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ABSTRACT 

The paper gives details of  a case study xn the premium rating of  a Householders 
Contents insurance portfolio. The rating is performed by the fitting of  blvariate 
spllne functions to a version of  operating ratm described in Section 3. 

The use of  blvanate  sphnes requires a small amount  of  mathematical  eqmp- 
ment, which is developed m Section 4 The fitting ofsphnes ,  using regression ~s 
earned out in Sections 5 and 6, where the numerical results are g~ven, including 
some assessment of  goodness-of-fit. 

Contour maps of  the sphne surfaces are also given, and used for the selection 
of geographic areas used for premium rating purposes, These are compared with 
the areas, past and present, actually used by the insurer concerned. 

1. INTRODUCTION 

It ~S common in insurance of domestic property lines, e g. motor  vehicle (colli- 
sion damage) and householders, to find that the risk premium per unit exposure 
vanes with geographic area when all other risk factors are held constant. 

Such variation may or may not be continuous as a functmn of spatial coor- 
dinates. In either event, ~t will be necessary for practical purposes to d~v~de the 
total area for which prem,um rates are reqmred into a relatively small number  
of  regions of  reasonable size such that, all other risk factors equal: 

0) premiums vary as between region, 
(n) premiums do not vary within region. 

Henceforth, such regions will be referred to as ratmg regions, 
This raises the questmn of how such regions should be determmed. The pre- 

sent paper consider this 11 a context in which the determination is to be made 
solely on the basis of  data. In practice, of  course, it may be necessary to mo&fy 
the conclusmns reached m this way in order to make statable allowance for 
available anecdotal o r  c~rcumstantml evidence. 

Thus it ~s assumed that claims and exposure data are available m respect of  a 
number  (possibly a large number) of  subdlvismns of  the total area for which 
p r emmm rates are required. In the specific example considered here these sub- 
divisions are postal areas (postcodes m Austrahan terminology). The problem 
consists of  identifying the approprtate aggregations of  the postcodes into rating 
regmns satisfying the two conditions set out above. 

It is possable to regard the problem as one of cluster analysis, suitable clusters 
of  postcodes being sought However, it is evident that clustenng must be carried 
out according to the criteria of  both geographic clustenng and clustenng by 
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premium. Definition of a metric for the clustenng algorithm which incorporates 
both crltema satisfactorily is not easy. 

This paper follows a different path. Risk premium, with all factors except 
geographic coordinates held constant, is envisaged as a continuous function of  
these coordinates. Th~s function is then estimated and examine for steep gra- 
dients which would lead to the definition of rating areas satisfying conditions (i) 
and (fi) above. 

Thus, the fitting of  the premium function becomes the major task. The 
mathematical form of  this function is quite unknown. A natural way to fit It 
smoothly to the available data points is to make use of  sphne fitting. Note that 
the fitted sphne function is blvarlate. 

This fitting is carried out in Section 3 and the results presented m Sec- 
tion 4. 

2. DATA AND NOTATION 

2.1. Data 

Data available in respect of  each metropolitan postcode related to the experience 
of the Householders Contents portfolio of a large Austrahan insurer in the 
financial year 1985/86 and m the state of  New South Wales. The data compri-  
sed : 

(i) postcode identifier and geographic coordinates; 
00 years of  exposure to risk, 
(in) number  of  claims; 
0v) average cost per claim; 
(v) average sum insured; 
(Vl) average jewelleD' penetration (i.e. the proportion of policies carD'mg 

jewelleD" insurance, this risk requiring a separate coverage); 
(vii) average jewelleD" sum insured, the average being taken over those cases 

which carD" a non-zero sum insured; 
(vnl) average earned premium per year of  exposure; 
(ix) average gross experwnce premtum per year of  exposure, consisting of: 

average observed risk premium per year of  exposure 

plus 

admimstrat lon expense loading consisting of  a charge per pohcy, a 
charge per claim, a percentage of  claim payments, and a percentage 
of premium, 

where average observed risk premtum per year of  exposure is defined 
a s :  

number  of  claims per year of  exposure 

X 

average cost per claim, 



USE O F  S P L I N E  F U N C T I O N S  FOR P R E M I U M  R A T I N G  BY G E O G R A P H I C  A R E A  93 

(x) the Company ' s  present system for premium rating the relevant postcode, 
consisting of: 

(a) the rating region to which that postcode is currently assigned; 
(b) premium rating formula for that rating region, of  the form: 

base premium + consti x sum insured + const2 x .jewellery sum insu- 
red, 

the terms "base  p r e m i u m "  and "cons t . "  each varying with rating 
region. 

A small sample of  these data is displayed in Appendix A 

2.2. Notation 

The remainder of  this paper uses the following notation. Suppose there are N 
postcodes. Without loss of  generality, they can be treated as numbe- 
red 1, 2 . . . . .  N (although in fact they are not). In the following definition of 
notation a subscript t denotes postcode t. 

Let 
E t = 

x I 

S t = 

Pt = 
Jt  = 
PT= 

k = 

R !  I') = 

b R = 

1 ~  ) = 
nan= 

.~ = 

numbcr  of  years exposure; 
number of  claims; 
average cost per claim; 
average sum insured; 
average jewellery penetration; 
average .lewellery sum insured: 
average earned premium per year of  exposure before allowance for 
no claim discounts (NCD); 
average risk premium per year of  exposure n,x,/E,, as defined in 
Section 2.1, 
average gross experience premium per year of  exposure; 
average NCD in the portfolio, expressed as a proportion of  premium 
payable net of  NCD;  
rating region to which the postcode is assigned in the present pre- 
mium rating system, 
base premium in rating region R; 
premium rate per $ 1000 of sum insured in rating region R, 
premium rate per $ 1000 ofjewellery sum insured in rating region 
R; 
URI e) = total region covered by postcodes. 

According to this notation, the jewellery premium rate for postcode t is denoted 
by n ~ .  This very cumbersome expression is abbreviated to n! "0. Similarly, bRim 
and n~/,~ are abbreviated to b, and nl B) respectively. 
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3. ISOLATION OF GEOGRAPHIC AREA AS A RISK FACTOR 

3.1. General context 

As Section 1 explains, the objective of  this paper is to fit a funcnon to the 
"geographic area effect ". This requires controlling for any other factor affecting 
risk premmm.  

Strictly, all risk factors should be fitted to the data simultaneously. This, 
however, would be extremely difficult. It is assumed here that risk premiums are 
estimated by a three-stage procedure: 

- -  Stage I. Fit all factors simultaneously, but with only a rough fit of  the 
"geographic area effect". This effect could be roughly incorporated in the 
model using rating regions taken from an existing premium rating system or 
even chosen by guesswork. 

-- Stage 2. Control for all risk factors other than geographic area by calcula- 
ting, for each postcode, an index of  risk (the following uses a version of 
operating ratio) based on standardized values of  all other risk factors. 

- -  Stage 3. Treating this index as function of geographic coordinates x, y, fit a 
function l(x,y). Then estimate risk premium at (x,y) as proportional to 
l(x, y). 

In the present apphcatmn, Stage I was taken as being carried out by the existing 
premium rating system, which was believed to be reasonably accurate. 

In a general context Stage 2 proceeds as follows. 
The operating ratio for postcode t is: 

(3.1.1) p, = (1 +k)P,c/P~ :. 

A more accurate version of  this formula would have been 

p, = (l + k,) P~/P~, 

with an NCD factor k, specific to postcode l. Unfortunately, the factors k, were 
not available and it has been necessary to use the compromise  formu- 
la (3. l.l). 

