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A B S T R A C T  

At the 1990 ASTIN-col loqulum, SCHMITTER posed the problem of  finding the 
extreme values of  the ultimate ruin probability ~ ( u )  in a risk process with 
initial capital u, fixed safety margin 0, and mean u and variance a 2 of  the 
individual claims. This note aims to give some more insight into this problem. 
Schmitter 's conjecture that the maximizing individual claims distribution is 
always dlatomic is disproved by a counterexample. It  is shown that if one uses 
the distribution maximizing the upper  bound e -Ru to find a ' l a rge '  ruin 
probabili ty among risks with range [0, b], incorrect results are found if b is 
large or u small 

The related problem of  finding extreme values of  stop-loss premiums for a 
compound Polsson (2) distribution w~th identical restrlchons on the mdlwdual 
claims is analyzed by the same methods. The results obtained are very 
similar. 

I .  I N T R O D U C T I O N  

In a paper  presented at the ASTIN-col loquium 1990, HANS SCHMITTER gives a 
derivation of  an exact algorithm to compute the value of the ultimate ruin 
probabili ty ~ ( u )  for a compound Polsson ruin process with given premium 
income c per unit of  time, and with claims having a finite number  of  mass 
points In connection with this paper, he posed the following problem: given 
that the individual claims have mean /1 and variance a 2, which claims 
distributions minimize and maximize the ruin probability for a given u ? A 
practical justification of  the problem can be found in the paper by BROCKE'rr, 
GOOVAERTS and TAYLOR (1991), who also sum up the results of  the discussion 
of  this matter  at the colloquia of  Montreux and subsequently Oberwolfach. 

In the classical ruin model, the non-ruin probability of  a compound Poisson 
risk process can be shown to have a compound geometric distribution with 
geometric parameter  depending only on the safety loading 0, and with terms 
having a distribution function related to the stop-loss premiums of the 
individual claims. 

In this note we also describe another  problem, very similar to Schmitter's. 
Suppose a reinsurer has to determine a stop-loss premium for a risk with the 
following properties,  the risk has a compound Polsson distribution with known 
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parameter  2, and the individual claims have known mean /1 and variance a 2 
To be able to quote a safe premium, the reinsurer tries to determine the claims 
distribution leading to the maximum value of  the net stop-loss premium. Some 
work in this direction was done by KAAS and GOOVAERTS (1986) and 
STEENACKERS and GOOVAERTS (1990). See also GOOVAERTS et al. (1984) 

A lower bound for both the ruin probabdlty and the compound Poisson 
stop-loss premium under these restrictions is attained by the dlsmbut lon 
concentrating all mass at p, see for instance GOOVAERTS et al (1990). This 
distribution IS not actually an element of  the set of  feasible &strlbutions, which 
is not a closed set. We will prove that both our functionals, ruin probabilities 
and compound Polsson stop-loss premiums, are continuous at this boundary 
point. Other funct~onals, like the variance, the skewness and the adjustment 
coefficient do not have this property. See Section 2. 

In this paper  we concentrate on the upper  bounds, and indicate how one 
may find the diatomic claims dls tnbunon leading to the highest rum probabd-  
ity using the algorithm mentioned above. The compound stop-loss premium 
can be computed by a very similar formula, based on special properties of  the 
compound Poisson distribution See Section 2 We found counterexamples for 
Schmitter 's conjecture that the maximal ruin probability always is realized by a 
dlatomlc distribution. For  the compound Poisson stop-loss premiums, the 
optimal diatomic distribution also was not always the overall maximum. See 
Section 3. 

A useful heuristic approximation to the maximal ruin probabdlty with 
dlatomic claims is described in Section 4 It is based on maximization of the 
most  important  term of the geometric dIstribution Our hm~ted numerical 
experience shows that this solution leads to a ruin probabdlty which is 
invariably close to the maximal dlatomlc ruin probablhty. For small 2, this 
same dlatomlc distribution also often leads to near-maximum compound 
Poisson stop-loss premiums. 

One of the referees remarked that applying this heuristic approach one 
actually solves Schmmer ' s  problem optimally for very small values of  the m~tial 
capital. More precisely, if the initial capital/the retention is very small (less than 
½E[X2]/E[X]), the maximum ruin probablhty /compound stop-loss premium is 
attained for the dlatomlc distribution with 0 as a mass point. 

