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ABSTRACT 

A practical method is developed for computing moments of  insurance func- 
tions when interest rates are assumed to follow an autoregressive integrated 
moving average process. 
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I. INTRODUCTION 

In most of  the insurance literature the theory of  life contingencies is developed 
in a deterministic way. This means that mortality happens according to an a 
priori known mortality table and that the interest rate is assumed to have a 
constant value. Nevertheless, the traditional theory of  life contingencies 
implicitly deals with the stochastic nature of  mortality and interest rates in that 
conservative assumptions are taken. 

A first step forward was to consider the time until decrement as a random 
variable, while the interest rate was assumed to be constant. This approach is 
followed in BOWERS et al. (1987). This (as one could call) "semi-stochast ic" 
approach contains the traditional theory in that most actuarial functions can 
be considered as the expected values of certain stochastic functions. 

It is only since about 1970 that there has been interest in actuarial models 
which consider both the time until death and the investment rate of return as 
random variables. 

BOYLE (I 976) includes the stochastic nature of  interest rates in assuming that 
the force of  interest is generated by a white noise series, that is forces of interest 
in the successive years are normally distributed and uncorrelated. 

In the approach of  POLLARD (1971) the force of interest in a year is related 
to the force of  interest in the preceding years by using an autoregressive process 
of  order two. 

PANJER and BELLHOUSE (1980) and BELLHOUSE and PANJER (1981) develop 
a general theory including continuous and discrete models. The theory is 
further worked out for unconditional and conditional autoregressive processes 
of  order one and two. 
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GIACCOTTO (1986) develops an algorithm for evaluating present value 
functions when interest rates are assumed to follow an ARIMA (p, 0, q) or an 
ARIMA (p, I, q) process. 

The goal of this study is to state a methodology for computing in an efficient 
manner present value functions when the force of interest evolves according to 
an autoregressive integrated moving average process of order (p, d, q). As will 
be seen, the method developed here will require less computing time than 
Giaccotto's method for autoregressive integrated moving average processes of 
order (p, 0, q) or (p, I, q). 

It should be remarked that we assume that mortality and interest rates 
posses a certain stochastic nature and that only accidental fluctuations in this 
mortality and interest rates are considered. Other fluctuations due to mortality 
improvement, underwriting practice, the choice of a wrong interest model, 
investment strategy and so on are not considered here. 

2. G E N E R A L  T H E O R Y  

The theory developed in this section is mainly based on the work of PANJER 
and BELLHOUSE (1980) and BELLHOUSE and PANJER (1981). 

Let D t be the stochastic variable denoting the discounted value of one dollar 
payable in t years (t = 0, 1, 2 . . . .  ). The stochastic variable X t defined by 

(1) D, = exp ( - X t )  t = 0, 1, 2 , . . .  

can be interpreted as the force of interest over the first t years. 
If 6; is the force of interest in the i-th year (i = 1, 2, . . . ) ,  then 

,V0=0 
I 

(2) X, = 2 6i t = 1 ,2 , . . .  
i=1  

It is assumed that X~ is normally distributed with mean p( t )  and variance- 
covariance function a (t, s). The variance of Xt is equal to a (t, t) and is denoted 
by a2 (t). 

It is immediately seen that E[Dt k] and E[D~Dts] are the moment generating 
functions of the normal distributed variables kX,  and ( kX ,+  lXs) calculated for 
the value ( -  1). So one finds that 

[ '~2 ] 
E[D~] = exp - k p ( t )  + - -  a2( t )  t , k  >_ 1 

2 
(3) 

and 

(4) 
k2 

E[Dtk Dts] = exp - k ~ ( t ) - l l t ( s )  + - -  a2(t) + 
2 

,2 ] 
+ -- a Z ( s ) + k l a ( t , s )  

2 
t , s , k , l >  1 
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PANJER and BELLHOUSE (1980) proved that when the X, are normally 
distributed, the moments of and the correlation coefficients between interest, 
annuity and insurance functions depend upon E[Dt k] and E[DtkDts]. For a 
whole life term insurance, for instance, the moments of the stochastic va.riable 
dx are given by 

(5) E[d~.] = 2 , - '  I qxE[Ot ~] 
t = l  

The second moment for the life annuity E, is given by 

(6) E[~I  = ,lqx Z Z E[DrDsl 
t=l r = l  s = l  

Given a model for the yearly forces of interest 6,, the problem is to find u(t) ,  
az( t )  and a( t , s )  for t , s  >_ 1. 