This would result m a tendency to reduce high observed operating ratios, and 
increase low ones. Such attenuation of the data would have little effect on the 
present exercise, since the selection of  geographic rating regmns depends largely 
on the risk ordering of  postcodes rather than the magmtudes of thew risks. It is, 
however, a factor which would need to be taken into account in the subsequent 
exercise of  determining premium rates for the rating regions selected. 

Suppose that the premium rate depends on m factors F~,..., F,,,, with FI 
representing rating region (of the present system). Let n ( f t  . . . . .  fn) be the pre- 
sent tabular premium when FI = ~ . . . . .  Fm= fro" 

NOW let j~:,../ = 2 . . . . .  m, denote the average value of  F: observed in postcode 

t; and let f j ,  j = 2 . . . . .  m denote the corresponding average over the entire 
portfolio. Averages here are weighted averages with years of  exposure used as 
weights. 



USE OF SPLINE FUNCTIONS FOR PREMIUM RATING BY GEOGRAPHIC AREA 95 

Next select a " s t a n d a r d "  rating region, preferably not near  the ext remes  o f  
high or low risk, and denote  ~t by R~, e). With a slight abuse o f  notat ion,  the 
tabular  p r e m m m  in this region on the basis o f  average values o f  risk factors 
F2 . . . .  Fm taken over  postcode l may  be written as n(*, )~2 . . . . .  J~m). 

Then,  to a reasonable degree o f  approx imat ion ,  the factor:  

(3.1.2) ¢~, = n (t, .~z . . . . .  j~m)/n (*, j~  . . . . .  J~m) 

~s the factor by which p r e m i u m  actually received in respect o f  postcode t has 
been increased relative to the p r emtum which would have  been received had 
rates o f  thc " s t a n d a r d "  rating region been apphed  to all postcodes.  

Re mova l  o f  the geographic area effect adjusts P~ to P~/(~,, and hence p, to : 

(3.1.3) p!*) = p,q),, 

by (3.1.1). By (3.1.2) and (3.1.3), 

(3.1.4) p!*) = p, n ( I , f 2  . . . . .  f m ) / n ( * , f 2  . . . . .  f , , , ) ,  

which IS the operat ing ratio which would have been observed in postcode i had 
that  postcode been subject to the p r emium rates o f  the " s t a n d a r d "  region. It is 
essentially an est imate,  subject to s amphng  error, o f  relative costs o f  the var ious 
postcodes.  This  will be referred to as the operating ratto adjusted for  regton. 

Now let (.~,,)7,) denote  the cenlroid o f  the polygonal postcode area t, i.e. the 
average of  the vertex coordinates  (see AppendIx  A I). Then  a first approx ima t ion  
to the index o f  risk required in Stage 2 is: 

(3.1.5) f(Y,, ; ,)  = p~*). 

An al ternat ive version o f  ¢~, may  be considered.  This  is: 

(3.1.6) ¢~: = n ( l , f  2 . . . . .  f m) /n (* , f  2 . . . . .  ]m) .  

Usually (3.1.2) woul be preferred to (3.1.6) since the fo rmer  takes Into account  
any unusual var ia t ion in the risk factors F2 . . . . .  F,,, as between different postco-  
des. 

3.2. Specific context 

In the specific context  o f  the p r e m i u m  rating system set out m Section 2.1, i tem 
(x) (b), m = 4 with 

F~ = rating region; 
F 2 = s u m  i n s u r e d ,  

F 3 = jewellery penetrat ion ; 
F4 = jewellery sum insured; 

where, for an indtvidual  policy, 

F 3 = 1, if the policy carries a jewellery sum insured,  
= 0, otherwise.  
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Thus, the numera tor  o f  q~,, as defined in (3.1.2), Js the premium for a policy 
wnt ten in postcode t carrying the average sum insured and average jewellery 
sum insured & t h a t  postcode and with the jewellery componen t  o f  the premium 
scaled down by the jewellery penetration factor The denomina to r  o f  ¢~, is the 
same except based on premium rates o f  the " s t a n d a r d "  region instead o f  the 
region contamlng  postcode 2. 

A small sample o f  the results o f  these calculations is set out in Appendix B As 
appears there, the two versions ¢~, and ~: o f  operating ratio adjusted for region 
produce quite similar results and only ~b, has been used subsequently. 

4. SPLINE FITTING 

4.1. General 

According to the preamble in Section 1, the operating ratio adjusted for region is 
envisaged as a function l(x, y), x, y~.~.. By (3.1.5), estimates o f  1Cf,, Y,) are 
available. The function l (x ,y)  is to be est imated as a sphne which fits these 
esttmates adequately. 

4.2. Analytical 

It is first necessary to clarify what is meant  by a sphne wlth mult l -dlmenslonal  
domain.  The present application is concerned with a 2-dimensional domain,  
and discussion will be restricted to that d lmenslonahty.  The concepts generalize 
readily to higher dimensions,  but at the cost o f  more complex definitions whxch 
would represent impedimenta  m the present context. 

DEFINITION. Let be the 2-dimensional  domain  [0, oo)x[0 ,  oo), and (u ,v) :  
~ - - ,  ..~' a C ¢~ b u e c l ~ o n .  Le t  0 < hi  < h2 < . . .  < hm < cx~ a n d  

0 < k~ < k 2 < ... < k,  < oo. Define yj to be the curve with parametric form : 

(4.2.1) yj(t) = [u(t, kj), v(t, kj)], j = 1 . . . . .  n ,  

and similarly define the curve J,:  

(4.2.2) J ,( t)  = [u(h,, t), v(h,, t)], I = 1 . . . .  m. 

The curves y: and J, wdl be called hmges. They are somet imes called knot hnes 
m the literature. A subset o f  .~ bounded only by hinges will be called a hmged 
subset A hinged subset which does not contain any other hinged subset as a 
proper subset will be called a mmtmal hmged subset A real function defined on 
.~ ~s a sphne functton of  degree p if, when restricted to any minimal  hinged 
subset, ~t is a bivarlate polynomial  o f  degree < p, at least one such polynomlnal  
havmg degree equal to p, and all derivatives (including mixed derivatives) o f  
order -< p -  1 are cont inuous  on the whole o f  .~ 
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REMARKS. The function (u, v) estabhshes curvflmear coordinates in R. The set o f  
curves { 7j, J,} are coordinate  hnes m these new coordinates The remainder  o f  
the dcfinlUon generahzes concepts involved m sphne functions o f  a single varia- 
ble. The correspondences between univarlate and b lvanate  splines are as fol- 
lows. 

Unlvarlale Blvarlale 

Knot Hinge 

Inlerval Minimal 
belween knols hinged subset 

Note that, because the map (u, v) is a boectlon, ,.e a coordinate  t ransforma- 
tion, ~ts inverse (call it g) t ransforms the hinges Into coordinate lines in R. Thus. 
instead o f  fitting a sphne function with hinges yj, d, to observauons  l(.f, ,  i7,) one 
might fit a sphne function to observat ions [(g(.f,,)?,)) with hinges (m the xv- 
plane) x = h~, t = 1 . . . . .  m and y = kj, j = 1 , . . . ,  n. 

In this coord |natc  system, all minimal  hinged subsets will be rectangular. In 
all subsequent analytical development ,  therefore, this rectangular structure will 
be assumed without  any loss o f  generality. 

