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ABSTRACT 

This article summarizes some main results in modern portfolio theory. First, the 
Markowitz approach is presented. Then the capital asset pricing model is derived 
and its empirical testability is discussed. Afterwards Neumann-Morgenstern 
utility theory is applied to the portfolio problem. Finally, it is shown how optimal 
risk allocation in an economy may lead to portfolio insurance. 
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I. INTRODUCTION 

Starting with MARKOWITZ' (I 952) pioneering work, modern portfolio theory has 
developed to a highly sophisticated field of research. In addition it became more 
and more obvious that for a large class of insurance problems a separate analysis 
of actuarial and financial risks is inappropriate. Of course modern portfolio 
theory is typically applied to common stocks. However, it can also be applied to 
bonds if there are risks with respect to default, exchange rates, inflation, etc. 
These facts, the increasing importance of new financial instruments, and the 
availability of computer capacities explain the growing interest of actuaries in 
modern portfolio theory. 

In this paper some main results of modern portfolio theory are presented. 
However, some important aspects such as arbitrage pricing theory, multiperiod 
models, etc. are not treated here. t The paper is organized as follows: Section 2 
deals with the Markowitz approach. In Section 3 the Capital Asset Pricing Model 
(CAPM) is derived (SHARPE, 1963, 1964; LINTNER, 1965; BLACK, 1972). Dif- 
ficulties with respect to the testability of CAPM are discussed in Section 4 
(ROLL, 1977). In Section 5 von Neumann-Morgenstern utility theory is applied 
to the portfolio problem and a generalized version of the CAPM-relationship is 
presented (CASS and STIGLITZ, 1970; MERTON, 1982). Finally, in Section 6 it is 
shown how the optimal risk allocation in an economy may lead to portfolio 
insurance (BORCH, 1960; LELAND, 1980). 

I. For a rigorous and comprehensive representation of  modern portfolio theory see INGERSOLL 
0987). An intuitive introduction is given by COPELAND and WESTON 0988) or HARRINGTON 
0987). 
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2. T H E  M A R K O W I T Z  A P P R O A C H  

Whereas in actuarial science the law of  large numbers plays a central role this is 
not the case in portfolio theory. Due to the correlation between the returns on 
financial assets, diversification allows in general only for a reduction but not for 
an elimination of  the risk. MARKOWlTZ (1952) was the first who took the 
covariances between the rates of  return into account. 

2.1. The Model 

There are N assets h = I, ..., N (e.g. common stocks). An investment of  one unit 
of  money (e.g. 1 ($)) in asset h leads to a stochastic return Rh. The first and second 
moments of  R~, . . . ,RN are assumed to exist. 

The '~ector of  expected values and the covariance matrix are denoted by 

I~ER N, with Izh=E(Rh) h= 1,..., N 

and 

VE R N2, with Vj, t = Cov(Rh, Rt) h, 1 = 1, ..., N. 

A portfol io is given by a vector x E R N, with EN=I xh = 1. Xh denotes the weight 
o f  asset h = 1, . . . ,  N. z Hence the overall return on a portfolio x is given by the 
random variable 

N 

R (x) .'= ~ xhRh 
h = l  

and one obtains immediately 

E[R(x) ]  = t~'x, Var[R(x)]  = x '  Vx. 

DEFINITION. A portfolio x* is called (mean-variance) efficient if there exists no 
portfol io  x with 

E[R(x)]  i> E[R(x*) ] ,  Var[R(x)]  < Var[R(x*)] .  

The Markowitz approach is a method to calculate mean-variance efficient port- 
folios. Hence, the Markowitz approach is based on mean-variance analysis, 
where the variance of  the overall rate of  return is taken as a risk measure and 
the expected value measures profitability. In contrast to expected utility maxi- 
mization, mean-variance analysis takes into account only the first two moments 
and there is no clear theoretical foundation.  The special assumptions under which 
mean-variance analysis is consistent with expected utility maximization are 
discussed in Section 5. 

The Markowitz approach can be formalized as follows: 

min 1/2x' Vx 
x E R  N 

2. xh < 0 co r responds  to a short  pos i t ion  with respect to asset h. 
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subject to 

e , x = l  3 
(M) 

p 'x  t> r, 

(1) 

(2) 

(3) 

(4) 

Hence 

where r is the minimum level for the expected value of  the overall rate of  return. 
Here, the minimum level r is assumed to be exogenously given. In applications, 
individual investors choose r in accordance with their risk aversion. 

