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ABSTRACT 

It is shown that there ~s a connection between rating in automobile Insurance 
and the estimation of  IBNR claims amounts because automobile insurance 
tariffs are mostly cross-classified by at least two variables (e.g. territory and 
driver class) and IBNR claims run-off triangles are always cross-classified by 
the two variables accident year and development year. Therefore, by translat- 
ing the most well-known automobile rating methods into the claims reserving 
situation, some known and some unknown claims reserving methods are 
obtained For  instance, the automobile rating method of  BAILEY and SIMON 
produces a new claims reserving method, whereas the model leading to the 
rating method called "marginal  to ta ls"  produces the well-known IBNR claims 
estimation method called "chain  ladder".  A drawback of th~s model is the fact 
that it is designed for the number of  claims and not for the total claims amount  
for which it is usually applied. 

As an alternative for both, rating and claims reserving, we describe a simple 
but realistic parametric model for the total claims amount  which is based on 
the Gamma &stribution and has the advantage of  providing the possibility of 
assessing the goodness-of-fit and calculating the estimation error. This method 
is not very well known in automobde insurance--al though a satisfactory 
application is repor ted--and seems to be completely unknown In the field of  
claims reserving, although its execution is nearly as simple as that of the chain 
ladder method. 
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1. A SHORT OVERVIEW OF SOME AUTOMOBILE RATING METHODS 

In the automobile  insurance tariffs of  many countries several tariff variables 
are used, e.g the horse-power class of  the car, the bonus/malus (or no claams 
discount) class of  the driver or the class of  the territory where the car is 
prlnciplally garaged. In this way the portfolio of  automobile insurance policies 
is cross-classified into a number  of  cells whach are each supposed to be 
homogeneous,  so that all pohcies of  the same cell pay the same premium. For  
the sake of  slmphclty we wall consider m the following only two tariff variables, 
which are subdivided into m and n classes respectively. When then have m n  
cells labelled ( i , j ) ,  t = 1 . . . . .  m , j  = 1 . . . . .  n. Now let n,j be the known number  
of  msureds (policy years) of  cell ( t , j )  and s U thear observed total claims amount  
as realization of  the random variable S~. For  some of  the cells, n~ may be so 
small that it IS not advisable to use s,j as the only basas for the calculation of  
the net premium E ( S v ) / n  Y of  that cell. Therefore one searches for marginal 
parameters  x,,  i = 1 . . . .  m, and y j , j  = 1, . . . ,  n, with 

either x ,  y j  = E ( S v ) / n  v (multiphcative approach),  

or x , + y j  = E ( S ~ ) / n ~  (additive approach).  

Thas also reduces the number of  figures needed to describe the tariff premiums 
from m n  to m + n .  In the following we only consider the multlphcatwe 
approach,  but the methods described can easily be translated to the addltwe 
approach,  too. 

The problem of  finding appropriate  marginal parameters  x, and yj Is one of 
the classical problems of  insurance mathematics It  has been known for a long 
tame that the sample marginal averages 

Xt ~- St + /tilt+ 

yj  = ( s + j / n  +j)/(s+ + / n +  +) 

(where a ' + '  indicates summation over the corresponding index) give a 
satisfactory approximat ion of E(S , j ) /n , j  only If the taraff variables are indepen- 
dent. But generally this ~s not the case. Therefore, in the last 30 years several 
different methods have been proposed. We will now shortly rewew three of  the 
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most well-known mainly following the description gwen by VAN 
EEGHEN/GREuP/NussEN (1983) For  a more comprehensive and more recent 
comparative analysis see JEE (1989) 

The first breakthrough was achieved by BAILEY/SIMON (1960), who esti- 
mated x,, y: by mimmlzing 

Q= ~ ~ (stj-nvx,yj)2/(nvx,Y:) 
I=l  J=l 

t=l J=l 

but their underlying assumption of Q having (up to a factor) the distribution of 
a chi-square will normally not be true (see VAN EEGHEN/GREUP/NIJSSEN 1983) 
Moreover, it can be shown (VAN EEGHEN/NIJSSEN/RUYGT 1982) that for the 
minimizing parameters x,, yj the mequalmes 

nqx, yy >_ ~ S~, t = l  . . . . .  m, 
j = l  j = l  

,l,jx,yj ~ ~ 59, J= l . . . .  Pl, 
t~l t--I 

hold, l e. there results an overest~matlon of  all marginal loss amounts (m the 
multlphcatwe case only). 

