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ABSTRACT 

Average absolute (instead of quadratic) deviation from median (instead of 
expectation) is better suited to determine the safety loading for insurance 
premiums than standard deviation: The corresponding premium functionals 
behave additive under the practically relevant risk sharing schemes between 
first insurer and reinsurer. 
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0. INTRODUCTION 

If one looks into the extensive literature on premium principles one gets the 
impression that actuaries are more or less incontent with the premium 
principles known till now. For example there was not known a nontrivial 
functional on nonnegative random variables, in actuarial terms a premium 
principle for insurance contracts, with the following elementary and plausible 
requirements: PI. The safety loading (premium minus expected value) is 
nonnegative, P2. no ripoff, i.e. the premium does not exceed the maximal 
claim, P3. consistency, i.e. the safety loading does not change if claims are 
augmented by a non-random constant and P4. proportionality, i.e. insuring a 
certain percentage of total damage costs that percentage of full insurance. It 
should be mentioned that the proportionality property P4 despite its practical 
importance is not regarded desirable by all authors (e.g. GERBER). We shall 
discuss that point at the end of section three. 

The present article intends to make actuaries familiar with a broad class of 
functionals with properties P1 through P4. These functionals had been 
developed (by SCHMEIDLER, YAARI and others) during the last decade in the 
context of economic decision theory with the intention to overcome the 
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controversely discussed shortcomings of expected utility theory. Expected 
utility had been used, too, to construct premium functionals as the exponential 
principle, favoured e.g. by GERBER. 

To make things as easy and accessible as possible we confine ourselves to an 
elementary one parameter class of premium functionals of the YAARI type 
(DENNEBERG 1985, 1988a and b). This functional resembles the standard 
deviation principle, where the safety loading is proportional to standard 
deviation. But the volatility measure standard deviation is replaced by average 
absolute deviation from the median and, surprisingly, all works. 

In the first section we compile the properties of average absolute deviation 
from median, a volatility measure which nowadays is nearly forgotten, whereas 
in the first part of our century it enjoyed equal rights with standard deviation 
(e.g. in CZUBER, cf. the discussion in DENNEBERG 1988b). The median being a 
quantile, it is appropriate here and in the sequel to employ the quantile 
function instead of  its inverse function, the usual distribution function. 

The premium functional with safety loading proportional to absolute 
deviation is introduced in the second section and properties P1 through P4 and 
some others--here  we stress only subaddit ivi ty--are verified. 

In section three the basic issue of comonotonicity of several random 
variables is introduced which, in some sense, is opposite to independence. 
Comonotonicity means that the risks involved are not able to compensate each 
other and this property implies additivity of our premiums. If risks are shared, 
e.g. between first insurer and reinsurer, the partial risks are comonotonic for 
most risk sharing schemes, among them all practically relevant ones. Hence our 
premium functional is compatible with the pratice of reinsurance. We discuss 
comonotonic additivity, a property not shared by the standard deviation 
principle, versus independence additivity, a property shared by the variance 
and exponential principles. 

The final section gives an outlook on the more general class of premium 
functionals mentioned above. There is a further well known volatility measure, 
which, like absolute deviation, is associated to that class: the Gini coefficient. 
It might be interesting for pricing reinsurance. 

1. QUANTILE FUNCTION AND ABSOLUTE DEVIATION 

Let X be a random variable to be interpreted as claims from an insurance 
contract or from a portfolio of such claims. We assume the increasing 
distribution function F = F x of X to be known. F(x), x ~  IR, denotes the 
probability of the event X < x. For our purposes the inverse function F' of F is 
better suited to represent the distribution of X than F. Since F, in general, is 
not one to one (e.g. for discrete distributions), we have to be cautious in 
defining F. First, for q in the unit interval [0, 1] we define the q-quantile of X to 
be the interval [ inf x, sup x]. The ½-quantile is the median of X. For 

F(x)  ~ q F(x)  ~ q 

all q ~ [0, 1] outside possibly a countable set the q-quantile of X reduces to a 
single point. Now we define F(q) to be some fixed point of the q-quantile of X. 
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Then MX.'= FP(½) is a median of  X. There is possibly an arbitrariness in the 
definition of FP and M X  but this does not affect the values of  the subsequent 
integrals. For  short the function /~' will be called the quantile function of  X. 

The expectation of X is 

oo I 

E X  "~ I x dF(x)  "~ I l~(q ) dq 
- ¢x::~ 0 

and we will make use of  the absolute and quadratic norms 

IIXIIt := EIXh IIXII2 := (E(X2)) n/2. 

The corresponding volatility parameters  are average absolute deviation from 
median r = r(X) and standard deviation a = a ( X ) :  

z:=IIX-MXIJl ,  a =IIX-EXII2. 