(M)  is a quadratic convex optimization problem. Under the assumption 

A.1 1) V is positive definite, 
2) e, it are linearly independent,  

there exists a unique solution of  (M)  and the Kuhn-Tucke r  theorem can be 
applied. The Kuhn-Tucker  conditions are given by 

V x -  X~e- )~.2it = 0 

e'x  = I 

it 'x 1> r 

)~2 i>0 ,  X 2 0 t ' x - r )  = 0 .  

x =  X i V " l e  + X2V-lit 
or if (2) is taken into account 

(5) 

with 

x = ux 1 + (1 - v)x 2 

I V_ l i  t 
x t = V-~.______~e x 2 = e'  V-tit  if  e '  V-tit ~ 0 

e' V-re" x ~ +  V lit else 

By varying the minimum level of  return r, all mean-variance efficient portfolios 
are obtained, x I and x 2 do not depend on r. However. u depends on kl resp. on 
h2 and therefore ultimately on r. Hence, one gets 

(6) x(r) = u(r)x I + [I - v(r)]x z. 

Thus, any efficient portfol io is a combinat ion of  two fixed reference portfolios 
x I and x 2. INGERSOLL (1987, p. 86) shows that x I is the global minimum 
variance portfolio with an expected value of  return 

(7) rmin = 
It '  V - l e  
e' V - l e  

Furthermore,  it is easily seen that  (3) holds with equality if and only i f  r t> rmin- 

3. e' =(I,I . . . . .  I)ER N. 
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Hence,  for  r t> rmin, (3) and  (6) lead to 

(8) o2(r)  :=- V a r [ R [ x ( r ) ]  ] = v2x I' Vx I + 2t,(1 - v)x I' Vx 2 + (1 - v)2x 2' VX 2 

(9) r = vg 'x  x + (1 - v)/~'x 2. 

F rom (8) and  (9) one can derive that  there  is a hyperbol ic  re la t ionship  between 
r and  tT(r) (Figure 1). 

2.2. Availability o f  a riskless asset 

If, in addi t ion  to the r isky asset h = 1, . . . ,  N ( common  stocks,  etc.), a riskless 
asset h = 0 with a determinist ic  re turn  Ro (e.g. a t reasury bill) is available,  the 
model  changes as follows: 

= (go, g) ~ R N+ t, 

N z 
VE R , with 

i .= (Xo, X) E R N+ I, 

with go = Ro, gh = E(Rh), h = 1, . . . ,  N 

Vht=Cov(Rh, Rt), h , l =  1, . . . ,  N 

N 
with ~ xh = 1 

h=O 

N 

R (i) xhRh. 
h=O 

Mean-var iance  efficient por t fo l ios  now result f rom the op t imiza t ion  p rob lem 

rain l / 2x '  Vx 
i E R  N+l 

subject  to 

~ , i = l  4 

( M ' )  ~ ' i  i> r. 

r 

r m l n  

B 

f r o n t i e r  

. . . . . . .  ~A 
! 

L 

inefficient branch 
X 

FIGURE 1. 

A = 

B = 

~.1 '  V x l )  1/2 , ~"  ~1  / 

(.X_2" V x 2 )  1/2 , • '  x__. 2) 

o(r) 

4. ['=(I,I ..... I)ER N+I 
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Under the assumption 

A ' I  1) Vis positive definite 
2) ~, ~ are linearly independent 

mean-variance efficient portfolios are still of the form 

i ( r )  = z,(r)il + [1 - p(r)] i  2 (6')  

but now one can show that 

x ] = ( 1 , 0 ,  . . . ,  0 ) ,  x 2 = (0 ,  x ~ ,  . . . ,  x ~ , )  

holds, i.e. every mean-variance efficient portfolio is a combination of the riskless 
investment i t with a reference portfolio i 2, consisting exclusively of risky assets. 

Furthermore, the efficient frontier degenerates to a straight line (Figure 2). 

2.3. Remarks 

1) It is important to note that the special structure of the set of  mean-variance 
efficient portfolios provides the basis for the Capital Asset Pricing Model 
(see Section 3). 

2) In practical applications additional constraints sometimes have to be im- 
posed, such as exclusion of short sales, bounds on the weights of individual 
assets, etc. With constraints of  this type, the optimization problem is still 
quadratic convex and powerful numerical methods are available. However, 
in general the special structure of the efficient frontier is destroyed. 