Therefore BAILEY (1963) and later JUNG (1968) proposed estimating x,,)5 
directly from the intumvely appeahng conditions 

(la) 

and 

(Ib) 

nluxty J ---- ~ s~1, 
j = l  ./=1 

i = ] ,  . , m ,  

nvx,y j = ~ sv, j =  1 . . . . .  n, 
t= l  1=1 

which can be solved iteratively: starting with, for example, yj = 1, (la) results 
in x, = s,+/n,+, which is inserted in (Ib) giving new .35 etc The procedure 
converges quickly. This method has been called "marginal  totals"  If the 
random variables Su denote the number of claims instead of  the total clmms 
amount, then this method can be shown to be maximum likelihood under the 
assumption that all S,j are independent and Po~sson distributed with parameter 
%x, yj (see VAN EEGHEN/GREUP/NIJSSEN 1983, p. 93). But for the more 
important case where Sv is the total clmms amount  one has no model from 
which the equauons above derive and thus, for example, a staust~cal test of  the 
goodness-of-fit cannot be designed esther 



96 T H O M A S  M A C K  

SANT (1980) proposed estimating x,,yj by the method of weighted least 
squares, i.e. by minimizing 

~ (sv-nux,yj)2/nv = ~ ~ nu(sv/nu-x, Yj) 2 
t = l  j = l  t = l  j=l 

But the powerful tools of  regression analys~s like the R 2- statistic, the analysis 
of  residuals and the estimation of the pre&ctlon error can only be applied 
rigorously if all S v are normally distributed with Var (S~) proport ional  to n~. 
Both assumptions are not very realistic. 

Using the additive approach,  the weighted least squares method leads to the 
same equations for the marginal parameters x,,yj as the marginal totals 
method, which in this case is no longer the maximum hkehhood estimator for 
Polsson distributed numbers of  claims. 

Altogether, in the case of  S v being claims totals all three methods described 
above are only of  a heuristic nature without an underlying realistic model. 

2. S O M E  M E T H O D S  O F  E S T I M A T I N G  IBNR C L A I M S  R E S E R V E S  

A N D  T H E I R  C O N N E C T I O N  T O  A U T O M O B I L E  R A T I N G  M E T H O D S  

We now turn to the problem of  estimating I B N R  claims reserves. For an overview 
see VAN EEGHEN (1981) or TAYLOR (1986). Here s,j and S,j respectively--we 
intentionally use the same symbols as before- -denote  the inflation-adjusted 
total amount  of  payments  made In development year j , j  = 1 . . . . .  n, for 
accidents occurred in accident year z, i = 1, . . . ,  m If  one works with incurred 
amounts,  sv and S,j denote the total amount  of  changes In valuation made in 
development year j on behalf of  claims of  accident year i. Working with 
incremental amounts  we may assume that all S,j are independent Typically, 
one has n = m and sy is known for all i+j _< m +  1 (run-off triangle), and one 
is interested in estimating E(S,j) for t+J > m +  1. The known measure of  
exposure n,j here normally only depends on the accident year t, i.e. n,j = n, 
(number of  policies or number  of  claims reported in the first development year) 
or is even ignored (i.e. nv = I for all i,j). 

One of the most  important  ways of  treating the I B N R  problem is to assume 
a multiphcative structure of  the type 

E(S, j )  = x,  yj 

and to estimate the parameters  x, ,  yj from the triangle of  known data. This 
way was used, for example, by DE VYLDER (1978), who estimated x,,yj by 
minimizing 

(s,~- x ,y j )  2 
l ,J 

(where the summation is for all i,j where s• is known). This is exactly the same 
method as was used by SANT (1980) in the context of  automobile insurance if 
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one puts all n v = 1 there. Analogously each method which estimates the 
marginal parameters x,, yj for cross-classified automobile insurance data can 
also be translated mto a method for estimating the IBNR claims reserve. One 
only must take the different pattern of  known data (triangle instead of 
rectangle) into account 

Let us consider as further example the method of  marginal totals. 
Again working with n = m and n v = 1, we get the conditions 

(H,) E x, yj : E su' i :  1 . . . . .  m ,  
J J 

(Vj) E x, yj = E s's' j = 1, . . , m ,  
i i 

where the summation iS for those indices where the corresponding su are 
known (i.e. in the case of a full triangle j runs from 1 to m +  1 - t  and i from 
1 to r e + l - j ) .  The same equations are also obtained if one derives the 
maximum hkehhood equations in the Polsson case. 

Because of  the triangular structure, the above equations can here be solved 
recurslvely : We start with the general observation that the solution of thts type 
of problem is only unique up to a multiphcatlve constant c # 0 because if x,,  yj 
is a solution, x, c, yflc is a solution as well. Therefore, without loss of  generality 
we can put y l +  . .  + Y m  = I. Then using equation (HI) we have xt = s t+.  
From equation (Vm) we get y,, = s l , , / x l .  Then (H2) yields x2, (Vm-O yields 
Y m -  I e t c .  

