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ABSTRACT

A simple model for IBNR claims 1s presented Estimates for the loss reserves
and for the ulumate claims rate are derived. Approximations to the mean
square error of the estimators are produced. A more specific parametric model
1s suggested for the case that we deal with claim numbers instead of claim
amounts. The general method 1s illustrated by a practical application to the
pricing of a casualty excess of loss cover.

I. INTRODUCTION

The IBNR Method which we present in this paper has been developed in
connection with the pricing of casualty excess of loss covers. The method can
also be applied to loss reserving problems for long tail business, however it is
best understood 1n connection with the practical problem which motivated its
derivation.

A remsurer has to quote a price for an excess of loss cover. The statistical
information at hand are the revalued individual excess claims from different
accident years as well as a revalued measure of the exposure pertaining to each
accident year (e.g. the revalued premium income) The problems connected
with the revaluation of the claims and of the measure of exposure are by no
means trivial. We shall however assume that this revaluation can be performed
in a satisfactory way and that our data have been corrected for premium and
claims inflation We shall call this revalued statistics the ‘as 1f” statistics.

To price the cover we have to estimate the ultimate claims amount in the
layer, 1.e. to perform the IBNR correction. In this paper we present a simple
method which requires only about twice the amount of computation of the
chain-ladder method and which has the advantage of being practcally
unbiased. An additional advantage of the estimator defined below 1s that one
can assess its precision. It 1s felt that these two properties are of special
importance when pricing layers with high deductibles where data are scarce

In the next section we present the general model. In the third section we
restrict ourselves to claim numbers. In both these sections we illustrate the

! The Paper has been presented at the XXIth ASTIN Colloquium 1n New York under the title
‘A Pragmatic IBNR Method’
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theory with an extremely simple example. In the last section we apply our
method to a practical problem.

2. THE GENERAL MODEL

2.1. Summary statistics

Most IBNR methods require only one summary statistics: the IBNR triangle.
If we have the excess claims from n accident years, the IBNR triangle contains
the following information:

dvpt
year 1 2 n Exposure
acc
year
1 X X2 Xin E,
2 X2 X22 Xy 01 E,
n Xn,l En
Where X, is the total amount of excess claims from accident year ¢ in

development year .

For our purposes we need a more detailed summary statistics which we now
define Let N, , denote the total claims amount pertaining to new excess claims,
1.e. to claims which were not yet recorded as excess claims in development year
J— L. This is the true IBNR component. Let D, be the decrease in total claims
amount between development year j— 1 and development year ; with respect to
claims already known as excess claims in development year j—1 This 1s the
IBNER component (incurred bu not enough reported claims). D, may take
negative values but cannot by definition be larger than X, ,_,.

The following relations hold true between the X’s, N’s and D’s*

(211) X,1=NI| [ = l,...n
(2.12) X, =X,.—-D,*N, i=1,.n =2 .n

y

Of course we only observe the variables for which 1+; <rn+1. We shall not as
1s usually done reduce the data to one IBNR triangle, the X-trniangle, but we
shall work with two triangles. the N-triangle of the genuine IBNR claims and
the D-trianglc of the IBNER claims

From (2.1 1) and (2.1 2) 1t 1s seen that the X-triangle can be derived from the
N- and D-triangle.

To 1llustrate these definitions let us consider a very simple example.
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EXAMPLE

There are 3 accident years. For each accident year we have the usuval ‘as if’
statistics: revalued and developed individual excess claims as well as a revalued
measure of exposure

Claim Development year number
number 1 2 3
Accident
year number | 1 1 — —
2 2 2 15
3 — 05 15
E, =20 4 — 1 —
5 — 15 25
6 —_ — 1
Accident
year number 2 I 05
2 0S5 1.5
3 15
E, =125 4 — 0S§
5 — 2
6 — 1
Accident
year number 3 1 05
2 05
3 |
E =32 4 15
5 2