3) A detailed and careful analysis of  the Markowitz approach can be found in 
the appendix of ROLL'S (1977) article or in INGERSOLL'S (1987) chapter 4. 

r 

R o  

• B "  

A' = (0 ,Ro)  

CA" 
% 

% 

% 
% 

% 

% 

~ .  z(r) 
FIGURE 2. 



14 MIJLLER 

3. THE CAPITAL ASSET PRICING MODEL (CAPM) 

3.1. The Sharpe-Lintner Model  

In the Sharpe-Lin tner  Model (SHARPE, 1963, 1964; LINTNER, 1965), there is a 
riskless asset h = 0 and N risky assets h = 1, ..., N. 

There are m investors i =  1, . . . ,m  who are characterized as follows: 

1) Wi > 0 is the initial wealth of  investor i. 
2) Investors i = 1, ..., m agree on the first and second moments of  returns on 

assets h = 0 , . . . ,  N, i.e. 

~i.._~, V i-" V i= l , . . . , m ,  

3) Investor i seeks a mean-variance efficient portfolio i i  with E [ R ( i i ) ]  = ri, 
where ri > R0 i = 1, ..., m. 

According to formula  (6 ' )  (Section 2.2) the portfolio chosen by investor i is of 
the form 

(6 ' )  i i =  l,(r/):il + [1 - p ( r i ) ] i  2 

Total  demand results in a portfolio 

(10) ~M := 1 ~ Wiii, with 
Wi=~ 

i - "  1, ...~ m .  

I~1 

i=1 

By means of  (6 ' )  one can show (See Fig. 3) that i ~  lies on the efficient frontier 
and can be represented as the solution of  

min 112x' Vx 
i E R  N÷! 

subject to 

E ' i  = 1 

(M") ~ ' i  >I rM 

rM V . . . . . . .  X_d- 

FIGURE 3. 
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(11) 

(12) 

(13) 

(14) 

(15) 

Formulae (11) and (12) lead to 

with 
l Ill 

rM :- Z Wir . 
i= I  

Hence, f~M= (X~0, X~ M) satisfies the Kuhn-Tucker  conditions 

- -  h l  - -  k 2 R 0  = 0 

Vxd M - Xte - k2~ = 0 

X2 I>0. 

(16) Vxa M = X2~ - Roe). 

From (11), (12) and ~ = Ro one obtains 

(17) xa M' Vxa M =  X ~ ' i a  M + X 2 # ' i a  M 

or according to (11), (13) and (14) 

( 1 8 )  X ~ '  VXd M = k2(rM -- R o ) .  

Formulae (16) and (18) imply 

Vxa M t~ - Roe 
(19) Xd g '  VXd M -- rM -- R o "  

On the other hand, total supply is given by the market portfolio i M, where all 
assets are held in proportion to their market values. In equilibrium total demand 
must be equal to total supply, i.e. 

(20) 

Combining (19) and (20) leads to the equilibrium condition 

Vx M tt - Roe 

(21) xM'Vx M -- rM- Ro 

or by taking into account 

/th = E ( R h ) ,  h = 1, ..., N 
N 

rM = E ( R M  ), where R M  = ~ X ~ R h  
h--O 

x M' Vx M = Var(RM) 

x~'V'-" (Cov(Rl, RM),..., Cov(RN, RM)) 

one obtains the CAPM-relationship 

(22) E ( R h )  - Ro = CoV(Rh, R M )  [ E ( R M )  - Ro], 
Var(RM) 

h =  1 , . . . , N  
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COMMENTS 

1) ~h .'= Cov(Rh, RM)/Var(RM) is called the beta-coefficient of asset h. 
E ( R h ) -  Ro is the risk premium on asset h 
E ( R M ) -  Ro is the risk premium on the market portfolio. 

2) Under stationarity and normality assumptions the beta-coefficients can be 
estimated by applying the ordinary least square method to 

R h  --  Ro = '~h + ~h (RM - Ro) + eh. 

The term ~h(RM- Ro) corresponds to the systematic risk which is undiversi- 
fiable. The error term eh satisfies COV(eh, R M ) = 0  and corresponds to the 
unsystematic risk. In particular, the following decomposition is possible 

Var(Rh) = ~2 Var(RM) + Var(~:h). 