But it is also possible to derive a direct formula for the unknown mean 
claims amount E(Sv) = x,yj .  For h > m + l - t  it can be shown (see KREMER 
1985, p 133-136, or Appendix A where a shorter proof  is given) that 

where 

x, yh = Sq " fm+ 2-," fm+ 3-, " ' fh - , "  ( f h -  1) 
J = l  

~ -  S k i  S k i  , J = 2 ,  . . . , m .  

~. k = l  I = l  / , .-I /=1  

J 

If  one reahzes that E skt 
/ ~  I 

is the accumulated claims amount  of accident 

year k known at the end of development year j, one sees that we have just 
obtained the well-known chain ladder method which is thus shown to be the 
same as the marginal totals method for n U = 1 Furthermore, from the 
marginal totals condmons (H,), (V j) one easdy sees that an incorporation 
(analogously to (la) and (lb)) of  the known exposure n, into the estimation of 
the IBNR claims reserve can be dispensed with, as n, can be amalgamated with 
the marginal parameter x, (m the multlplicatwe approach only), whereas the 
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apphcation of  the chain ladder method to the claims ratios sfj/n, assumes a 
different model. 

It is interesting to note that the analogue of  the BAILEY-SIMoN method 
seems to have never been pubhshed as a method for estimating the IBNR 
clmms reserve. 

Another interesting point as the fact that in the context of  IBNR clmms 
esnmation only the mulnpllcatwe approach seems to have been used, although 
several applicataons to automobile rating indicate that there the additive 
approach maght give a better fit (see e.g. CHANG/FAIRLEY 1979). A special 
feature of  the addmve approach ~s that ~t may lead to neganve values 
E(S,j) = x ,+yj .  This would make no sense m the ratemaking satuatlon but m 
the case of claims reserving it can be very reahstic (settlement gains) 

Clearly, also xn the context of  clmms reserving the least squares method and 
the marginal totals method (and, of course, the BAILEV-SIMOr~ method) could 
be carried through with the additwe approach, too, both producing an 
~dent~cal set of equattons for x,,  Y/as has already been mentmned in the sectmn 
on automobde rating 

There is a natural connectton between the multtplicattve and the ad&tive 
approaches because, through the log-transformation, 

stt/n~t ~ x,yj 
becomes 

log (sv/nv) ~ log (x,)+ log (yj). 

This means that an estimate for E(S,j/%) can be established by applying an 
addmve approach to the log-transformed data log (s,/nv) and by transforming 
back the obtained solutmn log (x,), log (yj) using the exponentml functmn. Thas 
was done by CHANG/FAIRLEY (1979) for automobde rating and by KREMER 
(1982) (see also ZEHNWIRTH 1989) for clmms reserving (wath n,j = 1). For the 
solutmn of  the transformed (addmve) problem, both used the method of  
(weighted) least squares (here gwmg the same result as the marginal totals 
method) m order to estimate the marginal parameters log (x,), log (yj). 

As ZEHNWlRTH (1989) points out, this procedure contains an Imphcat 
distributional assumptmn: In order to fulfill the conditions of normality and 
homoscedastaclty for the least squares estlmatmn of  the parameters log (x,) and 
log (yj), it has to be assumed that log (Sq/n,j) has a normal distnbuhon with 
mean value log (x,)+ log (0~) and a varmnce whach as propomonal  to 1/nv Thas 
implies that S,:/n,~ is assumed to have a lognormal distribution. CHANG/FAIR- 
LEY and KREMER dad not take this imphclt dastnhutmnal assumption into 
account Therefore, they systematacally underestamated E(S,j/n,j) as they used 
x, yj = exp (log (x , )+log (yj)), which as the medtan of the lognormal &stnbu- 
non whereas the expected value is x,y, exp (a,j2/2) wath a,~ = Var (log (Su/n,,)). 
As stated above, we have homoscedastlc~ty tf we assume that a,~ = a2/n,j, 
where a 2 can be estamated by 

2 nv(l°g (sv/nv)-log (x, y j ) ) Z / ( c - m - n +  1), 
t .J 
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which is just the expression to be minimized by the least squares method. Here 
c denotes the number  of  cells where s,j is known. 

Unfortunately,  we have lost the mult lphcauve structure, as generally 
E(S, j /n, j )  = x, y jexp(a,2j /2)  cannot be cast into the form E ( S , j / n , j ) =  ,%~j 
anymore.  