A claim demoted by ‘—’ is a claim which has not yet reached the priority or
which has dropped below the priority.
In our example the traditional IBNR triangle 1s:

X-tnangle
J
I 2 3
t
1 3 5 65
2 25 5
3 55

and the new statistics are
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N-triangle D-triangle
J J
1 2 3 ] 2 3
! 1
1 3 3 1 1 — 1 -05
25 35 2 — |
3 55 3 —

2.2. Assumptions

Let H, denote the set of those variables in the N- and D-triangle which are
observed up to calendar year k.
H,={N,D,|i+; <k+1}.

s

For the sake of convenience we also mntroduce
Hy = {0, Q}.

H, 1s the set of all variables which have been observed so far. H,, _, is the
history of the process up to the calendar year immediately preceding the
emergence of N, and D,.

We make the following assumptions:

(A) E[N,| Hs )l =EA  y=1,..n

The expected IBNR claims amount does not depend on past history, 1t is the
product of the exposure measure of the accident year with a factor depending
on the development year only.

(Ay) ED,|H\,2l=X,,.,6, 1=1, .n
1=2,..n

The expected decrease in IBNER claims amount ts equal to the reported claims
amount of the previous development year times a factor depending on the
development year

We only observe those vanables for which 1+ < n+1 but for the purpose
of loss reserving and rating we shall need the assumptions to hold true for all
Ly=1,...n

If we knew whether individual claims are open or closed it might be
preferable to replace the X, ’s in (A,) by the corresponding total claims amount
pertaining to open claims
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(A3) {Ni,, Dy, |J=1,2,...n}

{Ny Dy | 1= 1,2,...n}

are independent sets of random variables. i.e. random variables pertaining to
different accident years are stochastically independent.

Assumptions (A}), (A,) and (Aj;), though they are quite general, are not
always satisfied 1n praxis. In particular, as was remarked by one of the editors,
a new claims manager arriving on the scene may have an impact across claims
cohorts In such a case assumption (A;) would of course no longer hold true
This I think, shows the mitations of all statistical models and methods used to
assess loss reserves' when applying them to practical problems, we should
always make sure that we have all the necessary information on the process
generating the claims and that we take that information into account when
choosing a statistical method to estimate the outstanding losses.

2.3. Pricing

We now focus our attention on the pricing problem, i e. We want to estimate
next year’s expected excess claim amount E[X,,, ,] or alternatively next year’s
expected ultimate claims rate

Xll n
(22.1) R= E[ “'.}
En+l

If the measure of exposure £, ., 1s the premium income, then R is the expected
ultimate burning cost. Assuming that (A ) and (A,) hold true for accident year
n+1, one obtains straightforwardly:

(2.2.2) R(0) = E{X"“‘"} =4, (1=6y) ... (1=6,)+
] A1 =8 ... (1=8,)+

lu-—l (1 _(5")+
Ay

where

0 =4, .A,.0:,...0,).
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From (A,), (A,) and (A;) 1t follows that

n+l—y
5
(2.2.3) = ——— j=1,..n
Y E
=1
and
n+l—;
o)
X

J=1
=1

are biasfree estimates of the A’s and &’s respectively.
(225 RO =4(=-56) ... (1-8)+A4,(1=35) ... (1—-5,)+ 4,
is an estimate of the ultimate claims rate R. The individual estimates being

biasfree and the correlation between the factors being ‘small’ because of (A;)
the bias of R(f#) can be neglected.

ExaMPLE (continued)

- 11 . 6.5 . 1

Ay = — =0.143 Ay = — =10.144 Ay =— =0.05
77 45 20

R 2 - 0.5
5.5 5

R = 0.100+0.159+0.050 = 0.309

2.4. Loss reserving
The loss reserve for accident year 1 is
L, = E[X, | H,

Under assumption (A;) and (A,) 1t 1s easily seen that
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(226) Ll = X,_,,+|_,(l_5n+2_,)....'(1_5,,)
+ El['{n+2——1(1 _5n+3—1) .. (l _Jn)
+ j'n+3—|(l _6"+4_,) (l _5")

+ Ay (1 —6,)
+ 4,

i.e. the loss reserve consists in a component for IBNER claims and a
component for IBNR claims the former depending on the claims observed so
far and the latter on the exposure.

