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A B S T R A C T  

The objective of this paper is to provide an extension of well-known models of 
tarification in automobile insurance. The analysis begins by introducing a 
regression component in the Poisson model in order to use all available 
information in the estimation of the distribution. In a second step, a random 
variable is included in the regression component of the Poisson model and a 
negative binomial model with a regression component is derived. We then 
present our main contribution by proposing a bonus-malus system which 
integrates a priori and a posteriori information on an individual basis. We show 
how net premium tables can be derived from the model. Examples of  tables are 
presented. 
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INTRODUCTION 

The objective of this paper is to provide an extension of well known models of 
tarification in automobile insurance. Two types of tarification are presented in 
the literature : 

1) a priori models that select tariff variables, determine tariff classes and 
estimate premiums (see VAN EEGHEN et al. (1983) for a good survey of 
these models); 

2) a posteriori models or bonus-malus systems that adjust individual prem- 
iums according to accident history of the insured (see FERREIRA (1974), 
LEMAIRE (1985, 1988) and VAN EEGHEN et al. (1983) for detailed discus- 
sions of these models). 
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referees were very useful. 

ASTIN BULLETIN, Vol. 19, No. 2 



200 GEORGES DIONNE AND CHARLES VANASSE 

This study focuses on the selection of tariff variables using multivariate 
regression models and on the construction of insurance tables that integrates a 
priori and a posteriori information on an individual basis. Our contribution 
differs from the recent articles in credibility theory where geometric weights 
were introduced (NEUHAUS (1988), SUNDT (1987, 1988)). In particular, 
SUNDT (1987) uses an additive regression model in a multiplicative tariff 
whereas our nonlinear regression model reflects the multiplicative tariff struc- 
ture. 

The analysis begins by introducing a regression component in both the 
Poisson and the negative binomial models in order to use all available 
information in the estimation of  accident distribution. We first show how the 
univariate Poisson model can be extended in order to estimate different 
individual risks (or expected number of  accidents) as a function of a vector of 
individual characteristics. At this stage of  the analysis, there is no random 
variable in the regression component of the model. As for the univariate 
Poisson model, the randomness of  the extended model comes from the 
distribution of accidents. 

In a second step, a random variable is introduced in the regression 
component  of  the Poisson model and a negative binomial model with a 
regression component  is derived. We then present our main contribution by 
proposing a bonus-malus system which integrates explicitly a priori and a 
posteriori information on an individual basis. Net premium tables are derived 
and examples of tables are presented. The parameters in the regression 
component of  both the Poisson and the negative binomial models were 
estimated by the maximum likelihood method. 

1. The Basic Model 

I.a. Stat i s t ical  Analys is  

The Poisson distribution is often used for the description of random and 
independent events such as automobile accidents. Indeed, under well known 
assumptions, the distribution of the number of accidents during a given period 
can be written as 

e-2)Y 
(1) pr (Yi  = Y )  - 

y! 

where y is the realization of the random variable Yi for agent i in a given 
period and 2 is the Poisson parameter which can be estimated by the maximum 
likelihood method or the method of moments. Empirical analyses usually reject 
the univariate Poisson model. 

Implicitly, (1) assumes that all the agents have the same claim frequency. A 
more general model allows parameter 2 to vary among individuals. If we 
assume that this parameter is a random variable and follows a gamma 
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distribution with parameters a and l /b  (GREENWOOD and YULE (1920), 
BICHSEL (1964), SEAL (1969)), the distribution of the number of accidents 
during a given period becomes 

r ( y + a )  ( l /b )  a 
(2) pr (Y i  = Y )  - 

y !  F ( a )  (1 + I/b) y+" 

which corresponds to a negative binomial distribution with E(Yi) = X and 

V a r ( Y i ) = 2  [1 + ~ ]  , w h e r e 2 = a b .  

