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ABSTRACT 

We consider a risk generating claims for a period of N consecutive years (after 
which it expires), N being an integer valued random variable. Let X k denote the 
total claims generated in the k th year, k >_ 1. The Xk's are assumed to be inde- 
pendent and identically distributed random variables, and are paid at the end of 
the year. The aggregate discounted claims generated by the risk until it expires is 
defined as SN(V) = Z~=l vkXk, where v is the discount factor. An integral equa- 
tion similar to that given by PANJER (1981) is developed for the pdfof SN(V). 
This is accomplished by assuming that N belongs to a new class of discrete 
distributions called annuity distributions. The probabilities in annuity distribu- 
tions satisfy the following recursion: 

P n = P n - I  a +  , for n =  1,2 . . . . .  

where an is the present value of an n-year immediate annuity. 
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1. INTRODUCTION 

A major problem in mathematical risk theory is the evaluation of the distribu- 
tion of the aggregate claims occuring in a fixed time period. This is because the 
aggregate claims is usually the sum of a random number of claims. If Yk is the 
size of  the k th claim and N is the number of claims in this time period, then the 
aggregate claims S is given by 

N 

(1) S =  ~ Yk. 
k=l 

The Yk'S are usually assumed to be independent and identically distributed (iid) 
with common cummulative distribution function (cdf) F(y). If the n-fold 
convolution of F(y) with itself is given by 
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('y 
Fn(y) = 3o F,_l(y-z)dF(z) ,  n =  1,2 

with Fo(y ) = 1, for y>_ 0, and the non-defective claim number distribution is 

p. = Pr[N = n],  

for n = 0, 1 . . . . .  then the cdf of  S is 

(2) G(y) = ~ p,F.(y). 
n=0 

Unfortunately, explicit expressions for Fn(y ) are usually not available, so the 
equation (2) is generally not very useful. Approximations for G(y) are thus 
needed. 

In order to facilitate the easy evaluation of  G(y) in equation (2), PAN- 
JER (1981), and SUNDT and JEWELL (1981) provided a family of claim number 
distributions which yielded an integral equation for the pdfof S when the Yk's 
are absolutely continuous random variables. The random variable N must have 
probabilities satisfying the recursion 

where a and b are constants depending on the length of the time period. This 
family includes the geometric, Poisson, binomial, negative binomial, logarithmic 
series, and the so-called extended truncated negative binomial distribution. See 
WILLMOT (1988) for details. PANJER (1981) proved that if Pn satisfies equa- 
tion (3), then g(y) ,  the pdf of  S, satisfies the following integral equation for 
y > 0 :  

(4) g(y) = p , f (y)  + ~i (a + - ~ ) f ( z ) g ( y - z ) d z .  

This integral equation can be solved numerically; see STROTER (1985). 
Recall that S is defined as the aggregate claims over a fixed time period. If this 

time period T is large, i.e., extending over several years, then it many be prudent 
to include an interest discount factor to obtain the present value of  these claims. 
Let T k be the random time at which the claim Yk occurs, and N(T) be the 
number of  claims over T years, T a positive integer. The aggregate discounted 
claims, denoted by S~(v), will be given by 

N(T) 

(5) S~-(v) = ~, v r~ Yk 
k=l  

where v = 1/(1 + i )  and i is the constant annual rate of interest. Comparing 
equations (I) and (5), it is clear that S~-(v) is a more complicated random varia- 
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ble than S, and hence will have a more complicated cdf S~-(v) can be simplified 
by making the traditional actuarial assumption that claims are paid at the end of  
the year in which they occur. This means that equation (5) reduces to 

T 

(6) St(v) = ~ vk Xk 
k=l 

where X k is the aggregate claims generated in year k. We assume that the num- 
ber of  claims occuring during each year is an iid sequence, implying that the Xk'S 
are also iid. 

The important observation to note here is that St(v) is now the sum of  T (a 
fixed number) of  random variables Xk. Thus we have seen that the traditional 
model studied by PANJER and SUNDT and JEWELL can be adapted to include an 
interest factor. However an expression for the pdfof S~(v) will not be similar to 
equation (4) when the probabilities of  N(T)  satisfy equation (3). We will see that 
by making T random, it is possible that ST(v) can be extended to yield a pdf 
which satisfies an integral equation similar to (4). 

2. THE MAIN RESULTS 

The inclusion of interest and/or inflation factors in risk theoretic models have 
appeared in the literature mainly in the context of  the calculation of  ruin prob- 
abilities; see, for example, WATERS (1983), BOOGAERTS and CRIJNS (1987), and 
GARRIDO (1988) and references therein. The limiting distributions of  discounted 
processes have been studied by GERBER (1971), and BOOGAERT, HAEZENDONCK 
and DELBAEN (1988). However, there has been no work in the literature on 
integral equations similar to that of  PAN.JER (1981) for aggregate discounted 
claims. 

Consider a risk that can produce either no claim or it produces a sequence of  
iM positive claims that are paid at the end of  the year in which they occured. 
Such risks are pertinent to health insurance, dental insurance, etc. The sequence 
of  claims will run for N years, starting from year 1 until year N, after which no 
further claims are produced. N is an integer valued non-negative random varia- 
ble. The total claims produced in the k th year is Xk > 0, k = 1, 2 . . . . .  If interest 
is at rate i annually, the aggregate discounted claims will be given by Su(v) 
where 

N 

(7) So(v) = ~ vk Xk 
k= |  

Notice the difference between equat ions (6) and (7), the constant  T is now 
replaced by the random variable N. These equat ions clearly have different  
interpretat ions.  