It should be noted that, since the coordinate  t ransformation Is m general non- 
hnear, a sphne function fitted in the coordinate system m which hinges are 
rectilinear will not necessarily reduce a sphne function in the coordinate system 
of  curvxhnear hinges Nevertheless, the function fitted m this latter coordinate  
system will be a reasonable interpolating function 

DEFINITION. Let (z)+ denote max (z, 0), and read (z)P+ as [(z)+] v. An M-sphne 
of  degree p is a function (defined on the Euclidean .~:v-plane) which assumes one 
o f  the two forms (x-h)P+ for some constant  h or ( y - k ) ; +  for some con- 
stant k. 

The M-sphnes  are o f  use in constructing sphne functions as the following 
result shows. Their  unlvarlate version is discussed by GREVlLLE (1969, pp. 2-3), 
though not under that name. 

PROPOSITION. Any spline function ofdegree  p with hinges x = h~, . . . ,  hm cutting 
the x-axis and hinges y = k~ . . . . .  k~ cutting the y-ax~s can be decomposed  Into a 
sum of: 

(i) a polynominal  o f  degree _-< p on ~ ,  and 
(11) constant  multiples o f  the M-sphnes  ( x - h y + ,  t = 1 . . . . .  m,  
(in) constant  muhtples  o f  the M-sphnes  ( y - k S + ,  j = 1 . . . . .  n. 

PROOF. See Appendix C 



98 G C TAYLOR 

4.3. Choice of hinges 

Certain criteria can be estabhshed for the determination of the hinges of  bwa- 
rlate spline functions to be fitted to a parhcular data set. 

First, the more hinges are specified, the more parameters are to be estimated, 
since the sphne function changes its polynomml form each ume a hinge is cros- 
sed. Thus, the choice of  too many hinges wdl lead to over-fitting, i.e. a "wrin-  
kly"  fitted surface For this reason the number  of  hinges used should be mlm- 
m~zed subject to adequate fit to data. 

Second, the choice of  hinges should be related in some way to the " f la tness"  
of  the data points. For example, if all data points assumed the same value, a 
constant polynomlnal would fit over the entirety of  the relevant domain. There 
would be no purpose in choosing any hinges to allow the polynomlna[ form to 
vary from one hinged subset to another. 

Strictly, It is not " f la tness"  which matters but rather conformity of data 
points with a simple polynomial form. For example, f fa  quadratic sphne is to be 
fitted and all data points lie on a quadratic surface, there would again be no 
purpose in choosing any hinges. However, this type of conformity of  the data 
will often be difficult to verify by simple inspection. 

Conversely to the second point, hinges will need to occur more densely in 
those subregmns where the surface to be fitted is evidently changing more rapid- 
ly. 

Thus, in general terms, hinges should be chosen to delineate "essenually dif- 
ferent"  parts o f  the surface, with greatest (resp. least) density m those areas 
where the surface is changing most (resp least) rapidly. Parts of  the surface 
which are apparently d~fferent can be identified from the map m Appendix GI .  
It can be seen in the following dmgram that the hinges have been chosen to 
approximate the boundaries of  these regions, isolating for example" 

(l) the north-east and south-east corners; 
(li) the central east region around the harbour; 
(ui) the far west region. 

With all this, however, it must be said that the choice of  hinges actually adopted 
on any particular occasslon remains very much a subjective one. 

The following diagram provides a schematic representation of the (curvih- 
near) hinges chosen in relation to the fitting of  operating ratio adjusted for 
region detailed in Appendix B. In fact, in the actual surface fitting procedure, 
some of  these hinges were very slightly distorted, as described m Section 5.2. 

The rectangular region covered by these coordinates ~s the region appearing in 
the diagrams of Appendix G, though the horizontal scale has been distorted 
relative to the vertical scale in the schematic representation. 

The precise definition of  these hinges is given m the numerical detazl of  Sec- 
tion 5.1. Imtlally, two further hinges, hke flatter versions of  the seemingly para- 
bohc hinges to the right of  the diagram, were considered to the left of  those. 
However, the numbers of  observations in the minimal hinged subsets so created 
were sufficiently small that the add,tional hinges were dropped. 
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4.4. Fitting by regression 

The hinges illustrated in Secuon 4 3 were transformed to rectilinear hinges by 
means o f  the coordinate transformatmn set out m Section 5.2. The rectfl|near 
hinges were : 

x = 300, x = 400; 
y =  100, y =  150, y =  180, y =  200. 

Then, by the sphne decomposlton result quoted m Sectmn 4 2, quadratic and 
cubic spline funcuons can be written m the forms' 

Quadrauc sphne' f ( x ,  y) = ~ a u x  ~yl + b,(x-h,)~. + 
k,l=O t = l  
A+/_~2 

(4.4.1) + ~ cj(y-kj)2+ ; 
1 = 1  

Cubic sphne,  f ( x ,  y) = 
' £ 

ak~x~ / + b,(x-h,g_ + 
k, l = 0  J= I 
k+/_~3 

(4.4.2) 
j=l 
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The sphnes are tilted by estimation of  the coefficients au,  b,, cj S lnce f l s  hnear 
m these unknowns, regresston can be used to carry out the fit. 

Regressions have been performed using the GLIM (Generahsed Linear Inte- 
racuve Modelling) system (PAYNE, 1985). Regression fits are carried out m this 
system by the method of maximum hkehhood. It ~s assumed that each obser- 
vation respresents a drawing from a gamma d~strlbut~on This recognlses the 
essential posltlVlty of  the sampled variable, operating ratio adjusted for region. 
Each observation is assigned a wetght E,. This means that the coefficient of  
variation of the gamma distribution assocmted with postcode t is taken to be 

const . /E),  

where the const, term is independent of t. 
The difficulties arising in the choice of  an error d~strlbutlon deserve some 

dtscusson. It may be reasonable to regard the amount  of  claims m each cell as a 
generahzed Polsson vanate. For a large expected number  ofcla ,ms,  i.e. large E,, 
this is known to approximate a gamma varlate (SEAL, 1977). Hence operating 
ratio adjusted for region p, ~*), a scalar multiple of th ts  claims amount  (see (3 1.1) 
and (3.1.4)), wdl also be a gamme variate approximately. 

Dxfficulues arise when E, ~s small. In thus case the distribution ofp l  *~ consists 
of  a sp~ke at zero, together wtth a continuous d~stnbutlons on strictly posmve 
support. No standard dlstrlbutmn provides a model for this 

It is evidently extremely difficult to find an error distribution which provides 
an adequate representation of  p! *1 at both large and small exposures, and ~s also 
computat~onally manageable for regression purposes Certainly, the standard 
regression packages do not appear to provide for thxs 

In the event, only a small minority of  cells contained small E,. The great 
majority contained E, of  at least some hundreds, probably sufficient to justify 
thc adopuon of the gamma error d~stnbuuon. 

When the gamma error dlStrlbutmn ~s used, ~t is natural that the ~ectprocal of  
thc hnear model (t.e. the reciprocal of the sphnefunctton) be fitted to the data. 
This is done by the GLIM package. 

5. RESULTS 

5.1. Hinges 

The reasoning governing thc selection of hinges is set out in Section 4.3, as is the 
general shape of those actually selected. The precise forms of the hinges, special 
cascs of  (4.2.1) and (4.2.2), are as follows" 

yj(l) = {l, k j+sgn ( k j -  150)exp [ -0 .0004  I k j -  150 ] ( t - 500 )  + 
(5.1.1) + 5(kj-lO0)/3]}, 0 =<t =< 600, 

f o r j  = 1 ,2 ,3 ,4 ,  with kl = 100, k 2 = 150, k 3 = 180, k 4 = 200; and 

(5.1.2) J,(t) = { h , + 6 0 0 0 0 0 ( t -  150)2/(600-h,) 3, t}, 0 =< t N 300, 
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for i = 1, 2, with hi = 300, h 2 = 400, where sgn (.) is defined by: 

s g n ( x ) =  + l , x >  0, 
= 0, x =  0; 
= - l , x  < 0. 