Again, the parameters a and (l/b) can be estimated by the method of moments 
or by the maximum likelihood method. 

l.b. O p t i m a l  Bonus  M a l u s  Rule  

An optimal bonus malus rule will give the best estimator of an individual's 
expected number of accidents at time (t+ I) given the available information 
for the first t periods (y i  . . . . .  y/). Let us denote this estimator as 
i~ t +' ( Yi' . . . . .  V[). 

One can show that the value of the Bayes' estimator (i.e. a posteriori 
mathematical expectation of 2) of the true expected number of accidents for 
individual i is given by 

(3) i 
oo 

~, ,+l(yi, ... Yi') = 2f (2 /Y, ' . . .  Yi') d 2 .  
o 

Applying the negative binomial distribution, the a posteriori distribution of 2 is 
a gamma distribution with probability density function 

(4) f (2 /Yi '  . . .  Y[) = 

where Yi= ~ Y [ .  
j = l  

( l /b+ t) a+ F, e-  ao/b+O 2~+ ~7,-t 

F(a + Y;) 

Therefore, the Bayes' estimator of an individual's expected number of accidents 
at time (t+ 1) is the mean of the a posteriori gamma distribution with 
parameters (a + Yi) and ((1/b) + t )  : 

a+Yi  _ X [  o+Yi ] _ _  
(5) 2[+~(Yi '  . . . .  , Yi') - ( I / b ) + t  a + t 2  

Actuarial net premium tables can then be calculated by using (5). 
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2. The Generalized Model 

Since past experience cannot, in a short length of  time, generate all the 
statistical information that permits fair insurance tarification, many insurers 
use both a priori and a posteriori tarification systems. A priori classification is 
based on significant variables that are easy to observe, namely, age, sex, type of 
driver's license, place of residence, type of car, etc. A posteriori information is 
then used to complete a priori classification. However, when both steps of the 
analysis are not adequately integrated into a single model, inconsistencies may 
be produced. 

In practice, often linear regression models by applying a standard method 
out of  a statistical package are used for the a priori classification of  risks. 
These standard models often assume a normal distribution. But any model 
based on a continuous distribution is not a natural approach for count data 
characterized by many "zero  accident" observations and by the absence of 
negative observations. Moreover, the resulting estimators obtained from these 
standard models often allow for negative predicted numbers of  accidents. 
Regression results from count data models are more appropriate for a priori 
classification of risks. 

A second criticism is linked to the fact that univariate (without regression 
component) statistical models are used in the Bayesian determination of  the 
individual insurance premiums. Consequently, insurance premiums are func- 
tion merely of  time and of  the past number of  accidents. The premiums do not 
vary simultaneously with other variables that affect accident distribution. The 
most interesting example is the age variable. Let us suppose, for a moment, 
that age has a significant negative effect on the expected number of accidents. 
This implies that insurance premiums should decrease with age. Premium 
tables derived from univariate models do not allow for a variation of age, even 
if they are a function of  time. However, a general model with a regression 
component would be able to determine the specific effect of age when the 
variable is statistically significant. 

Finally, the third criticism concerns the coherency of the two-stage procedure 
using different models in order to estimate the same distribution of accidents. 

In the following section we will introduce a methodology which responds 
adequately to the three criticisms. First, count data models will be proposed to 
estimate the individual's accident distribution. The main advantage of  the 
count data models over the standard linear regression models lies in the fact 
that the dependent variable is a count variable restricted to non-negative 
values. Both the Poisson and the negative binomial models with a regression 
component will be discussed. Although the univariate Poisson model is usually 
rejected in empirical studies, it is still a good candidate when a regression 
component  is introduced. Indeed, because the regression component contains 
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many individual variables, the estimation of  the individual expected number of  
accidents by the Poisson regression model can be statistically acceptable since it 
allows for heterogeneity among individuals. However, when the available 
information is not sufficient, using a Poisson model introduces an error of  
specification and a more general model should be considered. Second, we will 
generalize the optimal bonus-malus system by introducing all information from 
the regression into the calculation of  premium tables. These tables will take 
account of time, accident record and the individual characteristics. 