One obtains an estimate of L, by replacing the parameters 1n (2.2.6) by their
estimates (2.2.3) and (2.2.4) respectively.

ExaMPLE (continued)

Aceident  y iee dgn-, IBNER, E, IBNR, L
year i -
1 65 1 65 20 0 65
2 5 11 55 25 125 675
3 55 0 700 385 32 667 10 52
17 2377
Where 4,,1-, = (1 —=d,42-) ... (1 —4,) is the IBNER correction factor.

To compute the loss reserves in practice we will of course use the original
claims as opposed to the rcvalued claims used for pricing purposes; we will also
have to choose a suitable measure of exposure.

It 1s interesting to compare (2.2.6) to the formulas for loss reserve provided
by the chain-ladder method and by the Bornhuetter-Ferguson method respec-
tively

The loss reserve for accident year [ according to the chain-ladder method
1S

(227) LI = XI,II+|"‘I.FI1+1—!

Where F, 1s some factor pertarming to development year ; (for details see for
instance Nationale-Nederlanden [2]) The same quantity as estimated by the
Bornhuetter-Ferguson method 1s:

(2 28) Lz= Xl,n+|‘_l+El.Gn+l"l
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Where G, _, is a factor which is applied to the exposure.
With a suitable notation we can rewrite (2.2.6) 1n the following way:

(229) LI = X:,n+l—| An+l—1+E1An+I—l

It 1s seen that formally our estimator 1s a generalisation of both the chain-
ladder and the Bornhuetter-Ferguson estimator® 4,,,_,= F,,,_, and
Aysy-, =0 gives the chain-ladder estimator whereas 4,,,_, =1 and
Ay, = G, -, gives the Bornhuetter-Ferguson estimator.

2.5. Performance of the estimator

We now want to assess the performance of R(é) defined 1n (2.2.5) In order to
do so we need the following stronger assumptions.

(A) E[N,| H., -2 = E} Var [N,] = E, 0/
(AY) E[D, | Hyj-ol = X, =6, Var[D, | H]=X,, 1}

Developing R(é) in a Taylor serics, we obtain-
2n—1

OR(0
y 2 d-0)

=1 ,

(2.3.1) R(6) ~ R(O) +

(A;) implies that é, and é/ are not strongly correlated for 1 # ; hence

2n—1
(2.32) mse(R@B) = E(RO-R©O)* =~ Y (,‘5;;0)

=1

2 A
) Var ()

0=0
where we have replaced the unknown quantities.
OR(0)
_;0’,
by the approximations:
SR(0)
W 0:0.

We stiil have to find approximations for the Var (0 From (A}), (A%) and (Aj)
it follows that.

2

(2.3.3) ar( ) = — Jj=1,.n

]
n+1—y

E,

=1
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TZ

(2.3.4) Var§)=——~—— ;=2,..n

n+l—y

X,

el
1=1

on the other hand we have the following biasfree estimators of ajz and rj2
respectively

1 n+1-y . ]
(235 §r=—— Y (Ny~ALE)— J=1,...n—1
n—j =1 El
. 1 nt+l—y i ]
(236) P=— ) (D,~58X,)) J=2,...n—1
n—jJ =1 -1

and if there are enough development years at hand we have:
i,, =0 and 3,, =

and one may assume:
a,,z =0 and r,,2 =0.