The functional forms needed to produce hinges of  the right shape are evidently 
complicated, as they will be in most practIcal implementations. Discovery of  
these forms, and production of the associated coordinate Iransformations (Sec- 
tion 5 2), are the only non-routine, and hence difficult, parts & t h e  whole fitting 
procedure. 

5.2. Coordinate transformations 

As remarked just after the definlt,on of a sphne function in Secuon 4.2, the 
h,nges J, are the images under the coordinate transformation (u, v) of  the coor- 
dinate lines x = h, in the xy-plane Similarly, the hinges yj are the images of  the 
coordinate hnes y = kj. 

Comparison of  (4 2.2) with (5.1.2) indicates that, along the hinge J,,  

u (x, y) = x +  600000 [v (x, y) - 150] 2/(600-  x) 3 . 

For convenience, write x ' ,  y '  for the transformed coordinates induced by x, y. 
Then, along 6,, 

(5.2.1) x '  = x +  600000 ( y ' -  150)2/(600-x) 3 . 

Similarly, along yj, 

(5.2.2) y '  = y+sgn  ( y -  150) cxp [ -0 .0004  ] y -  150 ] ( x ' - 5 0 0 + 5 ( y -  100)/3]. 

Now (5.2.1) and (5.2.2) together do not give a coordinate transformatmn in a 
convenient form since they give: 

(x, y ' )  ~ x '  
(x' ,  y)  ~ y ' ,  

and not 

(5.2.3) 

as required. 

(x, y)  ~ (x' ,  y'),  

In the present case this difficulty can be overcome by using the fact (from 
(5.2.2)) that y '  - y  for large x ' .  The coordinate transformation chosen is there- 
fore : 

(5.2.4) x '  = x +  600000 ( y -  150)2/(600-x) 3 ; 

(5.2.2) y '  = y +  sgn ( y - 1 5 0 ) e x p  [ -0 .0004  ] y -  150 ] ( x ' - 5 0 0 +  5 ( y -  100)/3]. 

Equation (5.2.4) is of  the form required by (5.2.3). l f x '  in (5.2.2) is expressed in 
terms of x, y by means of (5 2.4), then (5.2.2) is also in the form requlred by 
(5.2.3) 
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The means of converting each (x', y') pa~r used m defining a postcode (Ap- 
pen&x A) to a point (x, y) is given in Appendix D2. 

Naturally, the approxlmatton of  y' by y m (5.2.4) wdl &stort the hinges defi- 
ned by x = h, and y = kj respecuvely. However, for the points x', y' with larger 
values of x'  and smaller values of  y'-150, which are primarily the ones where 
the definition of the hmges needs to be reasonably preose (see the dmgram m 
Section 4.3), the distortion wllll be small. This is illustrated by the following 
diagram which &splays the hinges x = 300, 400 and y = 100, 150, 180, 200 m 
the x'y'-plane,  as produced by the coordinate transformauon (5.2.4) and (5.2.2), 
and overlays them on the diagram of the desired hinges illustrated in Sec- 
uon 4.3. The difference between the two sets of hinges is very small for practical 
purposes, and m a number of respects the two are qutte m&stingutshable. 
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[ l l l l l l l l i l l l l l l l l l l l i l l ? l I ~ l l l [ l l t l l i l l l i l l l l i l l l l l l t l l l L i l  
O 2 0 0  4 0 0  

It should be pointed out here that (5.2.4) and (5.2 2) do not m fact provide a 
coordinate transformation of ~ The appearance of  the terms sgn ( y - 1 5 0 )  and 
l y - 1 5 0 t  in (5.2.2) produces &scontmumes In the gradients of  the expression 
given there for y'. However, (5.2.4) and (5 2 2) do provide separate coordinate 
transformations of  the two subreg~ons of ~ d e f i n e d  by the constraints y >= 150 
and y=< 150 respectively. It is evident from (5.2.2) that these subregions are 
mapped to y' >= 150 and y'  =< 150 respecuvely. It follows that the line y = 150 ts 
mapped to y" = 150 

6. T H E  S P L I N E  S U R F A C E S  

Secuon 4.4 gives the algebraic forms of  the quadratic and cubic sphnes whose 
reoprocals are to be fitted to the data [see (4.4.1) and (4.4.2)]. These are written 
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in terms of (x, y) coordinates  Indicating that the independent  coordinates  are 
from the doma in  m which the hinges are rectilinear, as assumed m the formulas 

given. Details of  the regression model used m the fit are also given in Sec- 
tion 4.4 

The function to which the reciprocal sphne is fitted in Section 4.4 is taken as 
l(x, y), the operat ing ratio adjusted for region, as experienced at (x, y). As noted 
m (3.1.5), observat ions  [(x,y) on this function are taken as available at the 
centrolds (~,,)7,) of  the various postcodes. A sample of  observat ions  is listed in 

Appendix  B. 
Note that these centrolds must  be expressed m terms of the (x, y) coordinates.  

This  has been done by means  of  the following procedure:  

(l) for each vertex (x', y') of postcode l listed m Appendix  AI ,  calculate the 
corresponding coordinates  (x, y) ,  

(u) calculate (S:,, .17,) as the average of  all the vertex coordinates  (x, y) related to 
postcode t. 

The results of  these computa t ions  are sampled in Appendix  E. Note that, becau- 
se the t ransformat ion  between the (x, y) and (x' ,  y ' )  coordinate  systems is non-  
linear, postcode polygons in the ( x ' , y ' )  coordinates wall not have rectil inear 
sides in the (x, y) representation.  Therefore, the evaluat ion of  a centroid as the 

average of  the vertex coordinates  will Involve some erE:or. Since most  postcodes 
are small in area, especmlly where the curvature  of  the coordinate  t ransforma-  
tion is greatest, this error will be small and probably neghglble. 

Appendix  E summar izes  a small sample of  the data used in the spline-fi t t lng 
regressions. 

The results of  the regressions are as follows. 

QUADRATIC SPLINE 

Term 
Sphne coeffioent 

Fttted value Slandard error 

const 1 555 l 659 
~x -6  247x 10 -~ 2 830x 10 -~ 
y 4236× 10 -2 3725× 10 -2 
A 2 1 297x 10 -2 5 0 9 5 x  10 -6 
.~)xv 1 387x 10 -5 1 253x 10 -5 

-3648x10 -4 2 142x10 -4 
(.x-300)~ - 4  326x 10 -5 1 996x 10 -5 
(x-400)~ I 312x 10 -5 5 250x 10 -5 
(y-  100)~_ 5 741 x 10 -4 3 003 × 10 -4 
(y -  150)2 - 1.512 × 10 -4 2 483 x 10 -4 
(y-  180)~. 4 544x 10 -4 4 319x 10 -4 
(y-200)~. -5  708x 10 - 4  3 876x 10 -4 

It may be noted that a n u m b e r  of  the coefficients here are not statistically 
significant. This  fact is taken no further here, but will be referred to again below 
in relation to the fitted cubic sphne 
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CUBIC SPLINE 

Term 
Sphne coef'fic~ent 

Fnted value Standard error 

const - 1 681 4 916 
x I 300 × I0 -3 2 098 x 10 -2 
y I 287x 10 -2 I 519x 10 -1 
x 2 1 198x10-*  4 6 9 4 x l 0  -5 
x~ - 2  9 6 5 x  10 -4  1 610× 10 -~ 
y 5 9 4 5 x  10 -4 1 837x 10 -3 
x 3 - 2  016 × 10 -7 5 861 x 10 -8 yxX2~V 9 316× 10 -~ 1 352x 10 -7 

7 772 x 10 -7  3 412 x 10 -7  

y3 - 3  670x 10 -6 7 0 1 3 x  10 -6 
(X-  30013+ 5 835x 10 -7 2 167x 10 -7 

(x-400)~. - I  744x 10 -6 8 728x 10 -7 
( y -  100)~. 7 390x 10 -6 9 671 x 10 -6 
( y -  150)~_ - 3  353x 10 -6 7 737x 10 -6 
(y-180)~.  5 155x 10 -6 I 270x 10 -5 
(y-200)~.  7 855 x 10 -6 1 102 x 10 -5 

As was the case with the fitted quadratic sphne, many of the terms m the 
cubic sphne are not statistically s~gmficant. It is possible to ehmmate these from 
the fit. Experimentation with the ehmmat~on of ms~gmficant variables led to the 
following cubic spline function. 