2.a. S t a t i s t i c a l  A n a l y s i s  

Let us begin with the Poisson model. As in the preceding section, the random 
variables Yi are independent. In the extended model, however, ). may vary 
between individuals. Let us denote by 2i the expected number of  accidents 
corresponding to individuals of  type i. This expected number is determined by 
k exogenous variables or characteristics xi  = ( x i t ,  x iz  . . . . .  Xik) which represent 
different a priori classification variables. We can write 

(6) 2i = exp(xifl) 

where fl is a vector of coefficients (k × 1). (6) implies the non-negativity of 

~-i. 
The probability specification becomes 

e-CXv ~.,-~p) (exp (x i f l ) )  ~' 
(7) Pr ( Y i  = Y )  = 

y! 

It is important to note that 2i is not a random variable. The model assumes 
implicitly that the k exogenous variables provide enough information to obtain 
the appropriate values of the individual's probabilities. The fl parameters can 

be estimated by the maximum likelihood method (see HAUSMAN, HALL and 

GRILICHES (1984) for an application to the patents - -  R & D  relationship). 
Since the model is assumed to contain all the necessary information required to 
estimate the values of  the 2i, there is no room for a posteriori tarification in the 
extended Poisson model. Finally, it is easy to verify that (l) is a particular case 
of (7). 

However, when the vector of explanatory variables does not contain all the 
significant information, a random variable has to be introduced into the 
regression component.  Following QOURIEROUX MONFORT and  TROGNON 

(1984), we can write 

(8) 2i = exp ( x i f l + e i )  

yielding a random 2i. Equivalently, (8) can be rewritten as 
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(9) 2i = exp (xifl) ui 

where ui---exp (el). 
As for the univariate negative binomial model presented above, if we assume 

that ui follows a gamma distribution with E(u~) = 1 and Var (u~) = l/a, the 
probability specification becomes 

F ( y + a )  exp(xi~)  " 1 + 
(10) pr (Yi = Y) - y! F(a) a a 

which is also a negative binomial distribution with parameters a and exp (x~/3). 
We will show later that the above parameterization does not affect the results if 
there is a constant term in the regression component.  

Then E(Yi) = exp(xifl) and Var(Yi) = exp(xi[3) [1 + exp(xifl) ] 

We observe that Var (Yi) is a nonlinear increasing function of E(Yi). When the 
regression component is a constant c, E(Y~) = exp (c) = ~ and 

V a r ( Y / ) = 2 - [ l  +--a'~] 

which correspond, respectively, to the mean and variance of  the univariate 
negative binomial distribution. 

DIONNE and VANASSE (1988) estimated the parameters of both the Poisson 
and negative binomial distributions with a regression component.  A priori 
information was measured by variables such as age, sex, number of  years with 
a driver's license, place of residence, driving restrictions, class of driver's license 
and number of days the driver's license was valid. The Poisson distribution 
with a regression component was rejected and the negative binomial distribu- 
tion with a regression component yielded better results than the univariate 
negative binomial distribution (see Section 3 for more details). 

An extension of  the Bayesian analysis was then undertaken in order to 
integrate a priori and a posteriori tarifications on an individual basis. 

2.b. A Generalization of the Opthnal Bonus Malus Rule 

Consider again an insured driver i with an experience over t periods; let Y{ 
represent the number of  accidents in period j and x[,  the vector of the k 
characteristics observed at period j, that is x[ = (x~l . . . .  , xJ~.). Let us further 
suppose that the true expected number of  accidents of individual i at period j, 
2~.(u~, x]), is a function of  both individual characteristics x] and a random 
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variable u;. The insurer needs to calculate the best estimator of  the true 
expected number of  accidents at period t + l .  Let ~ . / + l ( y :  . . . . .  y / ;  
x l . . . . .  x /+l)  designate this estimator which is a function of  past experience 
over the t periods and of  known characteristics over the t+  I periods. 