3) For empirical beta estimation there is no general agreement with respect to the 
measurement period and the interval choice. Monthly data over a five-year 
period are widely used. 
Typically the observed beta-coefficients are positive. However, negative beta- 
coefficients may occur as well. 5 
According to the CAPM relationship each asset h can be represented by a 
point (13h, E(Rh)) which lies on the theoretical market line 

4 )  

5) 

E(Rh) = Ro + [E(RM) - R O ] ~ h .  

Often the empirical market line which is based on estimations for ~h, E(Rh),  
E(RM) deviates substantially (see, e.g. BLACK, JENSEN and SCHOLES, 1972). 

E ( R h )  

Ro 

, / • ,  theore t ica l  m a r k e t  l ine  

~ . .  -- "" , " e m p i r i c a l  m a r k e t  l ine  
• • 

FIGURE 4. 

5. In such a case Rh and RM are negatively correlated and E(Rh) < Ro must hold. 
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3.2. The Black  M o d e l  

To assume the existence of a riskless asset is somewhat questionable, especially 
if one is interested in real returns. Fortunately,  even without assuming the 
existence of  a riskless asset a CAPM-relat ionship can be derived. 

It is assumed that the framework of Section 2.1 holds and that there are m 
investors i = 1, . . . ,  m with 

initial wealth Wi, 

first and second moments of  returns given by t t i=  t~, V~= V 

and seeking for mean-variance efficient portfolios xi with E[R(xi)]  = ri, where 
ri >I rmin, i = 1, ..., m. 

Under these conditions it can easily be shown that in equilibrium the market 
portfol io x ~t must be efficient and from the corresponding optimali ty conditions 
one can derive the CAPM-relat ionship 

(23) E(Rh)  - E[R(x°) ]  = Cov(Rh, R~t) {E(RM) - E[R(x°]}  
Var(RM ) 

h = l , . . . , N .  

x ° is the so-called zero-beta portfol io with the properties 

a) Cov(Ru, R(x°)) = 0. 

b) There exists v such that (5) holds, i.e. x ° = px I + (I - J,)x 2. 

EXPLANATIONS 

I) According to b) the point Z :=  ((x°'Vx°)t/2,/~'x°) lies on the hyperbola 
described in Section 2.1. 

r B x__ 2 

M 

F: ........ 

FIGURE 5. 

o(r) 
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2) ROLL (1977) shows that: 
Z lies on the inefficient branch of H. 
The tangent in the point M =  ((xM'VxM)I/2,/~'XM) intersects the return 
axis at (0,/~'x°). 

COMMENTS. This model was developed by BLACK (1972). It is more than an 
interesting alternative to the Sharpe-Lintner approach. In the next section we 
shall see that it is needed in order to discuss the empirical testability of the 
Sharpe-Lintner model. 

4. EMPIRICAL TESTABILITY OF THE S H A RP E-LIN TN ER MODEL 

Before discussing testability we must recall that the Sharpe-Lintner model was 
developed under restrictive assumptions, namely: 

M.1 
M.2 
M.3 
M.4 
M.5 
M.6 

Evaluation of portfolios by mean-variance analysis, 
Uniform planning horizon for all investors, 
Homogeneous expectations, 
Existence of a riskless asset, 
Exclusion of transaction costs, 
No restrictions on short sales. 

BLACK e t  a l .  (1972), BLUME and FRIEND (1973), FAMA and MACBETH (1973) 
were among the first to test the Sharpe-Lintner model. The evidence provided 
by their studies in favour of the CAPM-relationship is rather weak. 6 However, 
as ROLL (1977) pointed out there is a serious problem with the empirical testability 
of the Sharpe-Lintner model. Due to the fact that all types of bonds, real estate, 
etc. should be contained in the market portfolio, this portfolio cannot be 
reasonably approximated. 

In order to analyse the consequences of this fact, the following points of Roll's 
paper are particularly important: 

P. 1 Within the framework of the Black model the CAPM-relationship (23) 
holds for any mean-variance efficient portfolio x q. 7 On the other hand, if 
there is a linear relationship 

(24) E ( R h )  = al3h + b, 

with 

P.2 

Cov(Rh, R [x q] ) 
flh := h = 1, . . . ,  N 

Var(R[x q]) ' 

the portfolio x q is mean-variance efficient (loc, cit., corollary 6, 
pp. 165-166). 
There is an interesting connection between the Black and the 

6. In fact BLACK el al. (1972) and BLUME and FRIEND (1973) reject the Sharpe-Lintner  model. 
7. x ° is the corresponding zero-beta portfolio. 