In any case it can be shown that this heuristic solution is better than many 
other choices of  the feasible distribution. Ifx~ and xz are the mass points of  the 
heuristically found feasible distribution, with x~ < x2, any distribution with 
least mass point larger than Xl leads to lower ruin probabilities and compound 
Polsson stop-loss premiums. 

In Section 5 we ~mpose one more restriction on the claims distribution, 
namely that the support  is contained in an interval [0, b] One might expect 
that the distribution with the largest value of the upper bound for the ruin 
probablhty e -R" also has a high probabili ty of  ruin. It can be shown that the 
adjustment coefficient R with the claims distribution is minimal for the 
dlatomlc distribution with b as one of  its mass points. Then obviously e-R,, IS 
maximal. But if the maxtmum claim b is very large, the ruin probability with 
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this distribution is close to mimmal rather than maximal On the other hand, 
the adjustment coefficient R is maximal for the diatomlc distribution with 0 as 
a mass point, but for small values of u this distribution has maximal ruin 
probability, in spite of the fact that is has minimal e -R'. So looking at the 
adjustment coefficient leads to the wrong answer, unless b is small and u is 
large, say for b < 2 u - p ,  see the previous paragraph and Section 4. 

In Section 2 it is shown that the third moment (skewness) of the compound 
Poisson distribution is maximal for the dlatomlc claims distribution with b as a 
mass point. So one may expect that for large retentions, th~s claims distribution 
leads to maximal stop-loss premiums. Also in Section 5 we will show that for 
small retentions the situation is reversed 

2. SOME THEORY AND NOTATION 

In both problems we study, the issue is to find a maximum of a functional H~, 
working on distribution functions Fx of random variables X in a certain set. 
More specifically, we may write both problems in the following form" 

(1) Maximize H,[Fx] 

subject to X is a non-negative random variable, with E[X] = /1, 
Vat [X] = a z 

Here Hu[]  assigns to Fx either the ruin probability ~u(u) in a compound 
Polsson risk process with fixed safety loading 0 and Initial capital u, or the 
stop-loss premium ns(U ) at retention u of  a compound Polsson (2) distributed 
random variable S, both with individual claims distributed as X. In the 
remainder of  this section we will give expressions for H, [  ] for both problems 
m case X has a finite range. Also, we will characterize the feasible random 
variables X hawng a two-point support. Finally, the theory of  ordering of  risks 
is applied to derive results on some integrals over H,,[ ]. 

Consider the classical actuarial ruin model, that is, assume a compound 
Polsson process wIth claims intensity 2, non-negative individual claims distrib- 
uted as X, premium income per unit time c = ( I + 0 )  2E[X],  which means 
there is a safety loading 0 (assumed positive), and initial capital u See for 
instance BOWERS et al. (1986, Chapter 12). Let the stochastic process N(t )  
denote the number of claims up to time t, and S( t )  = X~+ .. +XN(,) the 
accumulated claims until t~me t. Define the maximal aggregate loss as L = 
max { S ( t ) - c t l t  >_ 0}. The ultimate ruin probability ~, (u) denotes the probabil- 
ity that the insurer's surplus will ever become negative: 

(2) ~u(u) = P [ m i n { u + c t - S ( t ) J t  >_ 0} < 0] = I - P [ L  ~ u]. 

Defining L~, L2, .. as the amounts by which record lows in the insurer's 
surplus u + v t - S ( t )  are broken, and M to be the number of  record lows in the 
surplus process, we may write 



136 R KAAS 

M 

(3) L = 2 L,.  
t = l  

Then  M has  a geomet r i c  d i s t r ibu t ion  with p a r a m e t e r  ~ (0 ) .  F r o m  Theo-  
rem 111.2.2.3 in GOOVAERTS et al. (1990) we see tha t  the geometr ic  p a r a m e t e r  
~ ( 0 )  = (1 + 0 )  -1, and  the d i s t r ibu t ion  funct ion o f  the L, equals  

(4) F L , ( y )  = l - - n x ( y ) / z c x ( O ) ,  

where  n x ( y )  = E l ( X - y ) + ]  denotes  the net s top- loss  p r e m m m  for X at  
re ten t ion  y, so nx(0)  = E [ X ]  

F r o m  (2) and  (3) we ob ta in  the fo l lowing express ion for the ruin p robab ih ty"  

(5) N(u )  = P [ L  > u] - P [ L i +  + L m  > u] .  
1+0 ' 

SCHMITTER (1990) gives the fo l lowing express ion for the ruin p robab i l i t y  in 
case X has finite s u p p o r t  {x~,x2 . . . . .  x,.}, with assoc ia ted  p robabd l t i e s  

P l , P 2 ,  - ",Pro: 

0 p;, 
(6) ~ ( u )  = 1 --- L (--Z)k~+ +kmeZ ' 

1 + 0  k,.k2. .k,, j=l k j !  