If we assume that the ui are independent and identically distributed over time 
and that the insurer minimizes a quadratic loss function, one can show that the 
optimal estimator is equal to: 

~'~+ l ( Yil . . . .  , Yi' ; x i  ~ , . . . ,  x i  '+ l) 

i 
¢f3 

(11) = 2 t i + ' ( u , , x , ' + l ) f ( ) f i + l / Y i  I Y : "  x i  I x / ) d ) .  ~+l 
' ~ " " ,  , , ' ' ' ,  - " ~ i  • 

0 

Applying the negative binomial distribution to the model, the Bayes' optimal 
estimator of  the true expected number of accidents for individual i is : 

(12) Y~l+;(Y/ Y';x: x/+') ~,+~]a+y; / r l  
. . . . . .  ' [ J 

where 2~ = e x p ( x { f l ) u , = - ( , ~ ) u , ,  ,~i = E ,~Ji and Y, = Y[. 
j=l i = l  

When t = 0, i I  = ,J-I ~exp  (xilfl) which implies that only a priori tarifica- 
tion is used in th first period. Moreover, when the regression component is 
limited to a constant c, one obtains: 

(,3) ~/.-i- [ ( ,y ] [ a l -  Yi ] 
--i , - i  . . . . .  Y / ) ; ~  - -  

a + t , T  

which is (5). This result is not affected by the parametrization of  the gamma 
distribution. 

It is important to emphasize here some characteristics of  the model. In (13) 
only individual past accidents (Yi I . . . . .  Y/) are taken into account in order to 
calculate the individual expected numbers of accidents over time. All the other 
parameters are population parameters. In (12), individual past accidents and 
characteristics are used simultaneously in the calculation of  individual expected 
numbers of accidents over time. As we will show in the next section, premium 
tables that take into account the variations of both individual characteristics 
and accidents can now be obtained. 

Two criteria define an optimal bonus-malus system which has to be fair for 
the policyholders and be financially balanced for the insurer. It is clear that the 
estimator proposed in (12) is fair since it allows the estimation of the individual 
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risk as a function of both his characteristics and past experience. From the fact, 
that E ( E ( A / B ) ) =  E ( A ) ,  it follows that the extended model is financially 
balanced' 

E ( A ' i + ' ( Y ,  ' , . . . ,  Y[;  xi' , ...,,x,'+')). = J/i *l since E(ui)  = I .  

3. Examples of Premium Tables 

As mentioned above, Dionne and Vanasse (1988) estimated the parameters of 
the Poisson regression model (fl vector) and of the negative binomial regression 
model (fl vector and the dispersion parameter a) by the maximum likelihood 
method. They used a sample of 19013 individuals from the province of 
Qu6bec. Many a priori  variables were found significant. For example, the age 
and sex interaction variables were significant as well as classes of driver's 
licences for bus, truck, and taxi drivers. Even if the Poisson model gave similar 
results to those of the negative binomial model, it was shown (standard 
likelihood ratio test) that there was a gain in efficiency by using a model 
allowing for overdispersion of the data (where the variance is greater than the 
mean): the estimate of the dispersion parameter of the negative binomial 
regression 6 was statistically significant (asymptotic t-ratio of 3.91). The usual 
Z 2 test generated a similar conclusion. The latter results are summarized in 
Table I: 

TABLE I 

ESTIMATES OF POISSON AND NEGATIVE BINOMIAL 
DISTRIBUTIONS WITII A REGRESSION COMPONENT 

Individual 
Observed numbers 

number of 
of individuals accidents in 

a given period during 1982-1983 

Predicted numbers of individuals 
for 1982-1983 

Poisson * Negative binomial * 

0 17,784 17,747.81 17,786.39 
1 1,139 1,201.59 1,131.05 
2 79 60.56 86.21 
3 9 2.88 8.18 
4 2 .15 .98 
5+ 0 0 0 