3 .  A U T O R E G R E S S I V E  I N T E G R A T E D  M O V I N G  A V E R A G E  P R O C E S S E S  

Assume that the stochastic model governing future forces of interest 6, 
(t = l, 2, ...) belongs to the class of ARIMA (p, d, q)-processes. Then 6t is 
generated by the stochastic difference equation 

(7) ~7d6t = f l + b l ( ~ 7 d 6 t _ l - - f l ) - J - b E ( ~ T d 6 t - 2 - - , U )  -[- . . .  + b p ( ~ 7 d 6 t - p - - f l )  

+ ~ , - c l ~ , - i -  c2~,-2. . .  -Cq~,_q 

where 7 d stand for the d-th backward difference operator: 

(8) 7 ~ 6 ,  -= 76, = 6 ,  - 6 , _  i 

(9) 7d6, = v (vd-~6 , )  d = 2, 3 . . . .  

By convention we set 7°6t -- 6t. Further ~t is a normal white noise series with 
mean zero and variance cr 2. Equation (7) can also be written as 

(10) 7d6, = a+bl  ~7d6t-I"[- . . .  + b p  ~ 7 d 6 t _ p " [ - ~ t - - C l ~ t _ l  - . . .  - - C q ~ t _  q 

with a given by 

P 

(11) a = /1(1 - 2 bi) 
i = l  

Equation (7) indicates that the process describing dr will not necessary be 
stationary. This means that the force of interest 6, will not necessary have a 
constant unconditional mean, variance and autocovariance with any 6,-k for 
t 4: k. The d-th difference of 6, however follows a stationary autoregressive 
moving average process. This means that the series describing the interest rate'. 
exhibits homogeneity in the sense that, apart from local level, or perhaps local 
level and trend, one part of the series behaves much like any other part. 
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In what follows it will implicitly be assumed that the past (p + d) forces of 
interest O 0, 6_ ~ . . . . .  61-p-d and the past q random disturbances ~0 . . . .  , ~ - q  
are known. Means, variances and covariances will always be considered as 
conditional on 3o, 6-1 . . . . .  6 t - p - d ,  CO, ~ - 1 , ' ' ' ,  ~ l - q '  Remark that if Jt fol- 
lows an ARIMA (p, d, q)-process then the Xt given by (2) are normally 
distributed so that the theory of section 2 can be used. 

The variable Y~ is defined as 

(12) Y, = 61_p_d+J2_p_a+ .. .  +6,  t _> l - p - d  

Further we set 

(13) Y - p - d  = 0 

It follows immediately that 

(14) 6 , =  Yt -Y, -~  t >_ l - p - d  

So if fi, follows an ARIMA (p, d, q)-process given by (10) with 
J0, . . . ,  6 t - p - a ,  ~o . . . . .  ~ _ q  known then Yt follows an ARIMA (p, d +  1, q)- 
process given by 

(15) 7 d+l Y~ = a + b l  7 d+l Y~_l + .. .  +bp 7 a+~ Yt_p+~t-Cl~t_l- . . .  - - C q ~ t _ q  

with Y - p - d ,  Y l - p - d  . . . . .  Yo and ~0 ,~- i  . . . . .  ~ l - q  known. 
Now it is easy to see that the ARIMA (p, d+  1, q)-process describing Y~ can 

be written as an ARIMA (l, 0, q)-process with l = p + d +  I : 

(16) Yt  = a + 0 !  Y t - i  + . . .  + O i Y t - t + ~ t - c l ~ t - i -  . . .  - C q ~ t - q  

with 4'!, 02, .- . ,  0t suitable functions of bl . . . .  , bp. 

