091] 1 0555 —-0491562

2019 0608 08735 ~0479695 09034 —-0542916 09803 —0631311
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APPENDIX G
RISK PLOTS

G1. Data

The following map plots the operating ratio adjusted for region, (3.1.4), different
colours designating broad bands of values of this ratio.
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G2. Reduced cubic spline function

The following map repeats the one appearing 1n Appendix G but with the
observed operating ratio replaced by that fitted using the reduced cubic spline of
Section 6.

RATIO-TWE

_ . _ OG¥ER 1.8 l
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G3. Rating areas used in practice from 1/4/85 to 1/2/88
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