It is natural to take the real numbers M X  and EX as points of  reference in 
defining the respective volatility parameter  since these numbers minimise the 
respective distance from X: 

r = min I IX-a l l l ,  a = min IIX-al l2.  
a e ~  a ~  

I f  one looks for a parameter  to indicate asymmetries of  distributions one 
encounters two main methods. Either one uses higher odd moments,  e.g. 
E(x3), or semivariances. The analogous to the latter in the case of  absolute 
deviation are 

• 1/2 

"r_ .= IF ( q ) -  MXI dq, 
O0 

and one has 

1 

~+ := I IF(q)-MXI dq 
I/2 

E X - M X  = r + - r _ .  

From these equations we derive, that the triple (MX, r _ ,  r+)  of  parameters  
contains the same information about  the distribution of  X as the triple 
(EX, MX, r). 

Finally we prove subadditivity of  r and a, 

z ( X +  Y) _< r ( X ) + r ( Y ) ,  o'(X+ Y) _< o ( X ) + a ( Y ) .  

For standard deviation this is simply the triangle inequality for the norm 11"112. 
In case of  absolute deviation, apart  from the triangle inequality for the norm 
II'[In, one needs the above minimal property of  the median to cope with the fact 
that the median is not additive: 
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z(X+ Y) =IIX+ Y - M ( X +  Y)IIi : min IIY+ Y-all~ ~l lY+ Y - ( M X + M Y ) I I t  
a ~  

IIX- MXlll + II Y -  MYIIt = ~(X) + z ( Y ) .  

In section 3 there will be given a sufficient condition for additivity of  z 
analogous to additivity of  variance a 2 in case of independance. 

2. THE ABSOLUTE DEVIATION PRINCIPLE AND 

E L E M E N T A R Y  PROPERTIES 

Let ~ be an appropriate set of  random variables, e.g. the linear space L I o r  L 2 

of  random variables X on a fixed probability space with finite norm [IXIIi and 
IIXII2, respectively. In our context, a functional 

H:  X ~ ~, X~-~, H X  

is called a premium functional or premium principle. The properties P l through 
P4 from the introduction read in formal terms 

P l .  H X  > E X  

P2. HX_< s u p X  

P3. H ( X + c )  = H X + c ,  c e R  

P4. H ( c X )  = cHX, c >_ O. 

Under  the premium principles, studied in actuarial literature till now, only the 
trivial functionals H = E (net premium principle) and H = sup (maximal loss 
principle) have all four properties. The common standard deviation principle 

H X  = E X + a a ( X ) ,  X e  L 2, with parameter a > 0 

for example, violates P2. Our new premium functional 

H X : =  E X + p z ( X ) ,  X e L  1, with parameter 0 < p _< 1 

is constructed in the same way and will be called absolute deviation principle. 
It is worth mentioning that this functional coincides with the expected value 

principle for special distributions: namely if M X  = 0 and r_ ( X ) =  0, i.e. 
X > 0 and the probability of  no claim is > 1/2. Then H X  = (1 +p)EX.  

The absolute deviation principle can be expressed, too, by the three 
parameters median MX,  average negative and positive deviation ~_ (X) and 
r+ (X) from the median (see section 1): 

H X  = M X - ( I - p )  z_ ( X ) + ( l  +p)  v+ (X). 

In this form the functional can be made plausible, too. The median serves as a 
reference point. Positive deviations, i.e. larger claims, are weighted more than 
negative deviations, i.e. smaller claims, and total weight is one. 

We get an integral representation for the absolute deviation principle if, in 
the last formula, we replace r_ and ~+ by their defining integrals: 
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it/2 it HX = M X - ( I  -p)  (MX-£'x(q)) dq+(I  +p) (Fx(q) -MX)  dq 
~ 0  t12 

i I' = ,/2 Px(q) (1 -p)  dq + Px(q) (1 +p) dq 
O0 I/2 

Let y denote the distribution function on the unit interval with density 1 - p  on 
[0, 1/2[ and l + p  on [1/2, 1], then 

1 

HX = I Fx(q) dT(q). 
o 

Now we can prove the 

Theorem. The absolute deviation principle has properties P1 through P4 and 

PS. Fx -< /~r implies HX _< HY 

P6. H(X+ Y) _< HX+ HY 

PT. H is (Lipschitz-) continuous on Ll: 

IHX-H~ ~ (1 +p) IIX- Y]It. 

In P5 the condition /e' X < /~r (to be formally correct here, take e.g. right 
continuous quantile functions) is equivalent to F x >_ F r  and this condition is 
often called first order stochastic dominance of Y over X. Hence P5 states 
compatibility of H with that stochastic order. P2 is the special case 
Y - sup X. 