19,013 Z 2 = 29.91 Z2 = 1.028 
2 

Z2.95 = 5.99 ZL95 = 3.84 

Log Log 
Likelihood = -4,661.57 Likelihood = -4,648.58 

* The estimated fl parameters are published in DIONNE-VANASSE (1988) and are available upon 
request. ~ = 1.47 in the negative binomial model. 
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The univariate models were also estimated for the purpose of comparison. 
Table 2 presents the results. The estimated parameters of  the univariate 
negative binomial model are 6 = .696080 and ( l / b ) =  9.93580 yielding 

= .0701. One observes that 66 = 1.47 in the multivariate model is larger than 
6 = .6961 in the univariate model. This result indicates that part of  the 
variance is explained by the a priori variables in the multivariate model. 

Using the estimated parameters of the univariate negative binomial distribution 
presented above, table 3 was formed by applying (14) where $100 is the first 
period premium (t = 0): 

(a + F~) 
(14) 1 5 i t + l ( y i  I , . . . ,  Y i  r) = 100 

In Table 3, we observe that only two variables may change the level of  
insurance premiums, i.e. time and the number of  accumulated accidents. For  
example, an insured who had three accidents in the first period will pay a 
premium of $ 462.43 in the next period, but if he had no accidents, he would 
have paid only $ 90.86. 

From (14) it is clear that no additional information can be obtained in order 
to differentiate an individual's risk. However, from (12), a more general pricing 
formula can be derived: 

(15) 15[+'(Yit...Yit; xiI • = ~ { ] . . .  x , ,+  I) M2i '+ t 6 +  Yi 
& -'l- X i 

TABLE 2 

ESTIMATES OF UNIVARIATE POISSON AND NEGATIVE BINOMIAL DISTRIBUTIONS 

Individual 
number of 

accidents in 
a given period 

Observed numbers 
of individuals 

during 1982-1983 

Predicted numbers of individuals 
for 1982-1983 

Poisson 
(exp ,~ = 0.0701) 

Negative binomial 
(.6 = 0.6960; I / b =  9.9359) 

0 17,784 17,726.60 17,785.28 
1 1,139 1,241.86 1,132.05 
2 79 43.50 88.79 
3 9 1.02 7.21 
4 2 0.02 .61 
5+ 0 0 0 

19,013 Z 2 = 133.06 Z 2 = 2.21 
2 2 ~2.95 = 5.99 XX ~.95 = 3.84 

Log Log 
Likelihood = -4950.28 Likelihood = -4916.78 
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TABLE 3 

UNIVARIATE NEGATIVE BINOMIAL MODEL 

6=.696080 ~ =  .0701 

'Yi 0 1 2 3 4 
l 

0 100.00 
I 90.86 221.38 351.91 462.43 612.96 
2 83.24 202.83 322.42 442.01 561.60 
3 76.81 187,15 297.50 407,84 518,19 
4 71.30 173.72 276.15 378.58 481.00 
5 66.52 162.09 257.66 353.23 448.80 
6 62.35 151.92 241.49 331.06 420.63 
7 58.67 142,95 227,23 311.52 395,80 
8 55.40 134.98 214.56 294.15 373.73 
9 52.47 127.85 203.23 278.61 353.99 

whe re  ~ r i + ' ~ e x p  (x[+ ' l~), ~i ~ 

a n d  M is such tha t  

l 

exp 
j=l  

I 

1/; ,i'+' M _ ;  = $100  
i=1 

w h e n  the  to ta l  n u m b e r  o f  insu reds  is L 

Th i s  gene ra l  p r i c ing  f o r m u l a  is f u n c t i o n  o f  t ime,  the n u m b e r  o f  a c c u m u l a t e d  