MODERN PORTFOLIO THEORY 19 

Sharpe-Lin tner  models. To see this, let h = 0  be the riskless and 
h = 1, ..., N the risky assets. Then the efficient frontier is a straight line L 
(see Section 2.2). I f  at tention is restricted to portfolios consisting only of  
risky assets a constrained efficient frontier C results which is the upper 
branch of a hyperbola (see Section 2.1). Obviously L must be tangential to 
C (Figure 6). 

From now on, it is assumed that  the riskless asset h = 0 is in zero net supply, i.e. 
xM= 0. s Then, in equilibrium the market portfolio x M must correspond to the 
tangency point T (Figure 6). Hence, in equilibrium x M satisfies the CAPM- 
relationship for the Black model 

(23) E(Rh) - E[R(x°) ]  C°v(Rh'R[xM] ) [ E ( R [ x  M] ) - E(R[x  ° ] )1 
= Var(R[xM])  

However, due to explanation 2 (Section 3.2) 

(25) E(R [x ° ] ) = R0 

holds and one obtains the CAPM-relat ionship for the Sharpe-Lin tner  model 

Cov(Rh'R[xM] ) [E(R[x M] ) - R o } ,  h = 1 . . . .  N .  
(22) E(Rh) - Ro = Var(R Ix M] ) 

P.3 Suppose that the Sharpe-Lin tner  model is true, i.e. the market portfol io 
x M satisfies the CAPM-relat ionship (22). If the market proxy x u is different 
from x M two possibilities arise. 

1) x p = x m', where x "  does not belong to the constrained efficient frontier 
C (Fig. 7). Due to P. 1 the relationship (24) is no longer satisfied and the 
application of  statistical methods leads in general to a rejection of  t h e  
Sharpe-Lin tner  model.  

2) x p = x m, where x "  belongs to the constrained efficient frontier C (Figure 

r 

(0 , R 0 )  ,,,," :x  o 

"FK;URE 6. 

8. This condition can be satisfied by choosing an appropriate normalization. 

~ ( r )  
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FgT-- (0 , E (R [xOm])) x__O m 

(0,R0) I x° 

FtGURE 7. 

c(r ) 

7). Then, according to P.1, 

E(Rh) - E(R Ix °m ] ) = 
Cov(Rh, R [ x " ] ) 

Var(R Ix m ] ) 
{E(R [x'n]) - E(R [x °' ']  )1 

h = l , . . . , N  
holds. 9 However, x " ' ~  x M (Figure 7) leads to 

E ( R [ x  °m ] ) ~ Ro 

and again the application of Statistical methods leads in general to a 
rejection of  the Sharpe-Lin tner  model. 

Roll 's critique gave rise to consternation among researchers. In a recent paper 
Shanken (1987) presented a method to test the joint  hypothesis that the 
Sharpe-Lin tner  model is true and that  the correlation coefficient 
o(R [XM], R [x m ] ) between the returns of  the market portfol io x M and the proxy 
x m exceeds a given limit ~. For the equal-weighted CRSP index (an American 
stock index developed by the Center of  Research in Security Prices at the Univer- 
sity of  Chicago) and a limit for the correlation coefficient of~6 = 0.7 he had to 
reject the joint  hypothesis at the 95°7o confidence level. With multivariate proxies 
consisting of  a stock and a bond index Shanken reached similar conclusions. 

5. APPLICATION OF VON NEUMANN-MORGENSTERN UTILITY THEORY 

Mean-variance analysis is rather unsatisfactory on theoretical grounds. For- 
tunately, NM utility theory can be applied to the portfolio problem. 

Throughout  this section it is assumed that there is a riskless asset h = 0 with 
a deterministic return Ro and N risky assets h = 1, . . . ,  N with stochastic returns 
Rh. The overall return R(~) of  a portfolio i = (xo, x t , . . . ,  XN) is evaluated by a 
NM utility function u : R ~ R. 

9. x °"  is the zero-beta portfolio which corresponds to x ' .  
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5.1. Efficient Port fof ios  

DEFINITION 1. A portfolio i*  is called optimal relative to the NM 
u" R --* R if it is a solution of the optimization problem 

max E l u [ R ( i ) ]  I, 1°'11 
i ~ R  N÷I 

subject to 
N 

(0) ~ xh = 1. 
h=O 

utility 

REMARK. The optimization problem (0) is equivalent to 

(o') max E u Ro + ~ Xh (Rh - -  Ro) . 
(x~ . . . . .  xN ) ~ R N h =  I 

ASSUMPTIONS 

B. 1 The NM utility u" R --, R is increasing, strictly concave and continuously 
differentiable. 

B.2 The random variables R, ,  h = 1, ..., N are bounded. 