Property P6 states subadditivity of the functional H. In the next section we 
will give conditions under which additivity holds. In the general case a formula 
for the deviation H ( X + Y ) - ( H X + H Y )  from additivity can be found in 
DENNEBERG 1985. 

Proof of the theorem. 

PI is plain from the fact that p >_ 0, r (X) > 0. 
P2 is, as we noted already, a special case of P5. 
P3. Fx+c = l~x +c and the assertion follows from the integral representation 

of H. 
P4. For c _> 0 one has/~.x = cFx (for negative c the right hand side would no 

longer be an increasing function). 
P5 is an immediate consequence of integral calculus. 
P6 derives from additivity of expectation and subadditivity of r. 

P7. IHX-HYI = (rx(q)-PPr(q))d~,(q) _< IPx(q)-Pr(q)ld~'(q) 
0 0 

11 I 

_< (1 +p) / IPx(q)-l~r(q)l dq _< (1 +p) )IX- ~ l t .  
d 0 



186 DIETER DENNEBERG 

The last inequality is stated and proved as a separate lemma. 

Lemma. For  X, Y e L 1 one has 

IIPx-PyII1 _<IIX- Yllt, 

where, on the left hand side, the norm refers to Lebesque measure on [0, 1]. 

Proof. Denote by X v Y the maximum and by X ^ Y the minimum of  the 
random variables X, Y. The inequalities 

XA Y_<X, Y_<Xv Y 

imply 

By integration we get 

IlPx-PrlI~-< I 

Px^ y <_ Px, ;xv 

i rg- ; , , f  _< l x,, Y - ;X^  Y. 

(/~Xv r(q)--/~x^ r(q))dq = E ( X v  Y - X ^  Y) = EIX-  YI =IIX- Ell,. 

3. COMONOTONICITY AND REINSURANCE 

Here we tackle the question under what conditions on X and Y one has 
equality in P6, i.e. additivity of  H. The condition is that X, Y are eomonotonie 
random variables (a term introduced by SCHME1DLER and YAARI), i.e. per 
definitionem that one of  the following equivalent conditions hold: 

(i) (No risk compensation) For  each o90 as point of reference the functions 
f : =  X-X(og0)  and g : =  Y-Y(ogo)  don' t  have opposite signs, i.e. 

If+gt = Ifl+lgL. 
(ii) X = u(Z)  and Y = v(Z)  for some Z and (weakly) increasing functions u, v. 
(iii) X = u ( X +  Y) and Y = v(X+ Y) with continuous, increasing functions u, v 

such that u ( z ) + v ( z )  = z, z e  R. 

These conditions and the proof  of  their equivalence (Satz 7 in DENNE- 
BERG 1989) is valid for real functions X, Y, the distributions don' t  play any 
role. But distributions are essential in the following theorem (Satz 1 in 
DENNEBERG 1989) : 

Theorem. For comonotonic  random variables X, Y the quantile functions 
behave additive, 

ks+ = PPx+ 

Applied to the absolute deviation principle H we get 

PS. H ( X +  Y) = H X +  H Y  for comonotonic X, Y e  L ~ . 
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The proof  of  the theorem uses the fact that for increasing u one has 
P~(x) = u o Fx.  The proof  is easy if all distribution functions and the functions 
u, v in (iii) are one to one. 

Returning for a moment to the first section we, too, have 

z(X+ Y) = z ( X ) + z ( Y )  for comonotonic X, Y~ L I . 

Hence comonotonicity plays the same role for average absolute deviation z as 
independence plays for variance a 2. But notice that independence and comon- 
otonicity are opposite, mutual exclusive properties (except the case where X or 
Y is constant). 

We give typical examples for comonotonic random variables. 

Example. u(x) = x ÷ := max{0, x} and v(x) = - x - ,  where x - : =  ( - x )  +, 
are continuous increasing functions and u(x)+ v(x) = x. Hence, for a random 
variable X, the random variables X + = u(X) and - X -  = v(X) are comono- 
tonic. If X has median MX = 0 (this can be achieved by a translation) 
comonotonicity implies r (X)  = z ( X + ) + r ( X - ) .  This equation is known from 
Section 1 since r ( X  +) = r+ (X)  and z ( - X - ) =  z ( X - ) =  z_ (X)  in case 
MX = 0. 

Example (excess of  loss or stop loss reinsurance). Let Z be total claims and a 
the priority or stop loss point. Define v(z):= ( z - a )  +, u(z):= z - v ( z )  and 
X : =  u(Z), Y:= v(Z). Then X is the part of total claims Z = X +  Y to be 
covered by the primary insurer and Y the pa.rt to be covered by the reinsurer. 
X, Y being comonotonic H is compatible with this type of  reinsurance, 
H[Z] = H[X]+ H[Y]. 