Term 
Sphne coefficient 

Fttted value Standard error 

const 3 742 0 4087 
x - 3  229 × 10 -2 6 474 × 10 -3 
x 2 I 695 x 10 -4 3 306x 10 -~ 
x 3 - 2  542× 10 -7 5 132× 10 -8 

y3 - 5  215x 10 -7 6 686× 10 -8 

( x -  300)3+ 6 871 x 10 -7 2 051 x 10 -7 
(x-400)3+ - 1 857 x 10 -6 8 625x 10 -7 

( y -  100)3+ 3 401 x 10 -6 5 307 x 10 -7 
(y-- 150)3+ --3 884x 10 -6 9 0 9 0 x  10 -7  

S o m e  f u r t h e r  s t a t i s t i c s  r e l a t e d  to  t h e  r e g r e s s i o n  m o d e l s ,  p a r t i c u l a r l y  c o n c e r -  

n i n g  g o o d n e s s  o f  fit,  a r e  o f  i n t e r e s t .  T h e s e  a p p e a r  m t h e  f o l l o w i n g  t a b l e .  

T h e  m e a n i n g  o f  t h e  e s t i m a t e d  c o e f f i c t e n t s  o f  v a r i a t i o n  is  a s  f o l l o w s .  F o r  t h e  

l a r g e s t  p o s t c o d e s ,  w a t h  e x p o s u r e s  in  e x c e s s  o f  4 0 0 0 ,  t h e  c o e f f i c E e n t  o f  v a r i a t i o n  

o f  t h e  a d j u s t c d  o p e r a t i n g  r a t i o  is  a b o u t  1 5 % .  F o r  a r e l a t a v e l y  s m a l l  p o s t c o d e  

w t t h  100 y e a r s  o f  e x p o s u r e ,  t h e  c o e f f i c i e n t  o f  v a r i a t i o n  ts  a b o u t  1 0 0 % .  
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Estimated coeffictent Coefficient of determination 
of variation of of regression (b) 

Sphne 
surface operating ratio 

adjusted for Unadjusted Adjusted 
region (a) % % 

Quadratic 10 7 39 35 

Cubic 

full model 10.1 46 41 

reduced model 10 1 44 41 

Notes  (a) This cocffic~ent of vanatton relates to a single year of exposure The corresponding coeffi- 
cient for E, exposure years is this figure adjusted by a factor of E, -t 

(b) The adjusted coefficient of determination is defined as (SEBER, 1977, pp 362-363) 

1 - n S 2 1 ( n -  p ) ,  

where 

S 2 _ 
residual sum of squares of the regression model fit 

residual sum of squares of a constant model fit 

= 1 - unadjusted coefficient of determination 

These coefficients of  vanauon  seem large, but perhaps not unreahsucally so. 
For example, if each cell were Polsson distributed the coefficient of  vanauon  for 
a single year's exposure would be 1. Since it is fair to assume that there ~s 
variation m the mean claim frequency associated with individuals wnhm a cell, 
it may be inferred that the coefficient of  variation of claim frequency assocmted 
with a single year's exposure will be larger than I (see e.g SEAL, 1969, p. 25) It 
~S also known that the distribution of Contents insurance claim s~zes tends to be 
long taded. When addmonal  allowance ~s made for this component  of  variation, 
it may be that the actual coefficient of  variation of the adjusted operating rauo 
approaches the value estimated from the data. Otherwise, the conclusmn would 
be that the sphne fit IS inadequate, and its deviation from the true underlying 
adjusted operating ratio mamfests nself as a spurious increase in random noise. 

The unadjusted coefficients o fde t e rm m auon  show the p ropomon of variation 
in the data explained by the fitted spllne surfaces. 

As explained by SEBER (1977, p. 363), the unadjusted coefficients of  determt- 
nation of regressions involving different numbers of  regressors are not compa- 
rable. The adjusted coefficient of  determination IS intended to make for compa- 
rabdity 

On the basis of  these statistics there seems little to choose between the two 
cubic sphnes, both of  which appear somewhat superior to the quadratic spline. 
The quadratic sphne was dropped from the final process of  selecting rating 
regions. 
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QUADRATIC SPLINE 

Standardized 
res ldual  

3 . 9 0 0  
3 . 6 0 0  
3 . 3 0 0  
3 . 0 0 0  
2.700 
2.400 
2.100 
1.800 

1.500 

1.200 
0.900 
0.600 
0.300 

0.000 

-0.300 
-0.600 
-0.900 
-1.200 
-1.500 
-1.800 
-2.100 

2 * * 

3 ** 77 

• 3 , 7  

• 2 * * * 

72. * 

2 
• 3* 

• 22 * 
72 *'2 

• * • * * 3  
• 3 *2& " 2 "  
• "* * 2"* 2 

222 23 2" 2 
** 3 * "2"* 3" " 2"332" * 
**** 7 2 * * 2"* 

* * * *  * *  * 7 "7  2 * 

* 2 

7 • 

• • * * *  

" 2 

2*  * 

• * 2 

2 

. . . . . . . . . . . . . . . . . . . .  : . . . . . . . . .  : . . . . . . . . .  : . . . . . . . . . . . . . . . . . . .  : . . . . . . . . .  : 

0.250 0.500 0.750 1.000 1.250 1.500 

FULL CUBIC SPLINE 

1 . 7 5 0  

F i t ted  value of  
operat ing r a t i o  
adjusted fo r  
reglon 

Standardl zed 
res idual  

4.  800 
4.  400 
4 . 0 0 0  
3. 600 
3.  200  
2. 800 
2.400 
2. 000 
1.600 

1. 200 

0.800 
0 . 4 0 0  
0 . 0 0 0  

- 0 . 4 0 0  
-0.800 

-1.200 
-I .600 
- 2. 000 
- 2 . 4 0 0  
- 2. 800 
-3.200 

* * *  * 7 * *  * 

7 2 * 

* z * * ,  

* 3 *** * * '2 *'2* * * 

2 3 *2 * ** ** 227**4 * ** * 

3 22 3 22 "2" "22"3" ** 
" 3 3 ' ' ' 2 " *  2"2 22"43"3 " 

4**22* * * * *  * 2* *5"*272 * 
** ** 2 2 * * *2 
* * " 2 * * 

7 * 

7 

. . . . . . . . . . . . . . . . . . . .  : . . . . . . . . .  : . . . . . . . . .  : . . . . . . . . .  , . . . . . . . . .  : . . . . . . . . .  : 

O. 375 0.625 0.875 i. 125 i. 375 1.625 1.875 

Fitted value of 
operating ratio 
adjusted f o r  
reglon 
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R E D U C E D  C U B I C  S P L I N E  