In order  to develop an integral equat ion for the pdf of  Su(v), we will 
introduce a new family of  claim number  distr ibut ions for N, called annui ty  
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d i s t r i bu t ions ,  with p robab i l i t i e s  p ,  sa t i s fy ing the fo l lowing  d i f fe rence  equa -  
t ion :  

(8) P n = P n - ~  a +  , for  n = i , 2  . . . . .  

where  an is the p re sen t  va lue  o f  an n -yea r  i m m e d i a t e  a n n u i t y  at  in te res t  rate  
i, i.e., 

(1 - v  n) 
(9) an - - -  

i 

As before ,  Pn = P r [ N  = n] .  
Let  P(z) be the p r o b a b i l i t y  genera t ing  func t ion  o f  N, i.e., 

P(z) = ~ p , z  n, 
n=0  

I t  can eas i ly  be p r o v e n  tha t  

and  

E [SN (V)] = 

for  - i  ~ z _ <  1 . 

~(1 -P(v ) )  

Var  [So(v)]  = E [Var  [SN(V ) I N] ]  + Var  [E  [So (v) I N] ]  

_ _ _  l_p(v2)  + [P(v2)l-[P(v)l 2 
1 - v  2 

where ,u = E[Xk] and a 2 = Var[Xk] .  
F rom equat ion (7) we condi t ion on {N = n t and define S.(v) as 

Sn(v) = ~ v k Xk, n=  1,2 . . . . .  
k=l  

Note  that, because the Xk'S are iid, Sn (v) has, for each non-negat ive  integer m, 
the same  dis tr ibut ion as 

S,,(v) = ~ vk X,,+k. 
k=l  

Therefore ,  since 
n - I  

Sn(V) = VXl+V ~ vkXk+l , 
k = l  

Sn (v) is seen to have the same  distr ibution as vX~ + vSn_ ~ (v). Thus  iffn (x) is the 
probabi l i ty  dis tr ibut ion function o f  Sn(v), then the following convolu t ion  rela- 
t ionships will exist" 
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\ v ) k v )  

for n = 2, 3 , . . .  and f ( x )  is the pd f  of  the Xk'S. 
Before deriving the integral equation for the pdfo fSg(v ) ,  the following lemma 

is needed" 

LEMMA 1. If  X~, k = 1, 2, . . . ,  n are iid random variables with finite mean, and 
the constants Wk are positive weights, let 

n 

Z , =  ~ WkXk and 
k=l 

then f o r k e { l , 2  . . . . .  nl and n =  1,2 . . . .  

(11) E [ X  k ] Z  n = x] = 

W n : ~ IOk, 
k=l 

X 

Wn 

PROOF: By the symmetry of iid random variables and the fact that the weights 
are positive constants, 

E [ t O k X k l  Z n = X]OC W k X .  

Let n be the constant of  proportionality. Summing both sides of  the above 
expression yields 

i.e., 

So 

X = 7 t W n x  , 

1 

Wn 

E[WkXkl  Zn = x] : 
lO k X 

W. 

and equation (1 l) follows. 
Q.E.D. 
Consider the case where Wk = V k and W, = an, then 

E[Xi IS.+i(V) = x] = - -  
X 

an+l 

(12) 
I 

We are now able to establish the main result of  this paper• 
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Tr~EOREM 1. Let Sn(v) be defined as in equation (7) with pdfg(x) for x > 0. If  
N has its probabilities satisfying the recursion in equation (8) and Zn~oPn = 1, 
then for x > 0, 

(13) g(x) = plf(x/u) + a + ~ g f ( y / v )dy  

with Pr[Su(v) = 0] = P0. 

PROOF: Since the Xk'S are positive, SN(V)= 0 if and only if  N =  0. So 
Pr[S~v(v) = 0] = P0. For x >  0, 

g(x) = ~ p , f , ( x )  
n = l  

= Plf l (x)  + ~ P,+lfn+l(X) 
n = l  

= plf(x/v)  + p, a + - -  fn+l(x) 
n =  1 a n +  1 

+ P, fn+l (x) 
n =  I a n +  1 

+ _ Pn ~ f (y /v)  dy 
n =  I O X  

Q.E.D. 
A similar result can be established if we assume that claims are subject to 

inflation at rate r and there is no interest. This can be accomplished by defining 
wk = (1 +r) k, and using a new family o f  discrete claim number  distr ibutions 
with 

(14) P n = P n - t  a +  , for n =  1 , 2 , . . . ,  
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must coverge. There are several tests that can be used to check the convergence 
o f  R(a,  b, o~, see MALIK (1984) or WILLMOT (1988). For example, the ratio-test 
ensures convergence if 

lim a + - -  = L < I .  
n-oR a ( n ,  

Once R (a, b, o~ exists, the pn's will be given by 

l 
if  n = 0; 

R(a,b, 6) 

(21) p .  = 

Po a + ~  if n =  1 , 2 , 3  . . . .  
k=J a(k, 6) 

For given a and b that ensures the convergence o f  R(a, b, 6), one can easily 
evaluate the p~'s and the moments  o f  the distribution. Unfortunately, closed 
form expressions are not easily obtainable these distributions, except o f  course 
when ~ = 0. 

Further research is needed in the distributional properties o f  annuity distribu- 
tions, the tail thickness, and the estimation o f  the parameters a and b. It will 
also be instructive to compare the various members o f  the family when ~ = 0 to 
those with the same parameters a and b but with ~ ~ 0. One would expect that 
the tails o f  these comparable distributions to become thicker as d~ decreases. 
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