Plugging the expressions given above into (2.3 2) we obtain an approximation
for the mean square error of R(6)

EXAMPLE (continued)

OR . X OR R OR
= (1-6)(1-85)=0700 — =(-dy)=11 —=1
5, 5, 824
SR X X SR R ..
= (1 -8)=—-0157 = -],(1-8)—4, = —0235
56, 60,
. 0,2 . 0,2
Var() = —— =48-10"% Var(ly) = —2— =2-107°
E,+E,+E, E,\+E,
N (72
Var(1;) = —=— =0
!
A 17 5 T3
Var (6,) = ‘=110 107° Var(;) =— =0
XII+X21 XIZ

from which one obtains
mse'? (R(§)) = 0.017

Another possibility to evaluate (2.3.3) and (2.3.4) 1s to specify a parametric
model. An example 1s given 1n the next section.
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3. A MODEL FOR CLAIM NUMBERS

We use the same definitions as in section 2 with the difference that claim
amounts are now replaced by claim numbers: X, denotes the number of excess
claims from accident year 1 in development year ;. D, is the decrease in total
number of claims between development year y—1 and development year ; with
respect to claims already known as excess claims in year j—1. (D, is a
non-negative integer smaller or equal to X, ,_,). N, denotes the number of new
excess claims pertaining to accident year : in development year j. Rela-
tions (2 1.1) and (2 1.2) hold true.

EXAMPLE (continued)

From the individual claims of the example of section 2 we obtain the following
IBNR triangle for claim numbers.

X-triangle
J
| 2 3
{
| 2 4 4
2 3 4
3 5
N-tnangle D-triangle
J J
1 2 3 1 2 3
! 1
1 2 3 1 1 — 1 1
3 3 2 — 2
3 5 3 —

Under assumptions (A ) and (A,) relation (2.2 2) holds true. R(f) is now the
expected ultimate claims frequency and J, 1s the probabulity for an excess claim
to drop below the priority between development year j—1 and development
year J.

The expressions given 1n (2.2.3) and (2.2.4) are biasfree estimates of the A’s
and o’s respectively. (2.2.5) gives an estimate of the ultimate claims frequency
R (). The bias of the estimate R(f) can be neglected.
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ExaMPLE (continued)

s 10 - 6 A |
I, =— =0130, i=—=0133, 1 =— =005
77 45 20
- 3 N 1
52 = == 06, 63 = . =0.25
5 4
R(6) = 0.189

The performance of R(#) can be assessed with (2.3.2).
We now make the following parametric assumptions:

(AY) N, | H.s,—p ~ Poisson (4, E)
(A5) D, | H., -, ~ Binomal (5, X, ,-1).

It 1s easily seen that:
AN =AY =>(4) i=12.

We also assume that (A-) holds true. The log likelihoods of the parameters
are:

n+1—y

G0y I(3) = - ( E |4+ NU)IogiJ
=1 =1
n+l-y n+l—y n+1—y
(3.2) 1(5,)=( Yy D,j)‘log(éj)+ X, = 3. D,|log(1-6)
=1 =1 =]

and it 1s seen, that the :1, and 31 of (2.2.3) and (2.2 4) are the maximum
likelihood estimates of the As and §,’s.
From the maximum likelthood theory we know that

-1 ntl-y
:l for Z E -

=]

821
8%,

Var (1) - [—E(

we therefore use the following approximations:

. 51 !
Var(4) =~ - ( > )
5 '1_/ A=1
. j,
3.3) Var (1) = P J=1,. n

E,

1=
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analogously:

6,(1-4)
n+t—y

Z X'-J—l
1=1

and we obtain an approximation of the mean square error of R(é) by plugging
(3.3) and (3.4) into (2.3.2)

(3.49) Var (3)) = J=2,...n

ExAMPLE (continued)

Var(3) = 17 100"  Var(d) = 30 107*  Var(i;) =25-107*
Var (3,) = 480-107*  Var (9;) = 469-10~*