Standardl zed 
resldual 

3. 600 
3. 300 
3 .000  
2 700 
2 aO0 
2 i00 
i 800 
1 5O0 
i 200 
O. 900 
O. 600 
O. 300 
O. 000 

- 0 .  300 
-0. 600 
- 0. 900 
-i .200 
-I .500 
- 1. 800 
-2. i00 
-2. 400 

1 

* 2  

* * 2  

* 2 *  * 

2 * 2  

* 2 * *  2 * * * *  

2 * * *  * 2 3 2 * 2 *  

' 3 2 " *  * *  * 3 3 2 2 2  

* *  * *  2 3  2 * *  3 3 *  

3* *2 23 3*3* 
***3 32*** **25622 

2 3  2 * * *  * 2 * 5  

* * 2 2  * * * *  
* * *  * *  

2 

. . . . . . . . . .  . . . . . . . . . .  : . . . . . . . . .  : . . . . . . . . .  : . . . . . . . . .  : . . . . . . . . .  : . . . . . . . . .  : 

0.000 0.400 0.800 1.200 1.600 2.000 2.400 
Fitted value of 
operatlng ratlo 
adjusted f o r  region 

A small sample of  values of  operating ratio adjusted for region fitted by each 
of  the three splines is displayed m Appendix F, together w~th the standardized 
resxduals in each case. Plots of  these standardized residuals against the fitted 
values appear above. In these plots, a * in the (x, y) posmon denotes occurrence 
of  a standardized residual o f y  in the case that operating ratio adjusted for region 
~s x; a 2 in the (x ,y)  posnlon ~s equivalent to two *'s there; a 3 eqmvalent to 
three *'s, etc. 

The plots appear reasonable. There is perhaps a hint that, for conslant expo- 
sure, coefficient of  variation decreases with increasing operating ratio. It might 
have been feared that the spline surface would tend to flatten out real eccentri- 
cities m operating ratio There ~s, however, no evidence that the sphnc surfaccs 
tend to under-estimate (resp. over-estimated) at the upper (resp. lower) extreme 
of operating ratios. 

In the case of  each of the cubic sphnes, maps of the total rating region were 
produced showing the division into different ranges of  adjusted operating ratio 
as esumated by the sphne funcuon in question. The map for the reduced cubic 
sphne appears in Appendix G2. This may be compared with the corresponding 
map in Appendix GI  which shows the division Into different ranges of  adjusted 
operating ratio as observed 

Contour maps of the two cubic sphne surfaces were also produced These may 
be used to select ratxng regions The map relating to the reduced cubic sphne is 
reproduced below. 
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NEW RATING AREAS 

109 

AREA A !"¢f '-_. '-C' /4REA 8 

AREA E 

The contours indicate five regions of steep gradient which divide offfive clear 
rating areas : 

0) the north-eastern suburbs (low risk); 
(u) the south-eastern suburbs (low nsk); 
(Ill) the far western suburbs (low risk); 
(iv) a small pocket of certain eastern suburbs (high risk); 
(v) the central western suburbs (high risk). 

The remainder of the total region would then provide a sixth rating region. 
In practice the task would be completed by using the contours to determine 
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boundaries of  the six rating regmns, which would then be treated, for rating 
purposes, as homogeneous with respect to operating ratio. 

It is of interest to compare these suggested rating regions with those actually 
used by the insurer concerned. Appendix G3 displays the regions tn use during 
1985/86, the period to which the data of  the present paper relate, the immedm- 
tely preceding map, in which Areas A to E are in descending order to risk, 
displays the regions currently in use. 

This map does Indeed mdentlfy most of  the rating regions suggested by the 
spllnes. Moreover, a comparison with Appendix G3 shows that in the recent 
past the insurer concerned has considerably expanded its high risk region m the 
central west. The splines Identified the need for this from 1985/86 data, i.e. at 
least 17 months before it actually occurred. 

The main differences between the rating regmns suggested by the splines and 
those actually currently in use are: 

(l) the actual regions do not Identify any of the eastern suburbs as of  parncu- 
lady high risk, whereas the sphnes do; 

(n) the actual regions identify Sydney city as high risk, whereas the splines do 
not; 

(m) the actual regmns identify a corridor of  relatively high risk inner western 
suburbs, whereas the sphnes interpret this in a relatively minor way. 

Reference to Appendix G1 (the data) can assist in resolving these disparities, 
although one must remember  that Appendix G I gwes no indication of  the 
exposure, and therefore the statistical significance, of  each of the postcodes 
mapped. 

However, such a comparison suggests the following conclusions. 
First, the sphnes are probably correct in identifying a very high risk pocket of  

eastern suburbs. 
Second, the sphnes are probably wrong in thmr treatment of  Sydney city and 

somc of  the innermost suburbs This may be indicative of  sphnes' failure, as 
locally low degree polynomials, to respond to highly localized steep gradients. 

7. CONCLUSION 

Sphne functions can provide an effectwe means of  determining geographic 
regions for premium rating. Most of  the implementation is routine. The excep- 
tion to this is the determination of a suitable set of  curvlhnear coordinates, and 
the transformations which take these coordinates to and from rectangular coor- 
dinates. This step can be difficult and t~me-consummg. 
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APPENDIX A 
DATA 

AI. Geographic coordinates of postcodes 

P o s t c o d e  b o u n d a r i e s  h a v e  bcen  a p p r o x i m a t e d  by po lygons .  T h e s e  h a v e  been  

d e f i n e d  by the  g e o g r a p h i c  c o o r d i n a t e s  o f  the  ve r t i ce s  o f  the  po lygons .  

T h e s e  c o o r d i n a t e s  take  the  fo rm o f  a hs t  o f  (x, y ) - c o o r d m a t e s  for each  pos t -  

code ,  a smal l  s a m p l e  o f  w h i c h  fol lows.  

Coordinates Coordinates Coordinates 
Post Posl Post 
code code code x y x y x y 

2000 456 162 2011 477 150 2020 446 178 
460 157 473 148 433 188 
463 153 471 148 434 193 
467 150 468 150 442 193 
468 145 467 150 449 202 
464 147 463 153 455 201 
464 145 2015 444 172 453 199 
462 144 451 173 451 199 
461 146 446 178 447 193 
459 146 457 178 456 192 
456 143 460 177 464 186 
451 145 460 173 464 181 
455 154 460 171 457 181 
451 153 456 165 457 178 
451 155 454 165 446 178 
456 159 448 167 2021 473 164 
456 162 451 169 475 167 

2006 447 164 444 172 478 168 
451 160 2016 456 165 485 167 
442 161 469 165 489 166 
443 162 469 162 489 163 
447 163 464 162 481 159 

2007 451 155 456 162 483 156 
456 159 456 162 479 155 
451 160 454 164 473 155 
447 155 454 165 468 158 
447 155 456 165 473 164 
451 155 
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A2 .  C l a i m s  d a t a  ( s a m p l e  o n l y )  