PROPOSITION. Under B.1 and B.2 the portfolio i *  is optimal relative to u if 
and only if 

(26) E l u '  [R(i*)]  (Rh -- Ro)l  = 0, h = 1, ..., N. 

PROOF. 

1) Under B. 1 and B.2 the objective function of (0 ' )  is well defined and concave 
in (xl,  ..., x~).  

2) Due to B. 1 and B.2 Lebesgue's theorem allows to reverse the order of  dif- 
ferentiation and integration. 12 

DEFINITION 2. A portfolio i *  is called efficient if there exists a NM utility 
v" R ~ R satisfying B.1 such that i*  is optimal relative to v. 

5.2. M u t u a l  F u n d  Theorems 

In Section 2 it was shown that the set of  mean-variance efficient portfolios can 
always be spanned by two reference portfolios. In the framework of  NM utility 
theory this is no longer the case. 13 However,  if  there are restrictions on the class 

~,,=o x h R , .  I0. R( i )~  ,~v 
11. If  Wo is the initial wealth, then of course one has to evaluate the final wealth W o R ( f t ) .  However, 

the choice of  an appropriate scaling allows always for the normalization Wo = 1. 
12. This problem is often overlooked in the literature. 
! 3. Since NM utility theory takes third and higher moments of  the overall return on a portfolio into 

account one can show that the set o f  efficient portfolios becomes larger than under mean-variance 
analysis. 
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of NM utilities and/or the class of returns distributions, the set of efficient 
portfolios can still be spanned by a few references portfolios. 

RESTRICTIONS ON RETURNS DISTRIBUTIONS. The following result is often 
presented as a theoretical basis for mean-variance analysis in the case of 
multivariate normal distribution of returns. 

THEOREM. Suppose that R = (Rt, .... RN) has a multivariate normal 
probability distribution with a density f ( r )  = (2a-)- N/2(det V)- 1/2 
exp{ - 1]2( r -  tL)' V- l ( r - /~ )} ,  where V is a regular N x  N covariance matrix. 

Then, the set o f  efficient portfolios is spanned by two reference portfolios 
i °), i (2), where 

i °) = (1, O, ..., O) ~ R N+z is the riskless investment 

it2) is a fixed mean-variance efficient portfolio. 

PROOF. See MERTON (1982, theorem 4.11, p. 631) or Ross (1978, 
pp. 272-273). 

RESTRICTIONS ON THE CLASS OF NM UTILITIES. Let U be a class of NM utilities 
u:R- - ,  R. The set of portfolios which are optimal relative to some u E U is 
denoted by ~e(U).  HAKANSSON (1969) and CASS and STIGLITZ (1970) were the 
first to look for classes Usuch that ~ 'e(u) is spanned by two reference portfolios 
i (I) and i (2), where i ( l ) =  (1,0, . . . ,0).  Under regularity assumptions 14 with 
respect to returns distribution they show that the following classes U(c), 
c ~ ( "  00, 0) U (0, 00 ] have this property: 

f 
(27a) a) U(c)= lu 

(27b) b) U(c)= [u 

(27c) c) V(c) = [ u 

(27d) d) V(c) = [u 

( w -  1-c ) 
l u(w) ,w~> I~k ¥ c ( ( 0 , 1 )  U(1 ,00)  

J 1 - C  

l u ( w ) =  ( # 1 - - ~  I - c -  _ ,w<~Wk 1 

] u ( w )  = ln(w - # k ) ,  W i> l~k},  

] U(W) = -- exp( -- ~kW) }, C = o0 

vc~ ( - 0 0 , 0 )  

c = l  

where Wk can be interpreted as the subsistence level of wealth in a) and c) and 
as the satiation level of wealth in b) (see INGERSOLL, 1987, pp. 146-147). 

COMMENTS 

1) These classes are also important in risk theory. According to Borch's 
theorem there is linear risk sharing within each class. 

2) The union of these classes represents the HARA-class (Hyperbolic Absolute 

14. A full specification of these conditions is beyond the scope of this paper. 
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Risk Aversion), which is characterized by 

u"(w)  1 
_ _  - - . . .  _ _  

u'  (w) a +  b w  
> 0 .  