We know already from P4 that H is compatible, too, with proportional 
reinsurance. But we can state more. Condition (ii) or (iii) for comonotonicity in 
connection with P8 says that H is compatible with very general risk sharing 
schemes. One has only the restriction that both risk sharing partners have to 
bear (weakly) more if total claims are higher. There are forms of reinsurance of  
minor or lacking practical importance which injure this condition and which 
are not compatible with H. An example is largest claims reinsurance. 

The essential properties of  our new premium functional have been derived 
now, and before looking on possible generalisations, we will discuss the crucial 
properties: proportionality P4, subadditivity P6 and comonotonic additivity 
P8. First notice that P4 can be derived from P8 using P5 or norm continuity. 
We will compare P6 and P8 with independence additivity. For  the discussion it 
is essential to specify the situation in which a premium functional is to be 
applied. We distinguish two situations. 

If the market for insurance is in equilibrium in the sense that it offers no 
arbitrage opportunity, prices are additive at least for independent risks. Thus 
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premium functionals which are additive on independent risks, e.g. the variance 

1 
principle EX+aa2(X) and the exponential principle - In Ee ax, are candidates 

a 

for modeling market prices. 
On the other hand, subadditive but not additive premium functionals as our 

absolute deviation principle or the standard deviation principle are apt to 
depict the law of large numbers. Hence they are applicable in portfolio 
decisions. Here reinsurance is an important mean, may it be to reduce the ratio 
of the portfolios volatility to the companies equity below a desired limit, or 
may it be to reduce volatility of the various companies portfolios through risk 
exchanges such that, eventually, the companies portfolios become proportional 
to the market portfolio. In such decisions comonotonic additivity P8 which--  
as pointed out above--applies to most risk sharing schemes, is very useful and 
can simplify decisions. Notice that the standard deviation principle is not 
comonotonic additive. 

4.  G E N E R A L I S A T I O N S  A N D  T H E  G | N I  P R I N C I P L E  

As the reader may have guessed already, the representation 

l 

HA" = I JOx(q) dy(q) 
,1 0 

of the absolute deviation principle is capable of generalisation. One can replace 
the piecewise linear function ~ by any distribution function on the unit interval 
[0, 1]. Such a function ~, is called a distortion of probabilities. Condition P1 
means that the graph of ~, lies below the diagonal, y(q) < q. P6 is valid if ~, is 
convex and has bounded density. For P7 bounded density is needed, too, and 
the Lipschitz constant is the supremum Ily'llo~ of the density y'(lly'lloo = I +p  in 
case of the absolute deviation principle). All the other properties remain valid 
without further restrictions. In DENNEBERG 1989 (see also DENNEBERG 1990) 
these assertions are proved and the converse, too : any functional H on L I with 
properties PI through P8 can be represented by the above integral with a 
convex distribution function 7 having bounded density. 

Sometimes the absolute deviation principle may not be appropriate owing to 
the piecewise linearity of 7. For excess of loss or stop loss reinsurance the latter 
implies that the safety loading factor remains constant with rising priority or 
stop loss point, respectively. In practice one rather observes rising safety 
loading factors, too. Already the next simple distortion allows to model this 
phenomenon. For the absolute deviation principle the density can be written as (1) 

y'(q) = l + p s g n  q - - ~  . 
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Replace the signum by the next elementary odd function, the identity: 

The corresponding distortion is the 
y(q) = q + ½ p ( q 2 _ q ) ,  which is convex on [0, 1] 
premium functional is 

where 

1 
H X  = E X  + p -- Gini X, 

2 

quadratic polynomial 
for 0 _ < p <  2, and the 

1 f, 

G i n i X : =  / P ( q ) d q 2 - E X =  E X g i n i X  
d 0 

and gini X is the (normed) Gini coefficient, which is used in economic welfare 
theory as an inequality measure for wealth distributions in populations. The 
usual definition for the Gini coefficient is twice the area between the diagnoal 
and the Lorenz function 

| I q 
- F(p)dp, 

l (q )  E X  o 

I' gini X = 2 ( q - l ( q ) )  dq. 
0 

The equivalence to the above formula is calculated easily with Fubinis theorem. 
Another representation of the Gini coefficient is 

1 
Gini X = - IIX- Yllt 

2 

where Y is a random variable such that X, Y are independent and identically 
distributed (see ZAGIER). This new premium functional could be called the Gini 
principle. 

The above general premium functional can further be generalised. First the 
basic probability measure P or the distorted y o p can be replaced by more 
general set functions. Second--as  in expected ut i l i ty-- the claims in money 
terms can be valued by a non linear utility function. Thus the proportionality 
property P4 could be weakened. Functionals of this type and their axiomatic 
representations are investigated in economic decision theory (see e.g. WAKKER, 
where the literature is discussed, too). 
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