2 
where  z = -- ( u - - k l x l - -  . . .  - k , n x m ) +  " 

C 

Simi lar  express ions  can be found  in GERBER (1990), SHIU (1989), and  earher  
TAKACS (1967). The  in&ces  k 1 are  assumed  to range over  0, 1 . . . . .  I f  all mass  
po in t s  xj are  s tr ict ly posative, j = 1 . . . . .  m, (6) Is a sum with only a f imte 
n u m b e r  o f  non-ze ro  terms,  so it leads to an easdy p r o g r a m m e d  a lgor i thm to 
c o m p u t e  ~ ( u )  for  &scre te  c la ims & s t n b u t l o n s  I f  one o f  the mass  points ,  say 
Xm, Is equal  to 0, ca r ry ing  ou t  the ( infimte) summaUon  over km m (6) leads to 
the same express ion  as (6) with m replaced by m -  1, ,2 by 2(1 --Pro), and pj by 
p j / ( l - - p m ) ,  J = 1 . . . . .  m -  1. 

In Sect ion I I I .5  o f  GOOVAERTS et al. (1990) we find that  the d i s t r ibu t ions  
with mean  # and v a r i a n c e  o "2 tha t  are  d i a tomlc  w~th suppo r t  {xj ,  x2}, for 
xl  = # - e ,  can be charac te r ized  by 

(7) xl = l t - e ,  x2 = # + a 2 / e ,  

Pt = P [ X  = xt]  = 0"2/{0"2+•2}, P2 = P [ X  = x2] = l - - p t  

F o r  0 <x~ < x2 < ~ ,  we mus t  have 0 < x~ < /~, so 0 < c < lt. Note  that  x2 
increases with xl  for  xt ~ [0,/1). 

Inser t ing  (7) in (6) with m = 2, we see that  ~u (u)  is con t inuous  for d l a tomlc  
d i s t r ibu t ions  as a funct ion o f  e a t  e ~ 0. So there ~s a sequence o f  feasible 
dxatomlc d i s t r ibu t ions ,  whose  rum probabd~t les  converge  to the one o f  the 
c la ims d i s t r ibu t ion  with P [ X  = #] = 1, or  e = 0 
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The compound Po~sson stop-loss premium can be written in the form 

(8) ~ s ( U ) =  ~ 2 ~ e - 2 / n ! E [ ( X l + . . .  + X n - u ) + ] .  
n~0 
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If the range of the claims is finite, there is an expression for the compound 
stop-loss premiums similar to (6) If S has a compound Poisson (2) dls tnbuuon 
with mdiwdual claims distribution as m (6), and Nj counts the number of  
occurrences of  clmm s~ze xj, such that S = x t ' N ~ +  ... + x m ' N , , ,  then ~t ~s 
well-known that the Nj are independent Polsson (2pj) distributed random 
varmbles. So the stop-loss premium of S at retention u can be written as: 

(9) ~Zs(U) = E [ ( S - u ) + ]  = E [ S ] - u +  E [ ( u - S ) + ]  

= E [ S I - u  + ~ e - ' ~ ( u - k l x ,  - ... - k , , x , , ) +  ]~I (2PJ)k' 
kl,k 2, ,k. j= l  kj! 

It Is evident that ns(0) = 2u, rCs(OO) = 0, t/,,(0) = (1 +0)  -I and ¢(oo)  = 0 
do not depend on the actual choice of  the feasible distribution. We will show 
that this holds for the integrals over Zrs(U) and ¢ (u )  as well; the weighted 
integrals over U~Zs(U) and u~, (u), however, are minimal/maximal when the 
third moment of the individual claims Is. 