Examples 

(1) If Jt follows an ARIMA (p, 0, q)-process then 

(17) J, = i . t + b l ( 6 t _ l - l t ) +  . . .  + b p ( 6 t _ p - U ) + ~ t - C l ~ t _  I - . . .  - C q ~ t _  q 

Yt c a n  then be written as an ARIMA ( p +  1, 0, q)-process given by 

(18) Y, = a + O t  Y t - i  + . . .  -{- Op+l Y t - p - I + ~ t - ¢ l ~ t - I  - . . .  - C q ~ t - q  

with 

(19) 

and 

(20) 

with b0 

P 

a = / t ( 1  - 2 bi) 
i=l  

0 i  = b i -  bi-  i 

= - I  and bp+l = 0 

i = I . . . . .  p + l  
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(2) I f  6, follows an A R I M A  (p, 1, q)-process then 

(21) V6, = f l + b l ( ~ T d i t _ l - f l ) +  . . .  + b p ( ~ 7 ~ t _ p - l t ) + ~ t - C l ~ t _  I - . . .  - C q ~ t _ q  

Yt can then be writ ten as an A R I M A  ( p + 2 ,  0, q)-process given by 

Yt = a+Ol  Yt-i + . . .  q -~p+2 Y t - p - 2 - { - ~ t - C l ~ t - i  - . . .  --Cq~t-q l > 1 (22) 

with 

P 

(23) a = /~(1 - Z bi) 
i=1  

and 

(24) 

with b_ i 

Oi = bi-2bi- i+bi-2  i = 1 . . . . .  p + 2  

= bp+ 1 = bp+ 2 = 0 and b0 = - I  

In the next l emma we derive an expression for the Yi in terms o f  known 
values plus a function of  future error  terms ~t. 

L e m m a  I 

Assume that  Y, moves  according to an A R I M A  (1, O, q)-process given by (16) 
and with Yo, Y- i  . . . . .  Yi - t  and ~ 0 , ~ - i  . . . . .  ~ l -q  known.  The  Yt can be 
writ ten as 

1 i - I  

(25) Y' = E Yi- ,  Z 
i =  I j =  max (0, i -  t) 

q i - I  

- E ¢i-q ~] 
i =  I j =  rnax (0, i -¢)  

where the coefficients ai and fli are given by 

(26) ao = 1, 

rain (i. I) 

(2'7) a,= Z O.iai-J 
j=l 

min (i. q) 

(28) fl, = a i -  ~ Cjai- j 
j = l  

{ ~ l - j ( l j - i +  t 

t - I  t - I  

C q - J a J  - i + t  "}- a E 12i "}- E f l i C t - i  
i = 0  i = 0  

fl0 = 1 

t > _ l  

i > _ l  

i k i  

P r o o f  

For  a rb i t ra ry  cons tants  ai (i = 0, 1 . . . . .  t -  I) we find for  t >_ I 

t-- 1 I t+j-- I q t + j -  I t-- 1 

Z o,Y,-, = 2 oj 2 Z cj Z + 2 
i=O j = l  i=j j = l  i=j i = 0  

(a + ~,_ i) ai 
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By interchanging the order 
equation and by using the a~ 

of summation in the second member of this 
and ,Oi defined in (26), (27) and (28) we find 

t+l- I min (i, ~ t+q- 1 mm(i, q) 

Yt = 2 Yt-i ~ Ojl2i-j- ~ ~t-i 2 cj(zi-J 
i=t .j=i-t+ 1 i=t j=i-t+ 1 

t-I t-I 

+ a  Z a i +  2 ,#i¢,-i 
i=O i=0  

After some straightforward calculation (25) is obtained. 

Remark that the first, the second and the thirth term in the right member of 
(25) are constants while the fourth term is stochastic. 

In the following theorem expressions are derived for computing u(t),  0"2(t) 
and a(t ,  s). 

Theorem 1 

If Y, follows an ARIMA (l, 0, q)-process given by (16) then It(1.), 0"2(/) and 
a(t,  s)  can be computed by 

I / q 

(29) /t(t) = a -  Y 0 ( I -  Z cki) + 2 0 i l t ( t - i )  - Z c i q ( t - i )  t > 1 
i = l  i = l  i=l 

where lt(O) = 0 a n d / l ( - i )  = - ( 6 0 +  ... + 61-i) i= l . . . .  , l -  l 

and r/( i)= f 0~i i>0i< 0 

t - I  

(30) 0"2(t ) = 0"2 ~ ,O~ = 0"2(1._ 1/+,O,-~2 t >_ l 
i = 0  

with 0"2(0) = 0 and the fli defined in (26), (27) and (28). 

(31) a(t,  s)  = 0"2 ~ fi',-i,/3s-i t > s >_ 1 
i=1 

Proof  

From (2), (12) and (16) we obtain 

X , =  - Y o + a + ¢ t Y , _ l +  ... +4 ,1Y,_ /+~ , - c t~ ,_ l - . . . - -Cq~ t_  q t>__ 1 

Taking the expected value of both members gives (29). 
(30) and (31) follow immediately from (25). 