Whereas all the models discussed before have been shown to be only of  a 
heuristic nature both in automobile rating and in claims reserving, the 
Iognormal model relies on a parametric assumpUon for S,j, and the instruments 
of  regression analysis can be used to check this assumption against the data. In 
the next section another method ~s given which rehes on a reasonable 
distributional model and therefore also allows the application of  various 
important  and useful staUsUcal tools. This model has two advantages over the 
lognormal model First, it IS not just any model for S,j but can be traced back 
to a micro-model for the total claims amount  of  each single insured unit and 
can therefore be expected to be realistic. Second, we can choose either the 
mulUphcatlve or the additive structure for E(S,~/n,j), whereas the lognormal 
model yields neither of  these structures. 

3. A PARAMETRIC MODEL FOR RATING AUTOMOBILE INSURANCE OR 

ESTIMATING I B N R  CLAIMS RESERVES 

We use the same notations as before, i e. we have mn cells labelled (t,J), each 
with known measure of  exposure n,~ (possibly independent o f j  In the case of  
clmms reserwng) and with total claims amount  variable S,j (realization s,j). In 
the case of  claims reserving we know the reahzatlons s,j m the run-off  mangle  
only. We now assume, following TER BVRG (1980), that the total claims 
amount  R,jk of  each umt k = 1 . . . . .  n,j of  cell (t,J) has a G a m m a  distribution 
with mean value m,j (independent of k)  and shape parameter  ~ (independent of  
i , j ,  k ) ,  i.e. with probability density function 

f j  (z) = exp ( - ~z lmy)  z ~- i (~lmu)~lF(oO 

(here the usual representation of  the G a m m a  density has been reparametr~zed 
m order to Implement the mean value m,j directly as a parameter).  Because in 
practice many units k will have a realization r,jk = 0 of  R,jk, the shape 
parameter  0¢ has to be conceived of  as smaller than 1 m order to attribute a 
high probability to the nelghbourhood of z = 0 (for instance, we have 
prob (R,jk < m,j/10) = 0.79 for ~ = 0.05) Assuming that all n,j umts of  cell 
0 , J )  are independent, our distributional assumption lmphes that 
S,j = R,j~ + R,j2+ .. .  also has a G a m m a  distribution but with mean value n,jm,j 
and shape parameter  n~o¢ And this is the d tsmbut lon  we shall work with m the 
following, because we usually know only the realizations s,j of  S,j and not those 
of  R,j~. The assumption that the shape parameter  ¢z is the same for the units o f  
all cells may seem questionable in some cases But this should be detected by 
testing the goodness-of-fit (see next Section). 
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In the multiphcative approach we assume furthermore that m,j can be 
displayed in the form m,j = x , y j  with unknown parameters x, ,yg, whxch we 
shall estimate with the maximum likelihood method. 

Assuming that all S,j are independent, the likelihood function on the basis of 
the realizations saj > 0 is given by 

, x,  Ya 

Therefore the loglikelihood function 

- -  ( s , , r ( , , , , ~ )  ) .  
x~yj 

IS 

log (L) = 2 {-as,j/(X, Ya)+n,J°~ log (0cs,j) - n,a0c log (x, y j ) - l o g  (s , jF(nvot) )  } 

(where the summation is for all l , j  where s,j is known). The maximum 
likelihood estimator are those values x , , y g ,  ct which maximize L or equiva- 
lently log (L) They are g~ven by the equations 

0 = i3 log ( L ) / ~ x  a = o~ ~ ( sv / (~ : ,2y j ) -n , j / x , ) ,  
.I 

i =  1 , . . . , m ,  

0 = ~ l o g ( L ) / a y j  = c r y '  (s,,l(x,y))-,,,,lyj), s = 1, . , n ,  
I 

which show that the last condition 8 log(L)/a~x = 0 is not needed for the 
calculation of the likelihood estimator for x , , y j ,  which can immediately be 
seen to be given by 

f I s,a 
x a -  ~ - - ,  , = 1, . . , m ,  

na+ j yj  

(2) 1 s,~ 
y j -  ' ~ - ' - - ,  j = l  . . . .  n 

H + j  t X t 

These equations have a high intuitive appeal. For, considering the goal of 
approximating % by n v x ,  y j ,  we see that this amounts to approximating 
sq / (nqy j )  by x,  and therefore the %-weighted mean of a,j /(nvyj) ,  j =- 1, , n, 
should be a reasonable estimator for x, 

Also, equations (2) are not new. They have already been used by VAN 
EEGHEN/NIJSSEN/RUYGT (1982). They call them the "direct method"  and 
write (on page 111)' 

"This  set of equations are a direct translation of the lntumve calculations 
presented ... by F. K. GREGORmS. In fact, a soluuon is found when lteratively 
calculating the values x, and yj by ineans of the formulae given in (2) by letting 
yj = I (j = l . . . .  n) be the starting value The procedure converges rapidly 
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We may rewrite (2) as 

Z n v x  = Z s v / y ~ ,  
J J 

i = 1, . . . , m ,  

~_~ nvy j  = ~ s , j / x , ,  j = 1 . . . .  n, 
I 1 

which is similar but not equivalent to ( la)  and (lb). 
As yet, we have not been able to find an argument  why a ' sa t i s fac tory '  
solution should (approximately) satisfy (2) . . .  
The method was more or less developed as a first try and we were surprised to 
see, that, once formalized, it produced practically the same results as the 
method of  marginal totals ."  