3) For c = - 1 the class of quadratic NM utilities results and mean-variance 
analysis is obtained as a special case. 

5.3. A risk Measure  f o r  Indiv idual  Securities 

In mean-variance analysis the beta-coefficients are used to measure the risk of an 
individual security relative to the market portfolio. The NM utility framework 
allows for the following generalization: 

DEFINITION 3. Let i x be an optimal portfolio relative to a NM utility 
u : R --, R satisfying B. 1. Then 

Cov(u '  [ R ( i X ) ] , R h )  h = 1 ... N 
(28) bhX '= Cov(u '  [ R ( i x ) ] ,  R ( i x ) )  , , 

is called the measure of  risk of  asset h relative to portfolio i x. 

REMARK. bff coincides with the beta-coefficient of asset h if i r is the market 
portfolio and if 

u is quadratic 

or 

u is twice differentiable and R =  (R~, . . . ,RN)  has a multivariate normal 
distribution (see INGERSOLL, 1987, pp. 13--14). 

PROPERTIES OF b ft. 

P.1 If  i k is an optimal portfolio relative to a NM utility u satisfying B.1 and 
if some regularity conditions are satisfied then 

(29) E(Rh)  - Ro = b f f [ E [ R ( i r ) ]  - e o ] ,  h = 1, . . . , N  

holds. 
P.2 Under regularity conditions, for all efficient portfolios i K, i z" 

= , ,  a , f  = 

b r > b~:, o b~" > b~, h , h '  E [ 1, . . . ,  N} 

holds. 

For a proof  of P.1 and P.2 see INGERSOLL (1987, p. 134). 

INTERPRETATION OF P.l AND P.2. 

ad P.1 If  there are m investors with homogeneous expectations, whose 
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(30) 

preferences can be represented by NM utilities, u i, i = 1, ..., m, then in 
general the market portfolio is not efficient (see INGERSOLL, 1987, 
pp. 140--143). However, in the special case, where 

u i E U(c), i = 1, ..., m, for some c E ( -  ,o, 0) f) (0, ~ ] ,  [see (27)], 

there exists UME U(c) such that the market portfolio i M is optimal 
relative to UM. Then, P. 1 leads to the following generalized version of 
the CAPM-relationship 

Cov(u~4[R(xM)], Rh) IE[R(x~')] - Rol, 
E(Rh) - R0 = Cov(ub [ R (i  M)],/~ ( i  M)) 

h = l , . . . , N .  

ad P.2 b ff leads to a complete pre-ordering on the set of securities [ 1, ..., N] .  
According to P.2, this pre-ordering does not depend on the underlying 
efficient portfolio i x . 

6. PORTFOLIO INSURANCE 

Throughout this section, it is assumed that there is a riskless asset with a deter- 
ministic return Ro and a reference portfolio with the stochastic return RM. 
Usually, the protection of the reference portfolio by a put option is called 
portfolio insurance. Obviously, the hedged position consisting of the reference 
portfolio and a put option has a return RH, which is a convex function of RM 
(Figure 8). 

On the other hand, LELAND (1980) shows that in the limit any twice con- 
tinuously differentiable convex payoff function Y(RM) can be generated by 
combining the reference portfolio, the riskless asset and put options. Therefore, 
any investment policy with a strictly convex payoff function is called a general 
portfolio insurance policy (Figure 9). LELAND (1980) shows how individual 
investors should deviate from the market portfolio. 

In the following we explain general portfolio insurance in a slightly different 
framework. 

RH 

FIGURE 8. 

RM 
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Y ( R M )  

FIGURE 9. 

RM 

A S S U M P T I O N S  

C. 1 There  are 

m t investors with NM utilities ui E U(c) ,  i = 1, ..., m~ 

m -  m~ investors with NM utilities uiE U(c ' ) ,  

i = ml  + 1, ..., m,  where  c, c '  ~ (0, 00). 

C.2 The  initial weal th  in the e c o n o m y  consists o f  I4/0 units o f  the riskless asset 
and  WM units o f  the reference por t fo l io .  