The results obtained in lemma I and theorem 1 become much simpler if Y, 
follows an ARIMA (1, 0, 0)-process. The expressions to compute /t(t), O2(I ') 
and a(t ,  s)  for this case are stated in the following theorem. 
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Theorem 2 

If Y, follows 
C I -~  C 2 = . . .  = Cq 

I I 

(32) #(t)  = a -  Yo(l - 2 0') + ~ O,t l( t - i )  
i=1 i=1 

where ~(0) = 0 a n d / l ( - i )  = - ( 6 0 +  ... 6~-i) 

(33) 

an ARIMA (1, 0, 0)-process given by (16) 
= 0 then / l ( t ) ,  ~r2(t) and a( t , s )  can be computed by 

(34) 

The proof follows immediately from theorem 
ci (i = 1 . . . . .  q). 

t > _ l  

i=  1 , . . . , 1 -  1 

t - I  

0 .2 ( , )  = 0.2 
i=0  

with 0.2(0) = 0 and the ai defined in (26) and (27) 

a(t ,  s )  0 .2 = a t _ i a s _  i I > s ~ 1 
i=1 

with 

1 by deleting the terms in 

4. REMARKS 

The method described by GIACCOTTO (1986) for A R I M A ( p ,  0, q)- and 
A R I M A ( p ,  1, q)-processes requires for the computation of  a2( t )  values of 
xi(t)  and yi(t)  (i = 1, . . . ,  t), which can be computed recursively but that 
depend on t. In the method developed here for computing a2(t), the algorithm 
is written so that the ar  and fli-values are independent of  t. 

We remark from theorem 1 and 2 that a2( t )  and a(t, s) are independent of 
the past forces of interest 60,6-1 . . . . .  6~-t. So it follows that when the same 
interest rate model is used from year to year with only the past l forces of  
interest and the past q disturbances changing, the a2( t )  and a(t, s) remain the 
same. Only the u ( t )  will have to be recomputed every year. 

5.  E X A M P L E  

To use our results the following procedure should be followed: 

I) Choose an ARIMA (p, d, q) interest rate model and estimate the parame- 
ters involved. (see e.g. Box and JENKINS (1970)). 

2) Write Y, as an ARIMA ( p + d +  1,0. q)-process. 
3) Compute the ai's and the fl~'s. 
4) Compute 
5) Compute 

To illustrate 
interest rate 

61 = 

u(t), a2(t), a(t,s). 
the moments of  actuarial functions. 

the procedure assume that we have the following model for the 

0 .08+0 .6 (6 ,_~ -0 .08 ) -0 .3 (6 ,_2 -0 .08 )+~ t  t >_ I 



138 JAN DHAENE 

where ~t is a white noise series with variance 0.0016 and 60 = 0.06 and 
6_ I = 0.07. 

Using (18), (19) and (20) Yt can be written as 

Yt = 0.056+ 1.6 Y , - n - 0 . 9  Yt_2+0.3 Y t _ 3 + ~ t  t > I 

The at, ~(t), crz(t) and a(t, s) can then be computed by using theorem 2 and 
formula (26) and (27). 

In table 1 a~, I~(t), a2(t), E[D~] and Var [Dt] are given for t = 0, I . . . . .  5. In 
the last column the discounted value of I $ payable in t years computed with a 
constant force of  interest equal to the unconditional expected value of  6, is 
given. In the example described here the stochastic approach leads to higher 
single premiums. This fact could be expected by observing 6o and 6_ n. 

TABLE I 

MEAN AND VARIANCE OF A PAYMENT OF I ,~ DUE IN t YEARS 

t a t # ( t )  a2(t)  E[D,] Var [D,] exp ( - 0 . 0 8  t) 

0 1 0 0 I 0 I 
1 1.6000 0.0710 0.0016 0.9322 0.0014 0.9231 
2 1.6600 0.1516 0.0057 0.8618 0.0042 0.8521 
3 1.5160 0.2347 0.0101 0.7948 0.0064 0.7866 
4 1.4116 0.3163 0.0138 0.7339 0.0075 0.7261 
5 0.3964 0.0170 0.6784 0.0080 0.6703 
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