We will use the following ldentiUes, valid for non-negatwe random variables 
Y with E[Y j+2] < oo, and which can be proved by parUal mtegrauon:  

ioo I v 1 i (10) yJTzy(y)dy  = yg+ [ l - F r ( y ) ] d y ;  
o o j + l  

i 
v 1 

y g [ l - F v ( y ) ] d y  = - - E [ Y J + ' ] ,  j > O. 
o /+1  

Using (I0) and familiar properties of  moments of compound distributions, we 
may deduce for every feasible distribution of the individual claims: 

i 
oo 

(11) ns(u)  du = ½E[S 2] = ½{Var[S]+(E[S])  2} = ½ {~(0"2+ l/2)--}- 22]d2} ; 
0 

S v 1 I v ~ ( u ) d u  = E[L] = E[M]E[L1] = [ l - F L ~ ( u ) ] d u  
o 0 o 

ioo 
1 ~ x ( U )  du = __1 E[~ X 2] --~ °2}-~12--- 

011 o Oll 2 OiL 
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The following relations 

(12) U~s(U) du = 
o 

I ~ u~u ( u )  du  = 

o 

for weighted integrals hold '  

E [S 3] = ~ E [ ( S -  E [S] + E [S]) 3] 

~ {2E[X3] + 3 22~ (/t2 + Gr2) + ~.3 a3} ; 

{-E[L 2] = J2- E[E[L2IM]] 

½E[M" E[L~] + M ( M -  1) (E[L,])  2] 

½ E[M] E[L~] +½ E [ M ( M -  !)] (E[L,])  2 

(a2+~2) 2 
_ 1 1 

1 E[L~] + (E[Lt]) 2 - E[X 3] + 
20 -~ 60/~ 402,u 2 

So the fatter the tall of  the Individual claims X (measured by their skewness, or 
what is the same since a and o "2 are given, by their third moment), the larger 
the integral over u~ (u) and Uns(U). 

In the theory of  ordering of  risks as described in GOOVAERTS et al. (1990), 
one compares stop-loss transforms or distribution functions of  risks over the 
whole interval [0, c~). In our case it is sufficient if these functions are ordered 
only on the interval [0, u]. Suppose that for instance X has lower stop-loss 
prermums than Y on the interval [0, u]. If Z is another independent risk, we 
have 

i oo E [ ( X - ( u - z ) ) + ]  dFz(z) 
o 

<_ E [ ( Y - ( u - z ) ) + ] d F z ( z )  = E [ ( Y + Z - u ) + ] .  
o 

E[ (X+ Z - u ) + I Z  = z] dFz(z) (13) E [ ( X + Z - u ) + ] =  

From this porperty we see directly that if X~,X2, . and Yt, Y2 . . . .  are 
sequences of independent risks distributed as X and Y respectively, and X 
has lower stop-loss premiums than Y on [0, u], then we have 
E[ (Xt+  + X m - u ) + ]  < E [ ( Y t + . .  +Ym--U)+] for all m = 1,2 . . . .  Using 
(8), we see that a compound Polsson distribution with X as claims distribution 
has a lower stop-loss premium in u than one with Y. Using (4) and (5), we see 
that ruin probabilities are lower as well. 

3. MAXIMIZING THE FUNCTIONALS NUMERICALLY 

It is easy to maximize the ruin probablhty numerically over the diatomic 
feasible dmtrlbutions. This can be accomphshed using algorithm (6), together 
with (7) to characterize the feasible diatomlc distributions. It involves merely a 
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one-dimensional  maximizat ion over the interval x I ~ [0, It]. To do this, one first 
computes  (6) at a number  o f  values o f  x~ to detect the interval m which the 
maximum Is to be found,  and subsequently uses a method hke golden section 
search to determine the maximum more  exactly. A reference for numerical 
techniques to compute  a maximum of  a function over an interval is PRESS et 
al. (1986). In Figure 1 we give graphs depicting the &a tomic  ruin probabil i ty 

(u, x l ,  x z , p l , p 2 ) =  ~'(u, xl)  as a function o f x  t ~ [0,1t], where x l ,  x 2 , p t ,  P2 
are related by (7). We took /1 = 3, a 2 = 1, 0 = 0.5, and u = 1 5, 4.5 and 9 
respectwely In these graphs,  the scale m the y-direction varies. 