OR OR OR
=03 =075 Ry
8 64, 8l

6R SR

= 0097 ZZ = —0.85

8, 65,

mse' 2[R (6)] = 0080

4. A PRACTICAL PRICING EXAMPLE

The following IBNR triangle (X-triangle) is borrowed from a practical motor
third party hability excess of loss pricing problem :

dvpt

. year 1 2 3 4 5 6 7 Exposure

acc

ycar
1 75 289 526 84 5 80 1 769 795 10'224
2 16 148 321 396 550 600 12°752
3 138 424 363 533 96 5 14875
4 29 140 325 469 17'365
5 29 98 527 19°410
6 19 294 17°617
7 191 187129

The excess claims and the measure of exposure (premium of the whole
portfolio) have been revalued. Based on these ‘as if’ statistics we want to
estimate the ultimate burning cost

Using the chain-ladder method we obtain:
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Total
Claims Estimated Estimated
Accident Exposure Amount Cumulative Ultimate Ultimate
year p per dvpt Factor Claims Burning
year Amount Cost
n+1-—g
1 10'224 795 | 795 078%
2 12'752 60 103 62 049%
3 14'875 96 5 105 1011 068%
4 17°365 46 9 137 64 037%
5 19410 527 200 1053 054%
6 17617 294 375 1102 063%
7 18129 191 17 07 3260 180%
110372 848 3 077%

(For details on the chain-ladder method see for instance Nationale-Neder-
landen [2]).

It 1s seen at once that the estimated ultimate burning cost pertaining to
accident year 7 1s much larger than the other estimated burning costs. This is
due to a well known problem inherent to the chain-ladder method: the claims
amount of the least developed accident year 1s muluphed with the largest
cumulative factor providing thus a very imprecise estimate which can heavily
influence the overall ultimate burning cost This drawback of the chain-ladder
method can easily be corrected by weighing the estimated ultimate burning
costs of the individual accident years 1n a different way. Let F, denote the
cumulative factor provided by the chain-ladder method which is to be applied
to the claims amount of development year ;. X, E, and R denote respectively
the total claims amount, the exposure and the ultimate burning cost as defined in
section 2. The estimated ultimate burning cost pertaining to accident year i1s then:

Xl‘n+l—l.Fﬂ+l—l
E,

The chain-ladder method weighs these estimates with E, the exposure of the
corresponding accident year, thus giving the following overall estimated
ultimate burning cost

Z Xx,n+l—l'Fn+l—l

=1
2 E
1=
Instead of E, we use the following weights:

£,
Fn+]-—l

R =
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which correspond to ‘used exposure’ and give less weight to less developed
accident years.
We obtain the following overall estimated burning cost:

n
Z Xl,n+l-l

=1

n E’
-

1=1 Fn+l—l
We have the thus rederived a special case of the Cape Cod method [3], an

IBNR method similar to the Bornhuetter-Ferguson method [1]. This method
provides the following estimates:

Total
Claims Estimated
Accident E Amount Cumulative ‘*Used Ultimate
xposure s
year as per Factor Exposure Burning
dvpt year Cost
n+1—y
| 10224 795 1 10224 078%
2 12752 60 103 12335 049%
3 14’875 9% 5 105 14’199 068%
4 17°365 469 137 12'697 037%
s 19'410 527 200 9’712 054%
6 17°617 29.4 375 4'698 063%
7 18129 19.1 1707 1062 I 80%
384 1 64’928 059%

We now consider the more detailed statistics of the N- and D-triangles. The
statistics of new IBNR claims are:

dvpt
year 1 2 3 4 5 6 7
acc
year
1 75 183 285 234 186 07 51
2 16 126 182 16 1 140 106
3 138 27 40 124 121
4 29 97 16 4 116
5 29 69 371
6 19 275
7 191

N-tnangle
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The statistics of decreases in the claims amount are:

dvpt
year 2 3 4 5 6 7
acc
year
1 -31 48 -85 230 39 25
2 -06 09 86 - 14 56
3 -59 101 -4 6 =311
4 -14 -21 -238
5 0 -58
6 0
D-tnangle

The striking feature of these more detailed statistics is that even in
development year 6 and 7 there 1s an important amount of new claims to the
layer, however this fact is partly compensated by a decrease of the amount of
already known excess claims and therefore the less detailed traditional IBNR
statistics give the spurious impression that the total amount of excess claims is
exactly known after six or seven development years which is obviously not the
case in this example.