So much for the quotation from VAN EEGHEN/NIJSSEN/RUYGT (1982). 
One year later the Dutch actuaries found an argument  for their method 

because the booklet of  VAN EEGHEN, GREUP and NIJSSEN (1983) contains on 
page 109 a small hint saying that the assumpUon of  a G a m m a  distribution for 
R,jk would lead to the "di rec t  me thod" .  But there, as in TER BERG (1980), a 
much more general regression model is considered, of  which our simple 
cross-clasmfied situation is just a specml case. Moreover,  these authors have 
concentrated on ratemaking, whereas we want to emphasize the applicability to 
claims reserving, too. 

Finally, it is interesting to note that the likehhoood equations for the 
addmve approach 

Z ( s , j / ( x , + Y J ) 2 - n v / ( x , + Y J ) )  = O, I = l , . . . , m ,  
J 

( s , j / ( x , + y j ) 2 - n v / ( x , + y j ) )  = O, j = 1 . . . . .  n, 
t 

must be solved with the help of, for example, the NEWTON-RAPHSON numerical 
method. Moreover,  these equations are different from those suggested by the 
"di rec t  m e t h o d "  : 

x,  = ~_~ ( s v - n , j y ) / n , + ,  t =  1 , . . , m ,  
J 

yj  = ~_, ( s , j - % x , ) / n + j .  j = 1 . . . . .  n. 
I 

4. STATISTICAL ANALYSIS OF THE MODEL 

This parametric approach with a realistic dmtributional assumption enables us 
to use many tools for the statistical analysis, as has been clearly set out by 
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ALBRECHT (1983), who describes the case e = 1 in considerable detail but 
again as a general regression model. Besides the consistent and (asymptotically) 
efficient estimation of  the model parameters,  we have the possibility of  testing 
the significance of the tariff variables with the likelihood ratio test (see 
ALBRECHT (1983) for details), we can calculate the error variances of  the 
parameter  esUmators and we can check the goodness-of-fit We first consider 
the goodness-of-f i t '  According to our model, S,j has a G a m m a  distribution 
with E(S,j) = n~m,j and Var (Su) = 2 n,jmu/ot. The higher the shape parameter  
nv~ of  this distribution, the closer it is to the normal distribution If  all S,j are 
approximately normally distributed the statistic 

2 (S~- E(Stl)) 2 
,.g Var (Sv) 

- o~ ~ (S'~/(x"O-%)2 

t,j Htj 

=0~ Z n U 1 
I,J Flfj X t y J 

is, under the hypothesis of  our model, approximately at chl-square with 
c - m - n  degrees of  freedom, where c is the number  of  cells where s v is 
known 

The special form of this statistic allows its application without having 
estimated cx. For this purpose we fix ~ in such a way that the value of the 
statistic IS just below the (say) 0.95-fractile of  the chl-square distribution. If 
using this value of c~ a normality condmon hke "nv0~ > 10" is fulfilled for 
nearly all cells, we may be satisfied with the goodness-of-fit of  the model. But 
we have to realize that this goodness-of-fit test only checks the fit of  aggregated 
figures and cannot test the distributional assumptions within the cells 

Applying this procedure to SANT'S (1980) collision data (126 cells) we get 
( < )  = 0.021 and the three lowest values of  ny~ turn out to be 6.8, 9.4 and 

11 5, so we may accept the multlphcatlve G a m m a  model. Using CHANG/FAIR- 
LEY'S (1979) combined compulsory data (105 cells), we get ~ ( < )  = 0.0094 and 
have 9 cells were the resulting value of n,j~ is lower than 10, the lowest being 
4.5, so the fit is less satisfactory. 

A simple formula for an estimator of  ~ is given by the method of moments,  
l e. by equating the variances 

(sy-n~x,Yj) 2= ~ %(x,Yj)2/°~. 
t , j  I,J 

This yields ~ = 0.014 for Sant 's data and ~ = 0.0093 for Chang/Fmrley 's  
data. 