As announced ,  the rum probabdl ty  is minimal and cont inuous  at x~ T/z. In 
Figure 1 we see that for small u (u = 1½) the maxlmum rum probabil i ty is 
found taking x~ = 0. A close inspection reveals that  the rum probabil i ty does 
not  depend on x~ if x~ > u. Indeed m (6) one sees that the ruin probabdl ty  
does not  (directly) depend on mass points larger than u. It also follows from (4) 
and (5). For  large u (u = 9), ~,(u) is very nearly constant  for small to modera te  
values o f  x~, then increases, and next decreases steeply to ~ts minimal value at 
xl '1"/z. 

For  intermediate u (u = 4.5), the situation ~s rather unclear there are some 
local maxima.  For  this specific situation we were able to find a three-point 
distr ibution with a larger ruin probabd~ty than the one corresponding  to the 
maximizing dla tomlc distribution. In fact, for 

xl = 1.56592, x2 = 2.67226, x3 = 5.182086, 
Pl = 0.071198, P2 = 0766835,  P3 = 0.161967 

the ruin probabil i ty IS 0 279271, which, a l though (probably)  not  the optimal 
solution, is higher than the maximal dla tomlc ruln probabil i ty 0.279185, found 
at x~ = 2.5597, x2 = 5.2712. 

Al though we tried a lot o f  combina t ions  o f # ,  a 2, 0 and u, we rarely found a 
randomly  generated three-point  dxstnbutlon better than the best dlatomxc 
&str ibut ion;  if we &d, the &fference was never substantial.  

We dad not  try to optimize systematically over all three-point  spectra. First, 
this Is not a trivial task:  if the number  o f  mass points is m, the number  o f  free 
variables equals 2 m - 3, being the number  o f  suppor t  points x~ plus the number  
o f  probablhtles  pj, minus the number  o f  restrictions. So to find the maximal  
ruin probabdi ty  over all three-point  spectra involves solving a three- 
&menslonal  maximization,  with borderline c o n d m o n s  p: 2 0. Second, even 
supposing we successfully optimized over three-point distributions, there ~s stdl 
no guarantee that for instance a 15-point suppor t  might not be better 

The fact that  for small u the ruin probabil i ty is maximal at x~ = 0 can be 
explained as lbllows. By relation (11), one sees that neither ~(0)  and ~(oo) ,  
nor  .~ ~u(u)du depend on xt By (12), however,  we see that the weighted 
integral increases (linearly) with the third momen t  o f  the claims &stnbut~on. So 
the weighted integral is minimal for the dia tomlc distribution with x~ = 0, 
which means that taking x~ = 0 gives the smallest integral over up (u) So at 
small values o f  u, ~ ( u )  should be large for xl = 0 By similar reasoning, one 
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explains that for large u, a large value o f  xl leads to maximum g,,(u). For  too 
large values o f  x l ,  we obtain low ruin probabilities (close to the minimal 
value), as explained in the following section. 

For  the same reasons, one can expect a similar pattern to arise in the case o f  
c o m p o u n d  Polsson stop-loss p remmms This is indeed the case:  see Figure 2. 
In this figure, we took 2 = 2, u = 3 and t72 = 1. At  small u (u = 2), the 
stop-loss premium is virtually cons tant  over x l ,  but it is maximal at Xl = 0. At  
large u = 20, we see that  the stop-loss premium is practically cons tan t  for x~ 
from 0 (where it equals 0.0109) to very close to u. Then it increases very steeply 
to its maximum value 0.0522, and for x~ T l~, it decreases cont inuously  to its 
minimal value o f  0.0088. For  intermediate u = 7, with increasing xl ,~s(U) 
increases shghtly and irregularly at first f rom 1.3373 to the maximal  value 
1 3954, and then for x~ T P, ~t decreases again to its inf imum 1.3008. Fo r  this 
case we found again an example where the maximal  dla tomlc distr ibution was 
not  a global max imum over all feasible claims distr ibutions The maximal  
dla tomlc distr ibution is at xl = 2.~, where 7Zs(U)= 1.3954, but a larger 
stop-loss premium of  1.3995 is attained by the tr latomlc distr ibution 

x] = 0, x2 = 2.8, x 3 = 5 7143, Pl = 0 0286, P2 = 0.8754, P3 = 0.0961. 