Accord ing  to C.2 total  final weal th  is given by the  r a n d o m  variable 
WoRo + WMRM. 15 From Borch ' s  t heo rem one  sees immedia te ly  that  all Pa re to  
efficient al locat ions (YI , . . . ,  Y,,,) are o f  the fo rm 

Yi = a] + b ] X  1, i = 1, ..., ml ,  
(31) 

Yi = a 2 + b z X  2, i = ml  + 1, ..., m,  

with 

a I + a 2 = WoRo, 

(32) b I X l  + b 2 X  2 = WMRM, 

where 

n i  i i t l  

Z '#, a Z ,d 
i :  1 i : m t  + I 

i n  i n l  

i=  1 i=sm + I 

Fur thermore ,  according to Section 5.2 the fol lowing aggregat ion is possible: 

Investors i = 1, ..., ml ,  (ml + l ,  ..., m )  can be represented by a single investor  

15. Ro a n d  RM are cons ide red  here as exogenous ly  given.  



26 MULLER 

with a NM utility a(~) .  a and ~ are characterized by 

a'  (w )  = (w  - ~)-~ 
h' (w) = (w - fv) -c'. 

Applying Borch's theorem once more leads to 

( a  ~ + b t X  ~ _ l ~ ) - c  

(33) (a 2 + b z X 2  _ ~V)_C, = X 

or by considering (32) 

(34) 

where 

(A 2 
( A  t + b l X X ) - c  

+ W M R M  -- b t X l )  - ' '  
=X 

a ° e °  

wi th  X > 0, 

a . e .  

A l = a  1 -  l ~  

A 2 = a  ~ -  ~. 
Finally, one obtains 

(35) W M R M  = b i X 1  - A 2 

From (35) one concludes: 

(1) c = c ' :  XI  is linear i n R M  
(2) c > c ' :  X ~ is concave in R M 
(3) c < c ' :  X I is convex in R M. 

+ XI/C'(A l + b l X l )  c/c'. (35) 

INTERPRETATION 

1) For c = c'  linear risk sharing is Pareto-efflcient and no options are needed 
in the economy. 

2) For c < c'  investors i =  1, . . . ,mr ,  choose a general portfolio insurance 
policy. It is important  to note that c is not directly related to the absolute 
or relative risk aversion. ~6 
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HEDGING BY SEQUENTIAL REGRESSION: AN INTRODUCTION TO 
THE MATHEMATICS OF OPTION TRADING 

BY H. FOLLMER and M. SCHWEIZER 

E T H  Ziirich 

1. INTRODUCTION 

It is widely acknowledge that there has been a major breakthrough in the 
mathematical theory of option trading. This breakthrough, which is usually sum- 
marized by the Black-Scholes formula, has generated a lot of excitement and a 
certain mystique. On the mathematical side, it involves advanced probabilistic 
techniques from martingale theory and stochastic calculus which are accessible 
only to a small group of experts with a high degree of mathematical sophisti- 
cation; hence the mystique. In its practical implications it offers exciting prospects. 
Its promise is that, by a suitable choice of a trading strategy, the risk involved 
in handling an option can be eliminated completely. 

Since October 1987, the mood has become more sober. But there are also 
mathematical reasons which suggest that expectations should be lowered. This 
will be the main point of the present expository account. We argue that, typically, 
the risk involved in handling an option has an irreducible intrinsic part. This intrin- 
sic risk may be much smaller than the a priori risk, but in general one should not 
expect it to vanish completely. In this more sober perspective, the mathematical 
technique behind the Black-Scholes formula does not lose any of its importance. 
In fact, it should be seen as a sequential regression scheme whose purpose is to 
reduce the a priori risk to its intrinsic core. 

We begin with a short introduction to the Black-Scholes formula in terms of 
currency options. Then we cievelop a general regression scheme in discrete time, 
first in an elementary two-period model, and then in a multiperiod model which 
involves martingale considerations and sets the stage for extensions to continuous 
time. Our method is based on the interpretation and extension of the 
Black-Scholes formula in terms of martingale theory. This was initiated by Kreps 
and Harrison; see, e.g. the excellent survey of HARRISON and PLISKA (1981, 1983). 
The idea of embedding the Black-Scholes approach into a sequential regression 
scheme goes back to joint work of the first author with D. Sondermann. In con- 
tinuous time and under martingale assumptions, this was worked out in 
SCHWEIZER (1984) and FOLLMER and SONDERMANN (1986). SCHWEIZER (1988) 
deals with these problems in a general semimartingale model. 

The present paper is a written version, with some extensions, of an expository 
talk given at the annual meeting of the Vereinigung Schweizerischer Ver- 
sicherunsmathematiker in September 1987. As in the talk, our purpose is to pro- 
vide an elementary introduction to some key features of the mathematical theory 
of option pricing, with special emphasis on the use of linear regression. 
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