Strictly speaking we should use the likelihood estimator for 0~ We then must 
solve the likelihood equation 

0 = ~ log (L)/~o~ = 2 n,:{log (c~su)-log (x , y / ) -  ~u (n,j~)} 
t ,  ] 
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Here equations (2) have been used to obtain ~n , j  = ~sq/(x,yj). ~,(z)= 
F'(z)/F(z) denotes the d~gamma function, for which the asymptotic  approxi- 
mation 

~u(z) ~ log ( z ) - ( 2 z ) - l - z - 2 / 1 2  

exists which even for arguments as low as z >_ 4 is exact to 4 decimal places. 
This approximation yields as the solution of  the likelihood equation 

with 

a = 4 ~  nulog(nvx,yj/sv) > O, 
t,J 

b = ~ (3n~) -I 
t,J 

1 = number of  cells where s,, is known C 
t , j  

Applied to Sant 's data this yields ~ ~ 0.0202. For Chang/Falr ley 's  data we get 
c~ ~ 0 0097. I f  we have some small exposures n,j such that nv~x < 4, we should 
refine the approximation of  the d lgamma function by using the recursion 
q/(z) = ~ ( z + l ) - l / z  and by including more terms of  the approximation 
series. Then a direct formula for c~ cannot be given anymore We must 
therefore solve the likelihood equation iteratlvely with the NEWTON-RAPHSON 
method. 

Having estimated ~, we are also in the position to calculate the estimation 
error of  the estimators for x, and yj. This is done in Appendix B. 

According to the experience of the Dutch actuaries, the results of  applying 
the "dtrect  m e t h o d "  to automobde insurance data are rather close to the 
results obtained by the marginal totals method. Translated to the IBNR claims 
reserwng problem this means that the "direct  m e t h o d "  results will be similar 
to the chain ladder results. But with the "direct  m e t h o d "  we can additionally 
make use of  the aforementioned advantages. Moreover,  the formulae provide 
the possibility of  taking the exposure n, o f  accident year i into account (which 
IS different from the sttuatlon with the chain ladder). And perhaps the 
goodness-of-fit statistic or the size of  the likelihood function gwes an indication 
to answering the question "addi t ive  or mult lphcatJve9" Because of  these 
advantages of  the parametric method we believe that before using a rather 
heuristic method like BAILEY/SIMON or chain ladder one should examine 
whether the parametric method fits the data. 

5. IMPROVEMENT OF THE MODEL IN THE CASE OF 

KNOWN CLAIMS NUMBERS 

Especially in the claims reserving situation we will often have difficultIes in 
finding an adequate measure nv of exposure 
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Therefore mostly ny = n, or even n v = I is taken. However, this is not 
satisfactory because the exposure to further payments or changes in valuation 
varies in f ac t  rather strongly over the development years. Therefore, a more 
meaningful measure of  exposure will be the number ty of  those claims of 
accident year t where there is a change in amount  during development year j .  
These data t,j, t + j  < m + I, are often available in practice. 

Rating in property insurance presents a similar problem. There, even the 
risks of  the same cell vary greatly with respect to their size, which is usually 
measured by the sum insured. Therefore, the number of  risks is not a good 
measure for the exposure of  a cell (t , j) ,  and the sum insured is taken instead. 
But then an assumption of  our micro-model is not fulfilled anymore because 
the " u n i t s "  of  sum insured are not independent, as a single risk consists of  
several such units. We therefore must abandon our micro-model and try 
directly whether the G a m m a  model for S,j with mean value E ( S v )  = n v x , y  j 
and shape parameter  ny ~ fits the data if n~ is the sum insured. The parameter  cz 
then does not have a specific interpretation anymore But if we know 
additionally the total number  ty of  claims of  cell ( l , j )  we can apply the 
following stepwise approach which assumes a G a m m a  distribution (with shape 
parameter  ~) not for the total claims amount  per risk unit but for the amount  
of  each single claim. Of  course, this procedure can also be applied in 
automobile  ratemaking if the number  t~ of  claims is available. 

In these situations we should use ty - - the  corresponding random variable is 
denoted by T,j--as an additional measure of  exposure and adopt  the following 
three-steps-approach, which follows the ideas of  ALBRECHT (1983): In the first 
step we take the observed number  t,j of  claims of cell ( i , j )  as the measure of  
exposure and assume that the size of  each corresponding amount  has a G a m m a  
distribution with mean value my = x , y j  and shape parameter  ~. Then we are in 
our original model (with n v replaced with tu) leading to the direct method This 
yields smoothed average claims amounts  x, y j .  In the second step we smooth 
the ty by assuming that all Ty are independent of  each other and that each T,j 
has a Polsson distribution with parameter  n,j v, wj (here using the ' o ld '  measure 
of  exposure). Then the maximum likelihood estimator of  v,, ivj on basis of  the 
realizations t v is given by the equations ( la)  and (lb) with x , , y j ,  s v replaced 
with v,, wj,  t v respectively. This yields smoothed numbers ny v, ivj of claims. In 
the last step, E ( S u )  is estimated by n,jv, wjx ,  yj  implying that in each cell the 
number  of  claims is independent of  the average claims amount.  