In fact, as one o f  the referees pointed out,  it can be proven that the dia tomic 
distribution with x~ = 0 as a mass point  is optimal for very small values o f  u 
(u _< ½ E[X2]/E[X]) The p r o o f  goes as follows 

F r o m  Theorem III.5.2.3 o f  GOOVAERTS et al. (1990) we see that unoCorrnly 
for all u < ½E[X2]/E[X] = ½ ~+a2/lt) ,  the maximal stop-loss premium over 
the feasible dlstrlbutlons IS at tained for a r andom variable X 0 having mass 
points 0 and ~+t~2/,u, see (7). As a consequence o f  (13), we have immediately 
that if H ~s the distr ibution function o f  X0 and X is a feasible claim size, then 
F~" has smaller stop-loss premium in u than H*"  for n = 2, 3 , . . ,  too In view 
o f  (8), we have then found that H is the claims distribution maximizing the 
c o m p o u n d  Poisson stop-loss p remmm,  when the retention u ~ ½ ~+o'2//1). 

Using (4), we can deduce by similar reasoning that this same claims 
distribution also maximizes not  only P[L I > u] for u N ½ (Jl+a2// t) ,  but  also 
P [ L I + . . .  + L , , >  u] for all m =  2 ,3  . . . .  and thus maximizes the ruin 
probabil i ty (5). 

So Schmitter 's  problem is solved for very small values o f  the inltml capital u. 
This result is confirmed in Figure 1 for u = 1½. But note that in Figure 2 for 

u - - 2  > ½ ( u + a 2 / ~ )  still the distr ibution having mass point  0 led to the 
maximal  c o m p o u n d  Poisson stop-loss premium 

4. AN APPROXIMATION FOR THE MAXIMIZING 

DIATOMIC DISTRIBUTION 

Though  we are as yet unable to solve the problem o f  maximizing 
~(u) = P[L > u] given # and a 2, a problem we can solve is the maximizat ion 
o f  P[Li > u]. We may expect P[L > u] to be large when P[Li > u] is, 
because the term with m = 1 In (5) has the largest weight factor. 
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In view of  (4), and  since nx (0  ) = E[X] = /z is gwen,  to maximize  P[L, > u] 
we jus t  have to maximize  nx(u), the s top- loss  p r emium o f  X. The  so lu t ion  to 
this p rob lem can for ins tance  be found m GOOVAERTS et al. (1990), Theo-  
rems III .5  2.2 and  5.2 3. These  theorems  express  that  the max ima l  s top- loss  
p r e m i um for a (non-nega twe)  risk X w~th mean  It and  var iance  a z a t  r e t enuon  
u is the d l a tomlc  d i s t r ibu t ion  with smal ler  mass  po in t  x. = max  {u-d,O}, 
where d = {( ,u-u)2+0.2}  ~. When  0. is small  with respect  to 1u-HI ,  we m a y  
write 

(14) (U-lz)-d ( u - # - d )  u-/~+d _0.2 = _ _  - ~ ~ r 2 / ( u - u ) .  

u - p + d  u-kt+d 

So we may  conc lude  that  the d m t o m l c  d t s t r ibu t lon  w~th the fol lowing mass  
poin ts  gwes a ' h i g h '  rum p r o b a b i l i t y :  

0. 2 
(15) xl  = # - e ,  with e -  ~½0.2 / (U-- l l ) ,  SO x2 = u + d ~  2u-l~ 

u - # + d  

In the examples  we tested, the d l a t o m i c  d i s t r ibu t ion  max imiz ing  the ruin 
p robab i l i t y  had xl only  shght ly  smal ler  than u - d .  See Table  1. 

O f  course  this same d m t o m l c  d~stnbut~on maximizes  the term w~th n = 1 o f  
the c o m p o u n d  Polsson s top- loss  p r emium (8) So one may  expect  this 
d i s t r ibu t ion  to have a high s top- loss  p r emium if the p robab i l i t y  o f  jus t  one 
c lmm Is large,  which is the case ff 2 ~s small .  F o r  large 2, however ,  this 
a p p r o x i m a t i o n  will not  be as useful. 