We now want to estimate the ultimate burning cost with our method. From
(2.2.3) and (2.2.4) we obtain:

J 4 @

1 045 1073

2 106 1073 -0 359
3 140 1073 0072
4 (15 1073 -0 048
5 118 1073 -0054
6 049 10°? 0070
7 050 1073 0033

We see that the 4’s reach a maximum in year 3 and decrease thereafter but i1t
would be misleading to assume that 4, = 0 for j > 8.

Between the 1st and the 2nd development year there is an important increase
of the known excess claims, after that the excess increase or decrease more or
less randomly and the ¢’s oscillate around zero.

By plugging the parameters into (2.2.5) we obtain the following estimate for
the ultimate burning cost-

R = 0.61%,

An estimate which 1s almost identical to the one obtained with the Cape Cod
method.
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Under assumptions (A), (A,) and (A;) we know that R(#) 1s a practically
biasfree estimate of R(f), whereas neither in the case of the chain-ladder
estimate nor in the case of the Cape Cod estimate do we know anything about

the bias of the estimator.

We now make the stronger assumptions (A}), (A3) and (A%) and we estimate

o, and 7, according to (2.3.5) and (2.3.6).

J a, i,

1 0054

2 0074 0387
3 0109 1 269
4 0079 1177
5 0056 3460
6 0057 0303
7 0 0

The assumption g; = 0 and 7, = 0 is not very realstic, however 1t has httle
impact on the mean square error of R(f). From (2.3.3) and (2.3.4) we now

obtain the standard deviations of the estimators of our parameters.

J a(d) 7(3)
1 016 1073
2 024 1073 0070
3 040 1073 0121
4 034 1073 0095
5 029 107} 0260
6 038 107 0026
7 0 0
We also need the following expressions:

OR OR 0R

— =4, = 1.253 — =4, = 0.921 —— =45 = 0.993

oA 04, 043

OR OR oR

-— = A4, = 0.948 — = 45 = 0.899 - — = d¢ = 0.967

O Ay d s 0l

oR i

Ly

OoR 1

(S(Sz 1_52

OR 1

= —[44,+1,4,] —— = —0.00166

3_5_3 1—53
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OR |

—_— = _[A.IA|+/12A2+/13A3] = _000279
5(54 l_(54

OR l

S = A+ .+ A By ——— = —0.0038]

34 I ~0s

OR |

_— = _[}.|A|+ .. +2,5A5]>**‘ = _000546

5d 1 —ds

OR

E l _57
From (2.3.2) we now obtain
mse'?(R() = 013%)

Our method also prowvides a measure of the precision of the point estimator.

To summarize what we have obtained so far we can say that we have an
estimate of the burning cost after scven development years (0.61%), this
estimate 1s practically unbiased and reasonably precise since its standard
deviation 1s (0 13%). Our detailed statistics have shown us that there are still
some excess claims to be expecled n the following development years, a fact
which we would have overlooked if we had only used the usual IBNR statistics.
To assess the impact of further development years on the ultimate burning cost
we can use the experience of similar portfolios or some market statistics if that
kind of data 1s available, 1f such 1s not the case we can extrapolate our
estimates of the A’s and of the §’s

Based on the analysis of the given portfolio, a realistic extrapolation would

be:

’18 = /{9 = 05 10_3
4 =0 J =10, 11
6, =20 7=28,9,
Thus our estimate of the ultimate burning cost 1s
R=071%.
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