6 FINAL REMARK 

In the context of  this paper we should point out the following further 
connection between rating methods and claims reserving methods. Another 
important  rating method which smoothes the claims experience of several tariff 
classes is the B/.ihlmann-Straub credibility model. It also uses a cross-classifying 
approach by the two dimensions ' t a r i f f  classes' and 'observat ion years ' .  
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Therefore, one will presume that it could also be translated into a method 
for estimating IBNR claims reserves. But there is a difficulty because the 
Bfihlmann-Straub model assumes that the average claims amount  Su/n,j of  
tariff class l has the same expected value over all years j, whereas m the run-off  
triangle the expected value of  the average claims amount  S,j/n, of  accident year 
t and development year j varies m a certain but unknown pattern over the 
development years. However,  this difficulty can be overcome in such a way 
that the BiJhlmann-Straub model can directly be used for claims reserving, too 
(see MACK 1990). 

APPENDIX A 
PROOF THAT THE CHAIN LADDER METHOD CAN BE DERIVED FROM THE 

MARGINAL TOTALS CONDITIONS (AND THEREFORE IS MAXIMUM LIKELIHOOD 

IN THE POISSON CASE) 

We show that the chain ladder method 

x , y  h = Sq " fm+ 2- , ' fm+ 3 - , ' ' ' f h - I  " ( f h - - 1 ) ,  
1=1 

h > r e+ i - l ,  

with 

( r n ~ - j  Z ) / ( r n + , -  3 j-~ ) 

: Ski E Ski ' 
fJ ~ k=l I=1 k=| /=[ 

j =  2 , . . . , m ,  

can be deduced from the marginal conditions 

r n + l - I  m + l - i  

(H,) E x, yj= E sv' i= l , . . . ,m,  
J=l j=l 

m+ 1-1 m+ 1 - j  

(Vj) E x,yj= E s,j, J= l , . . . ,m.  
t~l t=l 

J J 

Let c v = E x'Yt and b v = E su (i+j ~ m+ I) denote the expected and 
1=1 1=1 

the observed accumulated claims amount  of  accident year t at the end of  
development y e a r j  respectively. Then condihons (H,) can be written shortly as 
c , .m+~- ,=  b, .m+l- ,-  For h > m + l - i w e  have 

Therefore 

Cth -~ C~,m+l_ t 

X~y h : Czh--Cqh_l 

Cj, m + 2- ~ Cjh 

Ca, rn+[-f Ct, h- I  
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c,m+2, c,h, (c h) 
~- Ct, m+l_  t . . . . .  " -- 1 

Ct, m + l - i  Ct, h -2  Ci, h - I  

j ~ l  C q m + l -  t Ct, h -  2 ~ Ci, h-  I 

and we have only to show that %/c,,j_ 

and o f  

j ( m + I~3 

Z y, 
I = 1  k = l  Ct3 __ = 

j -  I ( m+ I--j 
C~,j_ I E Yl 

1=1  k ~ l  

= fj.  Because of  

m +  1 - j  

c~ 
k = l  

m +  1 - j  

E Ck, J-1 
k = l  

) ---- bkj  bk. j -  I 
fJ  \ k=l k=t 

m +  1 - j  m +  I - j  

Y = Y 
k ~ l  k = l  

m +  I - j  m +  I - j  

k=l k - I  

hold for j =  2, . . , m  We show this by recursion from j =  m t o j  = 2' 

It is enough  to s h o w  that 

(A:) 

and 

(Am), l e Clm = blm, holds because o f  (Hi). 
(B)  follows from (A j) and (V j) as 

m +  I - J  m +  I - - I  m +  1 - 3  m +  I - /  

k=l k = l  k=l k = l  

m + 1 - j  m + I - J  m + I - j  m + [ - j  

k~t k=, k=, k=~ 

F i n a l l y ,  ( A j _ i )  follows from (B)  and (Hm+2- )  as 
m+ 2- j  m+ I - j  

E Ck,] - [  = Z C k , j - l + C m + 2 - J  1 - I  
k = l  k ~ l  

m + I - j  m + 2 - j  

= Z bk, j - l + b m + 2 - y , J  - I  = E bk,) - I  
k = l  k = l  

This completes the proof. 
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APPENDIX B 

ESTIMATION OF THE (ASYMPTOTIC) ERROR VARIANCES 

We have estimated the marginal parameters x , ,  yj with 

either x, yj  = E(S , j /nu)  (multlplicatlve approach) 

or x , +  y: = E(Sv /n , j )  (additive approach). 