Our  heuris t ic  p rocedure  m a y  not  a lways  lead to the op t ima l  value,  but  it can 
be shown that  it ~s bet ter  than many  o the r  choices Suppose  Z has d i s t r ibu t ion  
(15), and suppose  Y is ano the r  feasible choice such that  the least  mass  po in t  o f  
Y ~s larger  than that  o f  Z,  which is u - d  We know tha t  n z ( t )  is plecewlse 
hnear ,  w,th edges at  u -  d and u + d. Since Y has no mass  be low u -  d, we have 
nr(u-d) = nz(u-d) Also,  n v ( u ) ~  nz(U) since nz(U)  is maximal .  So 
n r ( t )  _< nz(t) for all t < u, which means  that  Y genera tes  lower c o m p o u n d  
Polsson s top- loss  p r e m i u m s  and rum probabd i t l e s .  

TABLE 1 

VALUES OF q,,' (//) FOR DIFFERENT VALUES OF THE HIGIIER MASS POINT IN A D1ATOMIC DISTRIBUTION 

~ =  I, er2= 1 , 0 =  l l t =  3, o'2= 1,0 = 5 

u =  15 u = 4 5  u = 9  u =  15 u = 4 5  u = 9  

x2 = ~(u) = ~(u) = ~(u) = ~(u) = ~(u) = ~(u) = 

oo 102003 002315 000008 534796 248974 078779 
~ + a 2 / ~  272504 039292 002315 550047 278350 098945 
optimal 275023 081105 034151 550047 279190 106205 

u + d 269824 078214 033632 534796 276506 101811 
2 u-B 272504 .078651 033659 550047 277596 101901 

10 146348 071460 024767 534796 265714 106184 
15 130637 055095 034151 534796 259498 101901 
20 123125 044244 031936 534796 256613 097203 
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In particular, the dlatomlc solutions with support  {b, b'} with b > u - d  are 
apparently non-optimal.  

5. EXTREMAL VALUES OF THE ADJUSTMENT COEFFICIENT 

Consider all claims distributions with mean u, variance a 2 and as an extra 
requirement, support  contained in [0, b] for some b >_ ~+a2/l~. Just as we did 
in the previous section for P [ L  1 > u], one may tackle the problem of  finding 
extremal ruin probablhtles by using distributions leading to extremal values of  
related quantities like an approximation or an upper bound for the ruin 
probability. Here we use the upper bound e -R~, where the adjustment 
coefficient R is the positive solution to the equation 

(16) 1 + (1 + O) ar = E [erX]. 

Asymptotically, this upper bound can be used as an approximaton,  since 
V ( u ) e  R" has a limit in (0, 1) for u ~ oo. 

It can easily be shown that the diatomic distribution with mass points 0 and 
iL+a2/l t is minimal in second degree stop-loss order, while the one with mass 
points b and l a -a2 / (b - lO  is maximal. See Theorem II 4.2.3 of  GOOVAERTS et 
al. (1990). This implies that these special dlatomic distributions have minimal 
and maximal moment  generating functions on (0, oo) in the class considered, 
and accordingly the corresponding adjustment coefficients (roots of  (16)) are 
maximal and minimal respectavely. 

One would expect that the support  { : t -a2 / (b - lO,  b}, with minimal adjust- 
ment coefficient, leads to large ruin probabihty,  too Taking b too large, 
however, so l t - a 2 / ( b - / O  is very close to/~, results in the opposite of  what we 
wanted:  the ruin probabili ty of  this distribution is very small rather than 
maximal. For  b -o 0% by (7) we see that the mgfE[e  rx] --* oo for all r > 0, so 
then R --* 0, which gives us the trivial upper bound ~v(u) < 1 So we observe 
that for b --* oo, the upper bound e-R" increases, while the rum probability 
decreases. But if b is not too large, say such that l l - a 2 / ( b - ~ )  ~ xt as in (15), 
which means that b ~ 2 u - k t ,  this distribution does lead to a large ruin 
probabili ty 

On the other hand we learn for instance from Figure I that for small u, the 
diatomlc distribution with mass point xt = 0 has maximal ruin probablhty,  
even though it gives the tightest upper bound e-R~ 

It can be shown, too, that the compound Polsson distributions with these 
distributions for the individual claims are extremal in second degree stop-loss 
order. This means that they have minimal and maximal third moment,  and 
since mean and standard deviation are fixed, also minimal and maximal 
coefficient of  skewness. As proved at the end of  Section 2, these same special 
spectra also generate the extreme values of  j" UTrs(U)du So one would be 
inclined to expect that they lead to high and low values of  the compound 
Poisson stop-loss premium as well, but the same caveats as above apply 
here. 
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6. S O M E  F I N A L  R E M A R K S  