Average Jewellery Average Number Average Average Average Average 
Years sum penet- jewellery of claim earned observed gross Post of insured ratton sum insured claims cost premium /ask expertence 

code 
exposure premium premium 

$ 000"s % $ $ $ $ $ 

2006 3 44 667 0 00 2 1300 290 80 865 92 935 98 
2008 66 21 388 10 67 1734 9 4293 267 73 585 13 608 65 
2749 45 23 329 9 52 1562 6 2974 103 51 395 17 427 29 
2027 340 42 688 10 51 15048 35 2865 208 52 295 54 316 26 
2157 226 28.816 5 22 3435 19 2189 119 60 184 30 208 78 
2171 841 25 920 5 75 2978 106 1510 140 31 190 84 216 02 
2759 393 24 307 9 18 1973 42 1414 110 34 151 80 179 95 
2115 381 24 129 8 09 2305 37 1608 108 28 156 80 176 94 
2177 314 22 368 4 86 2690 41 1595 183 19 209 02 232 24 
2025 274 33 654 9 67 5551 32 1671 168 03 196 00 218 04 
2761 115 22 253 4 03 2404 18 1243 182 60 194 81 228 10 
2026 1153 22 432 11 03 3540 102 1921 144 28 170 68 190 13 

A3. Existing premium rating s~,stem 

Each metropolitan postcode ~s as~gned to one of 5 rating regions For these 
regions, the existing premium formula has been taken as the following 

Basic (~ e non-jeweller)') premium Jewellery premium 

Rating Base prcmtum Premium per $ 1 0 0 0  Premium per $ 1000 
region basic sum msurcd jewellery sum msured 

$ $ $ 

A 130 3 60 20 O0 
B 94 2 70 20 O0 
C 72 2 00 15 00 
D 49 2 O0 15 00 
E 27 2 O0 I0 00 

In fact, some 5% to 10% of pohcies were subjcct to a loading of 33% on these 
rates, but this fact has been tgnored m the following. 
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The following 
Appendix A2. 
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APPENDIX B 

OPERATING RATIO ADJUSTED FOR REGION 

results relate to the same sample of poslcodes as appears m 

Rating 
regmn 

Adjustment to operating ratio for region 
1st version (3 I 2) 2nd version (3 1 6) 

Loss ratio ajusled for region 

Post Operating. 1st 2nd Ratm of 
code ratm Nume- Denom~- Nume- Dehorns- versmn versmn Ist 

ralor nator rator nator based on based on version 
(Area C) (Area C) (3 I 2) (3 1 6) to 2nd 

2006 3862% 29080 161 33 22576 12826 6962% 6799% 
2008 2728% 21070 11755 22576 12826 4890% 4802% 
2749 4954% 9789 12089 10325 12826 401 1% 3988% 
2027 1820% 181 10 181 10 12625 12826 1820% 1792% 
2157 2095% 10932 13232 10325 12826 173 1% 1686% 
2171 1848% 12641 12641 12625 12826 1848% 181 9% 
2759 1957% 10033 12333 10325 12826 1592% 1575% 
2115 196 I% 10006 12306 10325 12826 1594% 1579% 
2177 152 1% 15701 11870 167 17 12826 201 2% 1983% 
2025 1557% 14736 14736 12625 12826 1557% 1533% 
2761 1499% 15602 11796 167 17 12826 1983% 1954% 
2026 158 I% 12272 12272 12625 12826 158 [% 1557% 

024 
018 
006 
016 
026 
016 
011 
010 
015 
016 
015 
016 
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APPENDIX C 

PROOF OF SPLINE DECOMPOSITION 

PROOF OF THE PROPOSITION IN SECTION 4.2 Consider any particular sphne func- 
tion f(x,  y). Define the polynomtal (t) tn the statement of the Proposition to be 
the extension to .~ o f f ( x ,  y) for 0 =< x ~ hi, 0 ~_ y ~ k I . Call this polynomial 
p(x,y). Now consider the spline function for h~ =<x=<h2, O=<y=<kl. It ~s a 
polynomial of  degree ~ p  on this rcglon, and therefore so ~s 
f(x,  y ) -p (x ,  y) = q(x, y), say. Then q(x, y) can be written as a hnear comblna- 
uon of terms xay b, a+b =< p. By a change oforlgm (on the x-axis), q(x, y) can be 
written alternatively as a hnear eombmauon of terms (x-hOay 6. Thus, q(x, y) 
as a function over the region 0 =< x =< h2, 0 =< y =< k I is a linear combination of 
terms (x-hl)~_ y6. 

Now recall the conunulty reqmrements on the denvauves ofa  sphne funcuon. 
Thcse imply contmmty of  all derivatives of  q(x, y) of order < p. Suppose a < p 
and consider (aa/~xa)[(x-hO~yh]. It IS simple to verify that this derivative 
does not exist at x = h ~ ,  y > 0 .  Thus q(x,y) reduces to a multiple of 
(x-hOP+. 

The traversal of other hinges can be dealt with in precisely the same way. 
Traversal of  each hinge x = h, (in the posmve direction) adds a multiple of 
(x -hy+ to the sphne function. Traversal of  each hinge y = kj (in the posltwe 
direction) adds a multiple of  ( y - k y + .  
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APPENDIX D 
COORDINATE TRANSFORMATIONS 

DI. Methodology 

The coordinates against which actual claims data are recorded are denoted by 
(x ' ,y ' ) .  This is the coordinate system m which the postcode boundaries of  
Appendix A are dcfined; and also in which the hinges illustrated in Sections 4.3 
and 5..?. are defined. 

An alternauve coordinate system in which these hinges are rectilinear uses 
coordinate pairs denoted by (x, y) (Sections 4.1 and 5). The transformation 
(x, y) ~ (x', y') is given by (5.2.4) and (5.2 2) 

The inverse transformation (x', v') ~ (x, y) for each of  the pmrs (x, y) hsted 
in Appendix Al is given in Appendix D2 The reversion has been carried out 
numerically, as follows. 

For convenience, let f d e n o t e  the function (u, v), such that 

(x' ,  y ')  = f ( x ,  y ) .  

Suppose that it ~s necessary to solve for x, y m: 

(DI. 1) f (x, y) = (x6, Y6) , 

for particular values ofx~,  v6. Note that, for another coordinate pair (x*, y*) in 
the xy-plane, 

f ( x * ,  y*) - (x~, y~) = [[x* - x )  (Ou/Ox) + (y* - y) (Ou/Oy), (x* - x)  (~v/Ox) + 
(D 1.2) ( y * -  y) (Ou/Oy)] , 

to first order, where all denvauves are evaluated at (x, y). 
It would be possible at this point to use Newton's algontm to obtain a sequen- 

ce of lterat|ons of (x*, y*) converging to the required (x, y). However, this algo- 
rithm would revolve the parual derivatives o f f  rather messy expressions obtm- 
ned from (5.2.2) and (5.2 4). To avoid th~s messiness, Newton's algorithm has 
been very shghly modified by replacing the partml denvauves by dlscreuzed 
versions of them as follows: 

(DI.3) f ( x  +a, . v ) - (x  6, Y6) = [a(Ou/Ox), a(Ov/Ox)] ; 

(D 1 4) f ( x ,  y+ b ) -  (x 6, )'6) = [b (Ou/Oy), b (Ou/Oy)]. 

Now subsUtutlon of the right sldes of (DI.3) and (DI 4) m (DI.2) yields 

(u*, v*) = [ [ x * -  x)  (u~, v~)/a + ( y * -  y).(u~, v~)/b] , (DI.5) 

where 

(u*, v*) = f ( x * ,  y * ) -  (x6, Y6), 

(u~, v~) = f (x + a, y ) - ( x  6, Y0); 

(ub, vb) = f ( x ,  y+  b ) -  (x 6 , )'6). 
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(D 1 8) 

(DI.9) 

where 

Equation (DI.5) represents two simultaneous equations, 

(DI.6) (bu~) ( x * -  x )+(aub)  ( y * -  y) = abu* 

(DI.7) (bye) (X*--X)+(aVb) (y*- -  V) = abv* 

It is now possible to obtain the solution x*-x, y* -y  to (DI.6) and (D1 7) 

x * - x  = a(u*vb- -V*  Ub)/A , 

y*--.V = -- b(u* v a -  v* tG)/A , 

(DI.IO) d = ] uava Ubl'Vb 

Still working to first order only, (DI 8) and (DI 9) yield' 

(DI.I 1) x = x*--a(U*Vb--V*Ub)/A,  

(DI. 12) y = y * + b ( u *  v a - v *  ua)/a. 