acc iden t s  and  the  i n d i v i d u a l ' s  s ign i f i can t  cha rac te r i s t i c s  in the reg ress ion  

c o m p o n e n t .  In c o n s e q u e n c e ,  tables  can  n o w  be c o n s t r u c t e d  m o r e  genera l ly  by 

us ing  (15). F i r s t ,  it is easy  to ver i fy  tha t  each  agen t  does  no t  s ta r t  wi th  a 

p r e m i u m  o f  $ 1 0 0 .  In T a b l e  4, for  e x a m p l e ,  a y o u n g  d r ive r  begins  wi th  

TABLE 4 

NEGATIVE BINOMIAL MODEL WITH A REGRESSION COMPONENT 

Male, 18 years old in period 0, region 9, class 42 

Y~ 0 I 2 3 4 
l 

0 280.89 
I 247.67 416.47 585.27 754.07 922.87 
2 217.46 365.66 513.86 662.07 810.27 
3 197.00 331.26 465.53 599.79 734.06 
4 180.06 302.78 425.50 548.23 670.95 
5 165.81 278.81 391.82 504.82 617.83 
6 153.64 258.36 363.07 467.79 572.50 
7 79.85 134.28 188,70 243.12 297.55 
8 76.92 129.35 181,77 234.19 286.62 
9 74.20 124.76 175.33 225.90 276.46 
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$ 280.89. Second, since the age variable is negatively significant in the estimated 
model, two factors, rather than one, have a negative effect on the individual's 
premiums (i.e. time and age). In Table 4, the premium is largely reduced when 
the driver reaches period seven at 25 years old (a very significant result in the 
empirical model). 

For the purpose of comparison, Table 4 was normalized such that the agent 
starts with a premium of $100. The results are presented in table 5a. The effect 
of using a regression component is directly observed. Again the difference 
between the corresponding premiums in Table 3 and Table 5a come from two 

TABLE 5a 

TABLE 4 DIVIDED BY 2.8089 

~, 0 1 2 3 4 
l 

0 100.00 
I 88.17 148.27 208.36 268.46 328.55 
2 77.42 130.18 182.94 235.70 288.46 
3 70.13 117.93 165.73 213.53 261.33 
4 64.10 107.79 151.48 195.18 238.87 
5 59.03 99.26 139.49 179.72 219.95 
6 54.70 91.98 129.26 166.54 203.82 
7 28.43 47.81 67.18 86.55 105.93 
8 27.38 46.05 64.71 83.37 102.04 
9 26.42 44.42 62.42 80.42 98.42 

TABLE 5b 

COMPARISON OF BASE PREMIUM AND BONUS=MALUS FACTOR COMPONENTS 

Univariate Model Individual of  Table 4 

Base Bonus Malus Base Bonus Malus 
Premium Factor Premium * Factor 

Y~ 0 | 0 I 
t 

0 100.00 1.0000 280.89 1.0000 
1 100.00 0.9086 2.2138 280.89 0.8817 1.4827 
2 100.00 0.8324 2.0283 280.89 0.7742 1.3018 
3 100.00 0.7681 1.8715 280.89 0.7013 1.1793 
4 100.00 0.7130 1.7372 280.89 0.6410 1.0779 
5 100.00 0.6652 1.6209 280.89 0.5903 0.9926 
6 100.00 0.6235 1.5192 280.89 0.5470 0.9198 
7 100.00 0.5867 1.4295 154.67 0.5163 0.8682 
8 100.00 0.5540 1.3498 154.67 0.4973 0.8363 
9 100.00 0.5247 1.2785 154.67 0.4797 0.8066 

* To be compared with Table 5a, this column should be divided by 2.8089. 
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sources:  the individual  in Table  5a has par t icular  a priori characteristics while 
all individuals  are implicitly assumed identical in Table  3 and age is significant 
when the individual  reaches period seven (25 years old). Final ly,  the above 
compar i son  shows that  the Bonus-Malus  factor is now a funct ion of the 
individual ' s  characteristics as suggested by (12). Table  5b separates the 
cor responding  base premium and  Bonus-Malus  factor componen t s  of the total 
p remiums  in the first two co lumns  of Table  3 and Table  4. 