To conclude, we comment on tables of some results for distributions with 
support { / t -a2 / (b- l z ) ,  b} for &fferent values of  b. These distributions have 
minimal adjustment coefficient (maximal skewness) for all feasible distributions 
with support contained in [0, b]. They are compared to other distributions 
described above: the optimal diatomic distrlbut~on, the heuristical approxima- 
tions to the optimum found by applying (15) and the distributions with only 
one positive mass point:  support {0,;u+a2/u} and {~}. The latter support is 
denoted by higher mass point ~ ,  where the mass on ~ is of course 0 (but 
contributes to a2). Note that for u not too large and b = 20, the phenomenon 
described above indeed occurs Even though we showed that looking at the 
minimal adjustment coefficient sometimes gwes incorrect results, especially for 
large b or small u, we fear that this method wdl be used quite often. 

Further note that for large u and a 2, mimmal and maximal ruin probabihty 
are widely apart. For  a 2 small with respect to u and u, the ruin probabihty 
cannot vary enormously. 

Table 2 gives some results for the compound Poisson stop-loss premmms. 
Note the meaningless results obtained by the wrong choice of  b for large values 
of  u, and also for small values of u. 

An approach that we plan to follow in the near future ~s to try to optimize 
the compound Poisson stop-loss premium over the set of  claim &stnbutions 
with support {0, J, 2 J , . . . ,  nJ}. The more general problem is obtained taking 
limits for n ~ ov and J ,I, 0. The restricted problem can be written in the form 
of the maximization of  a non-hnear criterion function w~th three linear 
constraints on the probabilities pj = P[X = j6], required to be non-negative 

T A B L E  2 

VALUES OF 7~s(tl ) FOR DIFFERENT VALUES OF THE HIGHER MASS POINT 
IN A DIATOMIC DISTRIBUTION 

~ = 3, or 2 =  1 , 2 = 2  u = 3 ,  o 2 =  1 , 2 = 5  

u = 2 u = 7 u = 20 u = 5 u = 20 u = 40  

x 2  = n s ( U )  = h a ( u )  = K s ( U )  = K s ( U )  = rCs (U)  = r ~ s ( U )  = 

4 270671 
it+a2/~ 4 330598 
op t ima l  4 332192 

u + d  4 331675 
2 u - ~  4 324805 

5 4 270671 
10 4 270671 
15 4 270671 
20 4 270671 
25 4 270671 
30 4 270671 

300816 0 008804  10 101076 
337326 0 010879 10 138862 
395435 0 052178 10 138862 
374006 0 047330  10 105046 
374694 0 0 4 7 3 4 7  10 105033 
376488 0 014677 10 101069 
380493 0 022903 10 104438 
356405 0 034962  10 103393 
342594 0 0 4 7 3 3 5  10 102812 
334135 0 052137 10 102458 
328482 0 051061 10 102223 

004413 0 002488  
077055  0 003859 
136463 0 058680  
077758 0 049633 
077807  0 049638 
105061 0 005110  
113764 0 007883 
124541 0 012330  
116290 0 018726  
103217 0 028545 
091199 0 0 4 0 8 6 8  
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for all j .  By restricting to an ar i thmetic  spectrum we are able to use Panjer 's  
recursxon instead of  (9), the necessary partml derlvatwcs can also be computed  
by a recurswe scheme. The procedure can be generahzed if more moments  are 
known.  

Of  course, as the t~tle of  our  paper  m&cates,  max~m~zatlon over the dmtom~c 
dis t r ibut ions  only does not gwe a complete  solut ion of e~ther problem. We find, 
however,  that by using this technique both problems are sufficiently solved for 
practical purposes In the first place, our  examples led us to the convict ion that, 
a l though the opt imal  dmtomic  d is t r ibut ion  is not  always globally opt imal ,  it is 
not  much removed from this op t imum.  Second, in our  opmton  m practice one 
might  judge  the at t ractweness  of  risks or risk processes with known mean and 
varmnce of  the claxms by the worst feasible dmtomlc  dis t r ibut ion as well as by 
the overall worst feasible dis t r ibut ion.  
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