The whole procedure ~s made iterauve, by le"ttlng (x t'~, yl,)), the n-"th approxi- 
mauon to (x ,y) ,  replace (x*,y*). Then the adaptation of (D1 II) and DI.12) 
yields : 

x ("+ J~ = x ( ' ° -  a [u I'° v~ " ~ -  v ('° UCb"q/A ('° , 

y(" + ~) = y(") + b [u (''~ v~ " ) -  v ~"~ u~")]/3 I") , 

(DI.13) 

(Dl 14) 

where 

(DI.15) 

(DI.16) 

(DI.17) 

(u I'°, 0% = f (x I'°, yl,o)_ (x6, y6),  

( 4  "~, u~ "J) = f(x("> + a, y<"~) - (x6,)'6) ; 

(u~ "), v(b ")) = f (x ("), y~") + b) - (xO, 3'(3) . 

The recursmn is inmahzcd by: 

(D l. 18) (xC0), y(0)) = (x6, Y6). 

It should also be noted, as remarked in Section 5.2, that (5.2.4) and (5.2.2) do 
not provide a proper coordinate transformation, but rather separate coordinate 
transformations of the xy-subplanes defined by the cons"tramts y>= 150 and 
y =< 150 respecuvely. When y '  = 150, the reverse transformation gives y = 150, 
indeed (x, y)  = (x' ,  y'). 

D2. Transformed coordinates 

For cach of the pairs ofcoordmates  (x', y') defining the polygonal boundary of a 
postcode (g~ven as (x, y) m Appendix Al), the inverse transformed coordinates 
(x, y) were obtained by the recursive algorithm (Dl. 13)-(Dl.18).  
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Occasionally, when the algorithm failed to produce convergence, or failed to 
produce a sufficient rate of convergence, manual mtcrventlon reimtmhzed the 
procedure. For example, if the sequence of (x ('°, yt,,I) oscillated with period 2, the 
procedure was restarted with 

(xlO~, y~o~) = [(x~,0+x~,,+ ~)/2, (y~,O+y~,+ ~)/2]. 



I 18 G C TAYLOR 

APPENDIX E 

DATA FOR SPLINE-FITTING REGRESSIONS 

Section 6 explains how the postcode vertex coordinates ofAppendlx AI arc used 
to compute postcode centrotds m the alternattve coordinate systems. These 
results are hsted below for various postcodes. The addmonal data required m 
respect of  each postcode for input to the regressmn have also been hsted, They 
are drawn from the same source as Appendix B. 

Note that the first set of  coordinates appeanng in the following table, whtle 
given for interest, are not used m the regression 

Centro~d coordmates Observed 
Postcode Years of loss ratio 

Gtven coordinate Coordinate system exposure adjusted 
system of rectlhnear hinges for region 

.~/ y-: .f, y, E, t (,~',, v,) 

2000 458.8 150 9 453 7 151 0 83 0 275 
2006 446 0 162 0 430 5 161 2 3 6 962 
2007 450 5 156 5 444 9 155 6 48 I 343 
2008 452 4 162 0 435.4 161 2 66 4 890 
2009 448 4 152 1 447 7 151 6 26 0 337 
2010 465 2 158 8 452 2 158 0 319 2 164 
2011 471 0 151 5 469 8 151 2 329 I 529 
2015 4526 171 7 4123 1711 123 1 411 
2016 4593 1636 4366 1628 134 1112 
2017 462 1 168 6 425 4 168 0 49 0 262 
2018 466 5 178 7 403 3 178 4 337 0 769 
2019 470 3 193 0 374 4 192 9 284 0 608 
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APPENDIX F 
OPERATING RATIOS FITTED BY SPLINE SURFACES 

T h e  f o l l o w i n g  t a b l e  d / s p l a y s ,  fo r  e a c h  p o s t c o d e  a p p e a n n g  in A p p e n d i x  E, t h e  

o b s e r v e d  o p e r a t i n g  r a t i o  a d j u s t e d  fo r  r e g i o n .  T h i s  Is a c c o m p a n i e d  b y  t h e  c o r r e s -  

p o n d i n g  o p e r a t i n g  r a t i o  f i t t ed  b y  e a c h  o f  t h e  s p h n e  s u r f a c e s  d e s c r i b e d  m S e c -  

t i o n  6 a n d  t h e  s t a n d a r d i z e d  r e s i d u a l .  

T h e  s t a n d a r d i z e d  r e s i d u a l s  ( fo r  a g a m m a  e r r o r  t e r m )  a r e  c a l c u l a t e d  a c c o r d i n g  

to  t h e  f o r m u l a  

( o b s e r v e d  v a l u e  - f i t t ed  v a l u e )  x w e i g h t  
s t a n d a r d l z c d  r e s i d u a l  = 

f i t t e d  v a l u e  x c o e f f i c i e n t  o f  v a r i a t i o n  

Postcode Observed 

Full quadrauc sphne Full cubic sphne Reduced cub)c sphne 

Freed Standardized Fitted Standardtzed Fitted Standardized 
value residual value residual value residual 

2000 0 275 I 0768 - 0  635330 0 9417 - 0  635527 0 9179 - 0  629456 
2006 6 962 I 0122 0 953465 I 0101 1 005597 0 9777 1 045798 
2007 1 343 I 0519 0 179540 0 9661 0 266327 0 9372 0 295957 
2008 4 890 1 0297 2 852375 0 9986 3 119427 0 9692 3 241843 
2009 0 337 1.0510 - 0  324423 0 9385 - 0  322000 0 9126 - 0  317242 
2010 2 164 1 0931 I 638832 0 9842 2 109650 0 9595 2 211845 
2011 1 529 I 1696 0 521963 1 0260 0 876103 1 0065 0 928970 
2015 1 411 0 9783 0 459386 10629 0 357886 1 0458 0 382018 
2016 1112 1 0382 0 077088 0 9985 0 129678 0 9730 0 163161 
2017 0 262 1 0100 - 0  485528 I 0234 - 0  513134 I 0052 - 0  510541 
2018 0 769 0 9661 - 0  350791 10390 - 0  470091 1 0555 - 0  491562 
2019 0 608 0 8735 - 0  479695 0 9034 - 0 5429•6 0 9803 - 0  631311 



120 G C TAYLOR 

APPENDIX G 

RISK PLOTS 

GI. Data 

The following map plots the operalmg rauo adjusted for region, (3.1.4), different 
colours designating broad bands of  values of this ratio. 

,~11~11~i ~- "~'" ~ ~.~~- ' . r  



USE OF SPLINE FUNCTIONS FOR PREMIUM R A T I N G  BY GEOGRAPHIC AREA 12 J 

G2. Reduced cubic spline function 

The following map repeats the one appearing m Appendix (31 but with the 
observed operating ratio rcplaced by that fitted using the reduced cubic sphne of  
Section 6. 

[ . ~ .  0 - ~,7gg ~ O , T g  - 1 , 0  I I I I I~JI ,T~I 1,11 -- 1 , ~  _ _ Q~ER 1 , ~  J 
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G3. Rating areas used in practice from I / 4 / 8 5  to 1 /2 /88  

,~REA E 
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