Moreover ,  when the insured modifies significant variables, new tables may 
be formed. In Table  4 the driver was in region # 9 (a risky region in Quebec) 
and had a s tandard  driving license. 

TABLE 6 

NEGATIVE BINOMIAL MODEL WITH A REGRESSION COMPONENT 
SAME INDIVUDUAL AS IN TABLE 4, MOVED TO MONTREAL IN PERIOD 4 

Yi 0 1 2 3 4 
1 

0 280.89 
I 247.67 416.47 585.27 754.07 922.87 
2 217.46 365.66 513.86 662.07 810.27 
3 197.00 331.26 465.53 599.79 734.06 
4 119.65 201.19 282.73 364.28 445.82 
5 113.18 190.32 267.45 344.59 421.73 
6 107.38 180.56 253.74 326.92 400.11 
7 56.98 95.81 134.65 173.48 212.32 
8 55.47 93.28 131.08 168.89 206.69 
9 54.04 90.87 127.70 164.53 201.36 

TABLE 7 

NEGATIVE BINOMIAl. MODEL WITH A REGRESSION COMPONENT 
SAME INVIDUAL AS IN TABLE 4, MOVED TO MONTREAL IN PERIOD 4, 

CHANGED FOR CLASS 31 (TAXI) IN PERIOD 5 

Yi 0 I 2 3 4 
1 

0 280.89 
I 247.67 416.47 585.27 754.07 922.87 
2 217.46 365.66 513.86 662.07 810.27 
3 197.00 331.26 465.53 599.79 734.06 
4 119.65 201.19 282.73 364.28 445.82 
5 291.65 490.42 689.19 887.96 1086.73 
6 256.00 430.48 604.95 779.42 953.90 
7 127.26 213.99 300.72 387.45 474.18 
8 119.97 201.73 283.49 365.25 447.02 
9 113.47 190.80 268.13 345.47 422.80 
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Now if the individual moves from region # 9 to a less risky region 
(Montreal, for example) in period 4, the premiums then change (see 
Table 6). 

Having two accidents, he now pays $ 282.73 in period 4 instead of $ 425.50. 
Finally, if the driver decides to become a Montreal taxi driver in period 5, the 
following results can be seen in Table 7. 

Again, having two accidents, he now pays $689.19 in period 5 instead of 
$ 267.45. 

CONCLUDING REMARKS 

In this paper, we have prop'osed an extension of  well-known models of 
tarification in automobile insurance. We have shown how a bonus-malus 
system, based only on a posteriori information, can be modified in order to 
take into account simultaneously a priori and a posteriori information on an 
individual basis. Consequently, we have integrated two well-known systems of  
tarification into a unified model and reduced some problems of consistencies. 
We have limited our analysis to the optimality of the model. 

One line of  research is the integration of accident severity into the general 
model even if the statistical results may be difficult to use for tarification 
(particularly in a fault system). Recent contributions have analyzed different 
types of  distribution functions to be applied to the severity of losses (LEMAIRE 
(1985) for automobile accidents, CUMMINS et al. (1988) for fire losses, and 
HOGG and KLUGMAN (1984) for many other applications). Others have 
estimated the parameters of the total loss amount  distribution (see SUNDT 
(1987) for example) or have included individuals' past experience in the 
regression component (see BOYER and DIONNE (1986) for example). However, 
to our knowledge, no study has ever considered the possibility of  introducing 
the individual's characteristics and actions in a model that isolates the 
relationship between the occurence and the severity of  accidents on an 

individual basis. 
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