by the maximum likelihood method and now want to know how precise these 
estimates are, i.e. we want to calculate Var(X,), Var(Yj), Var(X, Yj) or 
Var (X, + Yj) where X, and Yj denote the random variables corresponding to the 
estImators for x, and yj respectively. A standard result of  maximum likelihood 
theory states that under certain regularity conditions which are fulfilled here, 
the following holds true: If a parameter vector O = (Oi,  . . ,Or )  is estimated 
by the maximum hkelihood method, the obtained estimator O has asymptoti- 
cally a normal distribution with mean value O and with a covarlance matrix 
which is equal to the inverse of  the information matrix 

( ~2 l°g ( L ) )  
I(O) = E - 

~0 ,  ~0:  ,.: 

where L = L ( O )  is the likelihood function. 
In our case we have O = (x2 . . . . .  x,,,, Yl . . . . .  Yn) where we have omitted Xl 

without loss of generality in order to obtain a unique solution of the hkelihood 
equations and have considered ~ as being known (For  the case of  cx being 
included in O, TER BERG (1980) has shown that this does not change the 
calculation of Var (X,), Var (Yj) and Cov (X',, Yj)). We now have 

Cov (X2 . . . .  , X m ,  YI . . . . .  Y,,) "~' l ( x 2  . . . . .  X m , Y l  . . . . .  y n ) - I  = : / - I  

,~ I(:c2 . . . . .  ~m, Yl . . . . .  .fin) -1 =" i - t  

where :~2, . . . ,  .fin denote the estimated values of  the true parameters x2,  . . . ,  Yn 
From i -I we directly obtain asymptotic approxlmative values for Var (X,), 
Var (Yj) and Cov (X,, Y~). This also gives immediately an approximation for 

Var (X, + Yj) = Var (X,) + 2 Cov (X , ,  Yj) + Var (Y2) 

which we want to know in the additive approach. In order to obtain Var (X, Yj) 
for the multiplicative approach, we make use of a general theorem on the 
higher moments of  normally distributed variables (see e.g RICHTER 1966, 
p 369) to get 

Var (X, Yj) ~ Var (X,) Var (Yj) + (Cov  (X,, Yj))2+Var (X,) (E (yj))2 + 

+ 2E(X,) Cov (X, ,  Yj) E ( Y j ) + ( E ( X , ) )  2 Var (Yj) 

(which holds exactly if X, and Yj are normally distributed) This can be 
calculated from f - i  and from E(X,) ~ ~,, E(Yj) ~ )~j. 
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Therefore, the only thing left to do is the calculation of I and l - I  Con- 
centrating again on the multiplicative approach, the loglikehhood function is 

log (L)  = - ~ (ctS,j/(x, yj) + o~n,j log (x, yj) + g (ct, n,~, S,j)) 
I,J 

and yields (using E(S,j) = n,jx, yj and the Kronecker symbol 6 v with J,j = 1 for 
i = j,  6,j = 0 otherwise) 

i~ z log (L) 0on,+ 
A,k: = E - - 6,k, 2 < i , k <  m ,  

~X, ~X k Xt 2 --  --  

Oz log (L) 
B,j" = E - 

Ox, Oyj 

i~ 2 log (L) 
CO: = E - 

8Yz ~Yj 

(where n+j includes 
information matrix 

_ o t n q  

xtyj  
2 < l < m ,  1 _ < j < n ,  

_ O~n+j 60' 1 < l , j <  n 
y)2 -- ' 

nlj). With the matrices A = (,4,k), B = (By), C = (Co) the 
I can be represented as partlhoned matrix (A B) 

I =  B t C 

where A and C are diagnoal matrices. 
Unfortunately, an explicit formula for the inverse matrix I-1 is not available. 

One therefore must apply a numerical inversion method. But the dimension of 
the inversion problem can be reduced with the help of the following result for 
the inverse of a partitioned matrix (which can be verified by calculating I -  ~ I 
and H - I ) :  

i _ . =  ( D -1 - D - '  B C - '  ) 

_ C - I B t D - I  C - I + C - I B t D - I B C - I  

= ( A-'+A-IBF-IffA-t_F - I B t A - I  -A-IBF-I)F -I 

with 

D = A - B C - I f f ,  

F = C - B t A - I B .  

A straightforward calculation yields for the elements of D and F 

D,k = ~ ( t ~ , k n , + - - p ~ k ) / ( X ,  X k ) ,  2 _< i, k _< m,  

F 0 = o~(Jon+j-qo)/(ytyj)  , 1 < l , j  _< n,  
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with 

~ n,tn,j P,k = nvnk~ , qo = 
j= l  n+j t = 2  nt+ 

Therefore, only the smaller matrices D and F must be inverted in order to 
obtain I - I  and also I - I .  
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